Who’s at the table? Priorities after a year of food justice dialogue

Defining ‘Food Justice’ is not easy. When it comes to ‘fairness’ and ‘equality’ in relation to our food system, should we be concerned with questions of individual citizens’ access to sustainable sources of subsistence, or issues of production, labour and the practices of agri-business? Do people have clear rights to food? And should such rights focus on quantity alone, or take account of the quality and nature of food? Furthermore, when defining ‘food justice’ should we be primarily concerned with human rights, or are we dealing with complex systems that oblige us to think about non-human persons and actors, including animals and the environment? Whatever our responses to these questions might be, it seems clear that thinking about climate change cannot ignore either food or justice.

An artistic collaboration is stimulating discussion about who is at the table in (un)just food systems.

Over the last year, we have established the Bristol Researchers Food Justice Network. Primarily, this has been through setting up a regular fortnightly seminar series, a workshop exploring the core purpose, values and potential for the Network, and an artistic collaboration to experiment with interactive ways of thinking about the food system and food justice. As it moves into its second year, we reflect on some of the key themes discussed so far. Recent models suggest that policy decisions that focus on climate alone will likely result in rapid growth in social inequalities, including and especially in the global food system. As we focus on questions of environmental sustainability and climate change in the light of the Cop-26 conference, some key food justice issues come to mind:

1. The way that we see food justice is systemic, equally as environmental as it is social

Every part of the food system is connected. Problems with diet are not disconnected to labour force, or price of food, or access to land, or environmentally sustainable farming. It is possible to have a food justice perspective towards understanding food systems. This involves seeing and considering people and other beings everywhere in the system and their being recognised as having an inherent value, with such value not being cheapened in the name of economic cost.

What clearly emerged from the network workshop, which involved researchers from vets to social scientists, historians and lawyers, was that we valued word and concept of ‘justice’ because it captures the common understanding that we are committed to change where we see injustice. While many network members understand food interactions as part of a ‘food system’, the concept of justice helps us maintain a critical and action-led approach where we see problems in those food systems.

2. Justice in food systems is bound up with structures of trade and foreign policy agendas

Since the mid-nineteenth century, Britain has largely relied on food imports, a model which has today become normalised. For many, changing this model is fundamental to building a more sustainable food system. But this cannot be a choice between either climate or society Recent government initiatives promise radical new directions in agriculture policy but keep this trade-centred model intact. Thus, the UK is determined to get farmers away from food subsidies, having committed to end direct payments by 2027. This would turn farmers into environmental stewards whilst offshoring the production of food elsewhere. Moreover, trade deals can increasingly be seen to trade away local and national food production in favour of other priorities, something that the network held a ‘policy hack’ discussion about following the approval of the UK-Australian Free Trade deal in June 2021.

Lauren explores how the table at the heart of the artistic collaboration is supported and wired together.

3. The Dutch model alone cannot save the world

Many models for the future of farming, food supply and food consumption, focus on technical solutions. Accounts of the ‘miracle’ of Dutch agriculture, for example, cite the emphasis on the investment in research and innovation that have underpinned the country’s apparent success in agricultural research and development. But what are the social implications of technological solutions – and what if we end up sacrificing quality for efficiency?

Will research led by agri-food corporations underpin a genuine revolution in global food production, or create intellectual property that marginalises small-scale and community-centred farming enterprises in ecologically-vulnerable territories in the Global South? Some agri-tech policies pioneered by countries such as the Netherlands – such as responsible antibiotic use – are to be lauded, but if these are pursued in the service of intensive agriculture, real problems remain.

4. Consumers are key to change – but we need to do more than blame and shame

As individual consumers, we all have a role to play in transforming the food system; but individualising systemic problems simply places the onus on the consumer in ways that often inhibit radical action. Moreover, as recent polling suggests, individuals are reluctant to embrace environmental actions – such as reducing meat consumption – that have the greatest impact on their own lives.

The choices we make certainly matter, but the notion of ‘choice’ is in many cases an illusory, erroneous and pernicious concept. In effect, consumers  are presented as ‘both the cause and the solution to potential health problems and thus are made to be accountable for their own health.’ This is especially true when we consider questions of poverty and its relation with obesity and other diet-based non-communicable disease. The idea that consumers, by choosing to consume ‘ethically’, ‘sustainably’ or ‘healthily’ can on their own resolve social and environmental deep-seated problems. Policies that place the responsibility for making healthy, ethical and sustainable food choices on individuals fail to address the contexts in which individuals and families live and work.

5. Agriculture and the people within it are being consistently undervalued, around the world

The current food system involves at least 1.1 billion people working in agriculture, who are often among the world’s poorest people. Peasant and self-sufficient farming practices, which often involve very low carbon emitting practices are routinely undermined by large infrastructure and deforestation practices, perpetuating a cycle of the mobility of people away from the agricultural sector that does not compensate them well (including through low international prices for primary agricultural products) towards more intensive practices in the same sector, or into other types of work.

Intensive agriculture relies on a waged labour force of 300-500 million, including many who depend on jobs in plantation work, which is degrading and, in some cases, involves forced labour and modern slavery, having emerged from systems of production developed under conditions of colonial slavery, such as in sugar plantations. Meanwhile, migrant workers make up a large proportion of seasonal and harvest workers in many rich countries because they are in a weak position in the labour force and are therefore, overall, are paid lower wages and offered poorer conditions than their national counterparts. Small producers across the world attempting to live in low-impact lifestyles are usually excluded from subsidies, but often even wealthy farmers, find their land crops and livestock are undervalued. To stay in the sector people working within it are frequently pushed into other activities to diversify and supplement their livelihoods through ecotourism or other specialised initiatives drawing income from the service sector. Why isn’t there inherent value to producing food?

6. The combined challenges of climate and biodiversity crisis for agriculture must be addressed as issues of food justice

A (contested) narrative is emerging that suggests it is possible to divide the world into areas which protect nature and areas which intensively produce food but have negative environmental consequences. We are thus presented with ‘difficult choices’ premised on the belief that farming is inherently incompatible with conservation and climate change mitigation.

This is an off-setting approach which uses a logic of ecological destruction in one place to be compensated for by nature promotion/restoration in another place. However, such ‘land sparing’ approaches simply maintain the status quo and distract our attention from the root causes of a problematic food system. We should be wary of policies that further outsource food production (and environmental damage) to prioritise environmental conservation/restoration in the UK and elsewhere.

Lead artist and ceramicist, Amy Rose, considers the dynamics present at the table. The collaboration is supported by the Brigstow Institute of the University of Bristol.

These represent some of the central issues we have begun to tackle in the Food Justice Network. As researchers, we also recognise that to fully address concerns around our contemporary food system, we need processes that expand our conversation, allow everyone to tell their stories and to fully engage all our senses. Working with artists and creative practitioners has started to help us broaden and clarify our definitions of food justice and will give us opportunities to engage and interact between and beyond the boundaries of research, public knowledge, and practice.

Creative practice and public engagement can become critical tools as we address the twin challenges of climate emergency and social inequality and their radical impact on our food systems – at local, national, and global scales. Above all, an  emphasis on food justice will be imperative if we wish to develop food policies that sustain both our environmental and human futures. Our current food system embodies historical systemic inequalities that reflect the diverse legacies of colonialism, industrialization, and globalization; these must be addressed rather than amplified in our responses to the climate emergency.

————————-

This blog is written by Cabot Institute members Dr Lauren Blake, Dr Lydia Medland, and Dr Rob Skinner from “Who’s in our food?”. This blog has been reposted from the Bristow Institute blog with kind permission from the Brigstow Institute. View the original blog.

Regenerative agriculture: lessons learnt at Groundswell

Do people realise the extent to which they rely upon farming? In many other professions, such as medicine, those who enjoy good health can have years between visits to healthcare professionals. In contrast, it is hard to imagine how we could live without UK farmers. For instance, UK farmers produce 60% of all food eaten in the UK (Contributions of UK Agriculture, 2017). Despite the importance of UK farmers for our national infrastructure, there is little understanding of the web of issues facing farmers today. Drawing from our recent experiences at Groundswell, we hope to highlight some of the surprises that we discovered during our conversations with farmers, agronomists, charities, and even film producers!

Our first surprise was appreciating the complexities between agronomists and farmers. We knew from our interviews that farmers are often cautious of the advice from agronomists because some receive commission for the chemical companies they represent. In one sense, the polarisation between agronomists and farmers was exacerbated at Groundswell because many farmers who have adopted the principles of regenerative agriculture (Regen Ag) on their farms either have background expertise as agronomists themselves, or have needed to learn much of the expert of knowledge of soil and arable health required for agronomy. In this sense, many farmers invested in the principles of Regen Ag are expanding their knowledge and reducing their need to appeal to agronomists. In contrast, the majority of  farmers outside of the Regen Ag movement still depend on the knowledge and guidance of agronomists.

The problem is that the legacy of the relationship between agronomists and farmers has itself become a barrier against behaviour change. Without complete trust between agronomists and farmers agronomists are hesitant to suggest innovative changes to farming practices which may result in short term losses in yields and profits for farmers. The concern is that farmers will cease the contracts with their agronomists if their advice results in a loss in profits or even yields. We listened to many anecdotes about farmers who are worried about how the judgment from local farmers if their yields look smaller from the roadside.  The message that is difficult to convey is if you reduce your input, maintenance, and labour costs, then profitability can increase despite the reduction in yields. In short, “yields are for vanity, profits are for sanity!”

The five principles of Regen Ag are diversity, livestock integration, minimise soil disturbance, maintain living roots, and protect soil surface. Regen Ag provides simple accessible guidelines for farmers who want to adopt more sustainable practices. It offers an alternative approach to the binary division between conventional and organic farmer by encouraging farmers to make changes where possible, whilst understanding that chemical inputs on farms remain a last resort for managing soil health.

Establishing effective pathways to increase the number of farmers integrating the principles of Regen Ag is far from simple. It is not merely about increasing knowledge between farmers and agronomists, without building robust networks of trust between agronomists and farmers there is very little possibility for change. One suggestion from agronomists to help build these networks of trust was for agronomists to invest in profit shares so that there are incentives in place for both agronomists and farmers to increase the overall profitability of farms. We must recognise that any strategies for behaviour change need to account for the underlying caution toward the industry of agronomy by significant numbers of the farming community. Some agronomists consider this fundamentally as a psychological issue. Building from this perspective it seems obvious there is a space for psychologists to develop therapeutic techniques to develop and consolidate trust between farmers and agronomists. Currently many farmers and agronomists are stuck in status quo where it seems easier not to “rock the boat” on either side. The problem is that long-term this is not sustainable for various reasons.

The sustained use of chemicals alongside conventional farming practices (such as tilling) is a significant factor for reductions in soil health and soil biodiversity. In turn it creates a feedback cycle whereby larger quantities of chemical input is required to sustain yield levels, but these chemicals inadvertently create the conditions for increased antimicrobial resistance. One way to reduce chemical inputs is to adopt practices such as intercropping and crop rotation. These practices can have a number of immediate benefits including planting crops that deter pests, improving soil health, creating resilience by encouraging selective pressures between crops.

Tilling not only reduces biodiversity but it also compacts soils increasing risks associated with flooding. Public awareness has tended to focus on the increasing amount of concrete as one of the leading contributors of flash flooding. However, water retention differs significantly between different soil management systems. The rainfall simulator demonstrated how water runoff from even 2 inches of rain on cultivated soils were significantly higher than permanent pastures, no-till soils and herbal leys. Issues associated with cultivated soils such as compaction and lack of biodiversity significantly reduce water retention. The need for solutions to flash flooding are rapidly increasing given the rise in unstable and unpredictable weather system associated with climate change. The tendency to frame the solution to flash flooding solely as the need for more fields and less concrete overlooks the important relationship between soil health and water retention, which should be at the centre of flood prevention schemes. Although the number of fields is an important factor for flood prevention, we should be focusing on what’s happening in these fields – or more precisely underneath them. Encouraging robust and established root systems and soil biodiversity through co-cropping, crop rotations, and reduction in chemicals significantly increases soil retention. In this sense, there is clearly a role for farmers to adopt soil management practices that increase water retention within their farms, but these potential environmental protections from farmers need to translate into subsidies and incentives at the local and national levels.

The central message of Groundswell is that Regen Ag is providing the opportunity for farmers to build resilience both in their farms and in their communities. New technologies and avenues of funding are providing opportunities for farmers to exchange knowledge and increase their autonomy together by engaging in new collaborative ventures. Cluster farming initiatives have provided opportunities for farmers to build local support networks and identify longer-term goals and potential funding sources. The future development of resilience at these levels requires communities to support one another to encourage farmers to become indispensably rooted in communities. Some cluster farm leads are specialists offering support to farmers to help establish their long-term goals, secure funding opportunities, and increase the autonomy and security from the ground-up. In fact, there are a number of organisations seeking to support farmers by working with academics, policy makers, and industry. To name a handful of the organisations, we connected with representatives from Innovation for Agriculture, AHDB, FWAG, and Soil Heroes.

We have returned from Groundswell with a deeper appreciation of the complexity of issues that farmers are currently tackling. From navigating their complex relationships with agronomists to uncertainties about how government will account for their needs in the upcoming Environmental Land Management Schemes (ELMS). There is a clear sense in which farmers feel that ELMS current focus on agroforestry and rewilding creates potential obstacles to providing sufficient support for farmers in the economic and environmental uncertainties on the horizon. Regen Ag demonstrates the crucial role for farmers.

Find out more about our project on the use of fungicides in arable farming.

——————————-

This blog is written by Dr Andrew Jones, University of Exeter. Andrew works on a Cabot Institute funded project looking at understanding agricultural azole use, impacts on local water bodies and antimicrobial resistance.

Bristol Mock COP Negotiations – Mobilising Imaginations for Ambitious Outcomes

Screenshot of Mock COP26 hosts and facilitators (Master’s students)

On 30 March, Jack Nicholls, Emilia Melville and Camille Straatman from the Cabot Institute for the Environment hosted an online simulation of the COP26 that will happen in Glasgow in November this year. It was set to be in equal measures a playful exercise of the imagination, and deep dive into the acronym-filled world of global climate politics. Students from 11 school groups would represent various state and non-state actors, and 12 Master’s students would facilitate the negotiations, myself included.

It was the first public engagement exercise of its kind for a University in the COP26 Universities Network,  an experimental activity that hoped to lead to a replicable blueprint for other Universities could follow. So, whilst it was all carefully planned, some questions lingered after the training pre-session for facilitators, which would go unanswered until the students appeared on screen the following day:

How will the school groups engage with the exercise? What will they say relative to what we think the real negotiations will be like, and how will they navigate representing actors with values that don’t align with their own? What kind of knowledge and insights will they bring to debates on a broad range of climate resolutions? How might their votes and outcomes differ from those emerging from the real thing in November?

My preparation for facilitating the group of ‘UK delegates’ consisted of re-reading Boris Johnson’s ‘10 point plan for a green industrial revolution’ and the information Cabot Institute members have shared about financing a green transition. The briefing letter we’d received from the ‘PM’ staunchly asserted our actor aims: to protect home economic interests and industries, green or not, avoid any aid obligations to other countries that may hinder our progress towards achieving our own ambitious climate goals, proving that we are indeed on track to achieve these, and convincing others to follow our lead.

The first thing I asked the group once we’d arrived in our breakout room was whether or not they were ready to put their floppy blonde wigs on, eliciting an amusing collective groan. But, they’d done their research on climate action in the UK, and it showed. Students were clearly up to date on climate action in Bristol, updating me on the upcoming diesel ban in Bristol’s Clean Air Zone, which was passed last month and will be implemented in October. This was great for framing the UK’s ambitious Net Zero Emissions (NZE) goals in terms of their impact at city level and on our own lives.

Their background knowledge of issues like nature conservation, sustainable agriculture, and the refugee crisis meant that they took a more progressive stance on some resolutions than one might expect from our conservative government to do so in November. For example, whilst protecting natural assets in the British countryside is often positioned as simply a point of national pride, and agricultural reform hasn’t been a priority. When one student told us that there are only ‘60 growing seasons left in the UK,’ in our current intensive agricultural model, a shocking number that I hadn’t heard before, they decided to vote strongly for a sustainable agriculture transition.

I prompted them to consider the economic concerns that may shape discussions with the International Monetary Fund (IMF) and the USA in the upcoming rounds, like the Green Industrial Revolution, job security and funding for achieving UK’s ambitious NZE goals. I almost didn’t want the group to step into the more pro-economic and nationalistic agenda they’d been briefed with but was as amused and impressed as the rest when our spokesperson and many of the others dazzled us with compelling impressions of the leaders they represented.

Despite their dramatic flair and feel for the roles, all groups demonstrated an open-minded ambition that I hope we are fortunate enough to find amongst the attendees of the COP26 Blue Zone.

The IMF was represented by two Master’s students, Lucy and Tilly, who had stepped in when one school couldn’t make it to the negotiations. They lobbied hard. But we met consensus on pretty much all the resolutions: a combination of their assertiveness, the UK group’s willingness to be flexible, and their own values meant that resolutions previously not outlined as top priorities (like climate refugee protection) were seriously considered. Their reservations on this resolution, due to needs for job security in a just transition, as well as pre-existing population density, were met with deliberations on ‘why not, then, commit to welcoming as many refugees as we can? If all countries collaborated on this resolution, wouldn’t the ‘burden’ be reduced? So, why not?’ 

Thanks to a successful first round, we had the IMF’s support for resolutions on phasing out coal and non-electric vehicles to mobilise against the USA, who we anticipated might be hesitant to make bold fossil-fuel energy and vehicle phase outs. Spurred by the decisive negotiating they’d witnessed, the UK took the front foot in their following negotiations, securing agreements in both.

Unlike in the pre-arranged 1st and 2nd rounds, the groups got to list which groups they wanted to meet with in the 3rd round. The UK were hoping for Brazil, or Shell. But a ‘wildcard’ meant that the group were surprised to meet with the International Working Group Indigenous Affairs (IWGIA) and had to think on their feet. IWIGIA were lobbying for votes to amend the resolution on protecting nature and biodiversity so that Indigenous peoples living on areas designated as protected would be in charge of their management. The UK group voted against this amendment, deciding that the UK’s stance would probably be that top-down governance is necessary to reach ambitious climate goals. In my opinion, the best outcome was that Indigenous people’s rights to agency in decision-making on unceded, threatened lands was brought to the fore. I was very happy to see that the students could discuss decolonising the climate movement on the fly like that.

Throughout the negotiations, the UK shelved the staunchly independent rhetoric in their briefing letter about avoiding other countries’ climate burdens as they realised as a group that interdependence was at the heart of most of the issues they discussed. Whilst decisive action from the UK might spur other countries to follow suit, our futures also depend on reaching consensus with them.

Before we had started, I’d thought I could anticipate what role the student’s imaginations would play: getting into character and arguing in line with the actor’s values. But, the group showed me that their imaginations were fit for different purposes: for interrogating why not vote for best case scenario outcomes, and for thinking through problems-as-solutions. For example, the UK may not yet have a strong stance on biodiversity, nature and sustainable agriculture, and our climate obligations seem to represent a point of national pride rather than our collective planetary futures. But, amongst these ‘delegates,’ the intra-group discussions sounded a bit like ‘why not walk away from COP26 with strong commitments to reinvent our food systems, and to protect our wildlife? Wouldn’t these be positive outcomes and proud new communication points for the UK?’

It wasn’t just the ability to debate – not to be downplayed amongst this informed, passionate and articulate group – but to listen, and situate themselves in the perspectives of the groups with whom they were negotiating, that led to agreements for addressing collective problems. What I had assumed would be rapid-fire negotiation rounds seemed to become a crash-course in consensus decision making, a skill I’m sure they’ll go on to hone.

In the debrief session, students were asked if they had participated in any peaceful protests or intended to in future. It’s fair to say that a new spirit of rebellion is rising amongst the nation’s teens, who are increasingly realising their stakes, power, and responsibility in shaping the future. But, what’s missing from most of these demonstrations is inclusion of manifestations of what this future could be, look like, and feel like. Activities like the Mock COP provide a momentary glimpse at the world they chant is possible when they do take to the street. One in which global leaders are open-minded, co-operative and ambitious, and agreements between them are shared wins.

Of course, meeting consensus is just the first step. There’s a difference between promoting and delivering on climate targets, and our leaders must be held accountable. Meaningful youth engagement exercises like this might be a good starting point for ensuring that outcomes of the real COP26 are in line with young people’s visions of sustainable, viable futures. Because, what we hold global leaders accountable to is up to us. And our youth are natural visionaries. That much is clear.

As Donella Meadows, co-author of Limits to Growth asks, ‘who’s idea of reality forces us to “be realistic”? The UK group’s vision of the best-case scenario always took up the centre of the virtual negotiation rooms they entered, rather than the behemoth of brokenness that usually takes up this space and stalls our leaders. If we are to learn something from this Mock COP and the youth voice for climate action more broadly, it’s that “being realistic” about our planetary future does not contradict committing to the best possible outcomes. Quite the opposite, and our leaders need to do both this November.

As COP26 approaches, it’s important that young people are able to engage and to have some insight as to what is happening in the negotiations. A Mock COP is an excellent way to do just that.  Jack Nicholls and Emilia Melville have designed and run a Mock COP26 event for school students ages 16+ which can be run online or in person in the lead up to COP26.  If you would like to run a Mock COP in your university, with local state schools, please join the training session on Tuesday 30 June at 2pm. Register here

—————————–

This blog is written by Dora Young, Master’s by Research (MScR) student at Cabot Institute for the Environment.

Dora Young is an MScR student and human geographer developing participatory mapping methodologies for environmentally just, inclusive ecological management strategies in Bristol. She is interested in how human lives intersect with urban nature, both in policy and in everyday landscapes facing climate and ecological crises, and reads and writes about these themes in her spare time.

 

 

 

 

Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

World Water Day: How can research and technology reduce water use in agriculture?

Record breaking temperatures in 2018 led to drought in many European countries. Image credit Wikimedia Domain Mimikry11.

World Water Day draws attention to the global water crisis and addresses why so many people are being left behind when it comes to having access to safe water. The UN estimates that globally 80% of people who have to use unsafe and unprotected water sources live in rural areas. This can leave households, schools, workplaces and farms struggling to survive. On farms water is vital for the production of food and is used in a huge range of processes, including irrigation and watering livestock. In this blogpost I will lightly review the current issues around water in agriculture and highlight some exciting research projects that may offer potential solutions.

What is the water crisis?

The UN Sustainable Development Goal 6 is to ensure that all people have access to sustainable, safe water by 2030. Unfortunately, we’re a long way off achieving this goal as a recent report from UNICEF/WHO estimates that there are currently 2.1 billion people living without access to safe water in their homes and workplaces. Another report estimates that 71% of the global population experiences severe water scarcity during at least one month of the year. In recent years we have seen water risks increase, with severe droughts in Africa, China, Europe, India and the US. In sub-Saharan Africa, the number of record breaking dry months increased by 50% from 1980 to 2013. Unfortunately droughts, floods and rising sea levels are predicted to continue and become more unpredictable under climate change scenario models and as the global population continues to grow, there will be increasing demands on water supplies. Increases in water scarcity are likely to lead to increases in political and economic instability, conflict and migration.

Why is water important to agriculture?

In agriculture, water is vital for growing crops and sustaining livestock. Farmers use water to irrigate, apply pesticides and fertilizer and protect from heat and frost. This heavy reliance means that when water supplies run out, farmers are unable to effectively maintain their crops and livestock, leading to food insecurity. Drought stress can result in yield losses of 64% in rice, 50% in chickpea, 18 – 32% in potato. Drought has particularly devastating effects in tropical and sub-tropical regions, where climate change is predicted to have the biggest impact.

The amount of water it takes to produce food and drink products is pretty shocking. Beef production in particular is associated with high levels of water usage. It is estimated that the global average water footprint of a 150g beef burger is 2350 litres; despite producing just 5% of the world’s food calories, beef production is reported to create 40% of the water scarcity burden. Although there are big variations in the environmental impacts of beef farming, with grassland fed, rotational systems being less intensive than grain fed herds on deforested land.

Where does water used for agriculture come from?

The water that is used in agriculture comes from a range of sources, including surface and ground water supplies, rivers and streams, open canals, ponds, reservoirs and municipal systems. Globally, the FAO estimates that agriculture accounts for 70% of freshwater withdrawals, which is predominately used for irrigation. In many areas the high level of groundwater used for irrigation is unsustainable, leading to depletion. For instance, the OECD estimates that groundwater supplies 60% of India’s agricultural water needs but groundwater sources are suffering from depletion and pollution in 60% of states. A big problem is that irrigation is often highly inefficient; in the US the FAO estimates that the amount of irrigated water that is actually used by plants is only 56%. Large amounts of energy are also needed to withdraw, treat and supply agricultural water, leading to significant greenhouse gas (GHG) emissions.

What happens to agricultural water after use?

As well as depleting freshwater supplies, agriculture can also pollute them, with runoff containing large quantities of nutrients, antibiotics, growth hormones and other chemicals. This in turn has big affects on human health through contamination of surface and ground water with heavy metals, nitrate and pathogens and in the environment; it can cause algal blooms, dead zones and acidification of waterways. Combined these issues mean that better management of water in agriculture has huge potential for improving sustainability, climate resilience and food security, whilst reducing emissions and pollution.

What are the potential solutions?

Thankfully there are many innovative projects that are working to improve issues around water in agriculture. Below are a few examples that I find particularly promising.

How can technology help?

To reduce water wastage on farms, agri-technology is being developed whereby multiple wireless sensors detect soil moisture and evapotranspiration. The sensors feed this information to a cloud-based system that automatically determines precisely how much water to use in different parts of the field, leading to increased yields and saving water. Farmers can get water management recommendations via a smartphone app and the information automatically instructs irrigation systems. At a larger scale, these data systems can feed into a regional crop water demand model to inform decision-making on agricultural policies and management practices, and to provide early warnings of potential flood and drought risks.

Sensor that detects leaf moisture levels. Image credit: Wikimedia Domain Massimiliano Lincetto

Irrigation systems are also being made more efficient; one study found that simply changing from surface sprinklers to drip irrigation that applies water directly to plant roots through low-pressure piping, reduced non-beneficial water wastage by 76%, while maintaining yield production. In arid areas these systems can be used for a technique called partial root drying, whereby water is supplied to alternate side of the roots, the water stressed side then sends signals to close stomatal pores which reduces water lost through evapotranspiration.

These efficient precision irrigation systems are becoming cheaper and easier for farmers to use. However in tropical and sub-tropical areas, the technology can be difficult to apply smallholder farming, where there is often insufficient Internet connectivity, expertise, capital investment, and supply of energy and water. Several precision agriculture projects are working to overcome these challenges to promote efficient use of irrigation water, including in the semi-arid Pavagada region of India, the Gash Delta region of Sudan and São Paulo, Brazil. In Nepal, a Water Resources Information System has been established that collects data to inform river management, whereas in Bangladesh hundreds of solar-fuelled irrigation pumps have been installed that simultaneously reduce reliance on fossil fuels and reduce GHG emissions.

Hydroponic systems whereby plants are grown in water containing nutrients are becoming increasingly popular; the global market for hydroponics is projected to reach £325 million by 2020. Compared with land-based agriculture, hydroponics uses less land; causes less pollution and soil erosion and so these systems are less vulnerable to climate change. Critically they also reduce water use; once the initial water requirements are met, the closed-system recycles water and there is less evapotranspiration. The adoption of these systems is predicted to occur predominately in water stressed regions of the Middle East and Africa and in highly urbanised countries such as Israel, Japan and the Netherlands.

How can researching traditional approaches help?

It’s not just about agri-tech; there are relatively simple, traditional ways to tackle water issues in agriculture. To protect against drought, farmers can harvest and store rainwater during heavy downpours by building ponds and storage reservoirs. To reduce water wastage, farmers can improve the ability of soil to absorb and hold water through reducing tillage and using rotational livestock grazing, compost, mulch and cover crops. Wetlands, grasslands and riparian buffers can be managed to protect against floods, prevent waterlogging of crops and improve water quality. Increasingly these traditional methods valued and research is being done to optimise them. For instance a novel forage grass hybrid has been developed that is more resilient to water stress and can reduce runoff by 43 – 51% compared with conventional grass cultivars.

A small-scale farmer in Kenya who is harvest rainwater. Image credit: Wikimedia Domain Timothy Mburu.

How can crop and livestock breeding help?

In the past, crop and livestock varieties have been selected for high productivity. However, these varieties are often severely affected by changes in climate and extreme weather events such as drought and require high levels of water and nutrients. To improve resilience and sustainability, breeders increasingly need to also select for stress responses and resource use efficiency. In crops, drought resilience and water use efficiency is influenced by many traits, including root and shoot architecture, stomatal density and thickness of the waxy cuticle that covers leaves and reduces evapotranspiration. The complexity of these traits makes breeding crops for drought resilience challenging, as many different groups of genes need to be selected for. To deal with this, the International Rice Research Institute’s Green Super Rice project has been crossing high-yielding parent lines with hundreds of diverse varieties to produce new high-yielding varieties that require less water, fertilisers and pesticides. These varieties are now being delivered to farmers in countries across Asia and Africa. Similarly, climate change resilience is also vital for current and future livestock farming. Projects run by Professor Eileen Wall (SRUC) have identified novel traits and genes associated with drought and heat resilience in UK and African dairy cattle, which can be incorporated into breeding programmes.

What are the incentives?

Although these projects might sound promising, without incentives to drive their uptake it may take a long time for real impacts to come to fruition. Unfortunately, in some countries such as India there can be a lack of monetary incentives that would effectively enable farmers to take up new water management technology and practices. In the EU, the Common Agricultural Policy (CAP) has allocated funds to support farmers in complying with ‘greening rules’ that improve sustainability, preserve ecosystems and efficient use of natural resources, including water. Farmers across the EU receive CAP payments for environmentally friendly farming practices, such as crop diversification and maintaining permanent grassland.

In many European countries, there is increasing consumer demand for sustainably farmed food products. This is driving large and small manufacturers to seek out sustainable suppliers and so farmers are incentivised to improve the sustainability of their farming practices so that they can be certified.  For instance the Sustainable Farming Assurance Programme requires farmers to follow good agricultural and environmental protection practices, including sustainable water use. In the coming years, more food products are likely to have water foot print labels that provide the consumer with information on the amount of water used during production and processing. This places considerable power in the hands of the consumer and large manufacturers are responding. For instance, by 2020 Kellogg has pledged to buy ten priority ingredients (corn, wheat, rice, potatoes, sugar and cocoa) only from farms that prioritise protecting water supplies, as well as using fertilizers safely, reducing emissions, and improving soil health. And Pepsico has created sustainable agriculture sourcing programmes that aim to help farmers improve water and soil resource management, protect water supplies, minimise emissions and improve soil health.

What can we do?

There are ways to take responsibility for reducing our own water footprints, including reducing meat and animal production consumption, reducing food wastage and buying sustainably farmed products. Finally, we can all get involved with communicating and promoting the importance of water in agriculture so that more people are aware of the issues. Head to the World Water Day website to find out about resources and events that may be happening near you.

——————————
This blog is written by Caboteer Dr Katie Tomlinson, who recently completed her PhD at the University of Bristol on cassava brown streak disease. Katie is now an Innovation and Skills manager at the BBSRC and is running the Sustainable Agriculture Research and Innovation Club. Views presented in this blog are her own. You can follow Katie on Twitter: @KatieTomlinson4.

Dr Katie Tomlinson

 

Travelling through Asia’s breadbasket

This is the second of a series of blogs from a group of University of Bristol Cabot Institute researchers who are on a remote expedition (funded by BCAI) to find out more about Kazakh agriculture and how farmers are responding to their changing landscape. 

Image credit: Hannah Vineer

Queen’s ‘Bohemian Rhapsody’ played on the car radio as we drove through endless fields of stubble stretching into the horizon in every direction. We were 2 days into our 3-day, 2,345km journey from Astana to our field site, and it was easy to see why Kazakhstan is referred to as Asia’s breadbasket. Spring had finally arrived after an unusually long winter.  Tractors were busy burning, ploughing and planting, disappearing into the distance with each pass of the field.

The vast, flat steppe has provided the opportunity for cereal production on a scale unrivalled by the UK’s comparatively small field enclosures. In 2017, Kazakhstan held wheat stocks of 12MMT (million metric tonnes), making UK’s 1.4MMT seem like a drop in the ocean by comparison. Kazakhstan exports wheat globally and is a key player in global food security. Grain elevators capable of storing more than 100,000 tonnes of grain dominate the skyline of every major town and soon became a familiar feature of the landscape to us.

Image credit: Hannah Vineer

Our journey was punctuated every 6 hours or so by stops at restaurants that seemed to appear out of nowhere. Each one was as unique as the last, their bright colours a reflection of the cheerful nature of the Kazakh people. The popular Tabletkas parked outside reminded me of VW Transporters, and the friendly locals reminded me of my Welsh roots, where strangers greet you on the street.

Image credit: Hannah Vineer

The restaurants served a range of traditional Kazakh comfort food – meat and milk based meals like borscht, always served with bread, of course. Bread, or нан (pronounced naan) is a staple food here and is said to be the most important part of the dinner table. The menu, written in the Cyrillic alphabet, was indecipherable to me at first and I had to pester the Kazakh and Russian members of our team to help me choose a meal each time. Based on my excited reaction when I finally discovered the image recognition feature of my Google Translate app, you would have thought that I had never seen modern technology before. In truth, I was just relieved to not be such a burden on the rest of team!

Image credit: Hannah Vineer

Before long we were back on the road and as the hours passed I looked forward to getting to camp and getting started with our work. We planned to visit remote villages, thousands of kilometres off the tourist track, to survey farmers about how they cope with weather extremes such as this year’s particularly harsh winter. But for now, we had run out of time and energy. The sun was setting and we needed to find a place to rest for the night. We headed for the dim twinkling lights of Aktobe, passing a tractor working into the night, illuminating a cloud of dust in its wake. When we eventually found a motel with rooms available, I found it difficult to sleep. I couldn’t wait for the final leg of our journey to our wild camp in the Kazakh steppe.

———————————
This blog is written by Cabot Institute member Hannah Rose Vineer.  This expedition has been kindly funded by the Bristol Centre for Agricultural Innovation.  This blog was reposted with permission from the BCAI blog site.

Setting off on a BCAI expedition to Kazakhstan

This is the first of a series of blogs from a group of University of Bristol Cabot Institute researchers who are on a remote expedition (funded by BCAI) to find out more about Kazakh agriculture and how farmers are responding to their changing landscape. 

Abandoned machinery. Image credit Hannah Vineer.

Ghost towns on the Kazakh steppe look as though they are centuries old, but it is an illusion. They have been sandblasted relentlessly by the force of the steppe since they were abandoned, less than 40 years ago, after the breakdown of the Soviet Union. This is one area on earth that people have largely failed to tame, but as the human population increases the country’s agricultural systems are rapidly developing and focus is turning to the steppe once again. At the same time, farmers must adapt to recent changes in climate – drier summers limit crop production and water availability, and changing patterns of snowfall and snowmelt threaten the lives of livestock. I am about to embark on a remote expedition to find out more about Kazakh agriculture and how farmers are responding to their changing landscape. Follow this blog series for updates from the field.

Since 2000, approximately 5,000,000 additional hectares of land have been sown for cropping, and approximately 2,000,000 each additional sheep, cattle and horses are kept in Kazakhstan. This increase in livestock productivity is largely driven by smallholder farmers, who rely on livestock for up to a fifth of their family’s food. However, climate change has been felt disproportionately in Central Asia, threatening food security. National Geographic recently reported that over half a million animals failed to survive the winter in neighbouring Mongolia due to a combination of lethal winter conditions and poor summer crop growth, so I’m anxious to see how the Kazakhs fared.

Image credit: mapchart.net

I’m told that in the Ural region in Western Kazakhstan, wheat production, livestock and wildlife exist in close contact, and that this is the best place to start my research. I’m set to fly to Astana tomorrow to join colleagues from the Association for the Conservation of Biodiversity of Kazakhstan (ACBK) on the three-day, 2,000km journey to the far west. With the help of ACBK and Bristol PhD student Munib Khanyari, I will interview farmers spread out over an area the size of England, skirting along the Russian border and the Caspian Sea. I’ll spend my evenings wild camping off-grid under the stars for 2-3 weeks. There will be no fresh water, no toilets and no internet – the team and I have to carry everything we need in order to survive the duration. Wish me luck!

———————————

This blog is written by Cabot Institute member Hannah Rose Vineer.  This expedition has been kindly funded by the Bristol Centre for Agricultural Innovation.  This blog was reposted with permission from the BCAI blog site.Read part two of this blog – Travelling through Asia’s breadbasket.

Africa looking to strategic partnerships to rein in food and nutrition insecurity

A child feeds on orange fleshed sweet potato in Central Uganda – Image credit ‘Winnie Nanteza/NARO-Uganda’

World hunger continued to rise for the third consecutive year according to the UN’s Food and Agriculture Organization (FAO)’s latest report. The data identifies climate variability as one of the major contributing factors to this worrying statistic. The intricate relationship between climate change and food security culminates in a major challenge that has rattled individuals, organisations and governments alike for decades. In the coming decades, Africa—which faces the biggest food security challenge in present times—will need more strategic partnerships to unlock its food security potential.Nearly one in every nine people—a significant proportion of whom live in Sub-Saharan Africa—go to bed hungry every night. So significant is this challenge that the United nations lists ending hunger, achieving food and nutrition security and promoting sustainable agriculture by 2030 second of its 17 Sustainable Development Goals (SDGs).

It is a daunting challenge made worse by an exploding global population set to hit 9 billion by 2050. Nonetheless, governments and other stakeholders worldwide are drawing inspiration from the fact that, despite the increases of the past three years, hunger overall has reduced by almost half in the past two decades. This has been made possible through deliberate efforts to increase agricultural production with minimal environmental impact.

Contemporary Agricultural Science Technology and Innovations (STIs) are pivotal to increasing agricultural production, food security, and promoting economic growth in Africa. However, realizing these aspirations greatly depends on leveraging the synergistic capabilities of the diverse actors within the sector towards building stronger partnerships and increased accountability for greater impact.

The nature of Agricultural Research for Development (AR4D) paradigms around the world is rapidly evolving, with new technologies constantly emerging and making the agricultural sector more knowledge intensive and innovations driven. In addition, the role of the private sector in agricultural R&D is increasingly more prominent, with Public-Private Partnerships (PPPs) being touted as an ideal model for accelerating technology transfer, commercialization, and delivery of research outputs to end-users for optimal research impact. Innovative partnerships between the public and private sectors are especially important for attracting investments and financing innovative solutions for agriculture in developing nations.

To drive this innovative and responsive research agenda, scientists globally are increasingly coming together in collaborative partnerships to share resources towards ensuring that the world will be able to feed nine billion people by 2050.

Among these is the Community Network for African Vector-Borne Plant Viruses (CONNECTED)—a Vector-borne Disease Network awarded to the University of Bristol—which held its Africa Launch Conference  in May 2018. The network—which is closely involved with the Cabot Institute—aims inter alia to build a sustainable network of multi-disciplinary international scientists, to deliver solutions to devastating crop diseases.
 

Participants at the CONNECTED Network Africa Launch, May 2018

Three months on, and the Network is already making good on its promise. Following the first CONNECTED pump prime funding call soon after the Network’s Africa launch, research funding grants have been awarded to Network members working in African and European research institutions in classic triangular collaborations to achieve the ideals of the Network.

In August 2018, global science leaders congregated in Durban, South Africa for the inaugural Bio Africa convention. The conference provided opportunities to build capacity and drum up support for increased investment in, and support for Africa’s growing biotech industry. It is hoped that networks built there will enrich the implementation of past and existing Africa-led initiatives for growth and sustainable development, especially in the bio-economy sector.

While food is an easy topic to get people involved with, rising concerns about some aspects of agricultural technology bring unique dynamics to this area. A July 25 ruling by the European Court of Justice imposed exacting regulatory restrictions on the use of gene editing in crop improvement. This adds to existing regulatory stalemates—mostly in Europe and Africa—blocking the use of products of modern agricultural technologies such as genetic engineering and gene editing to deliver important crop varieties to the world’s most vulnerable people.

In Uganda for instance, genetically modified biofortified and bacterial wilt resistant bananas, and blight resistant potatoes remain locked up in confined field trials due to the absence of an enabling regulatory environment for commercialisation. Research is on-going—using genetic engineering—on virus resistant cassava, insect resistant and drought tolerant maize, and nitrogen use efficient rice among other key food security crops.

The ebb and flow of global politics and science remains a determinant factor in whether or not agricultural STIs can contribute to ending hunger by 2030 per the SDGs. Cognizant of the constraints new breeding technologies are facing to deliver impact, initiatives like Uganda Biosciences Information Center (UBIC) have been established to support the stewardship process to ensure that key agricultural technologies reach the people that need them most.

This is achieved through creating and raising awareness of modern agricultural biosciences and biosafety, to facilitate balanced, fact-based and objective discourse on modern biosciences in Uganda and beyond. Elsewhere, the Open Forum on Agricultural Biotechnology (OFAB), International Service for Acquisition of Agri-biotech Applications (ISAAA) and Cornell Alliance for Science to mention but a few, are championing the same cause at regional and global levels.

In many ways gentle calls to action, such initiatives complement the millions of voices highlighting the global food challenge and imploring all humanity to spring to action to ensure that everyone has a seat at the (dining) table.

Policy coherence and coordination among different actors to end hunger remains key to delivering much needed solutions to global food and nutrition security. To end hunger, targeted steps must be taken to help people access the tools they need to create agricultural prosperity and progress. But we can’t just hope and pray, we have to take action—and Africa seems to be beginning to do just that!

——————————————–

This blog was written by Joshua Raymond Muhumuza, CONNECTED Network member and Outreach Officer at the Uganda Biosciences Information Center (UBIC).

Olive oil production in Morocco: so many questions

No standard salad would be complete without olive oil. Our friends the lettuce, tomato and cucumber now come automatically accompanied by the vinegar and the oil, the oil and the vinegar. Perhaps in a bottle, perhaps in a sachet, perhaps in some kind of over complicated vinaigrette processed by a supermarket near you, along with lots of salt and some corn syrup, a 21st century salad in the Western world would be naked without an olive dressing.

This weekend, after an intensive academic seminar in Morocco[1], we studious seminar attendees were rewarded with a field trip. So I was taken out to visit three agricultural holdings in action. They all grew olives, but apart from that, had little in common. These three: large, medium and small producers in turn gave us a hugely insightful opportunity to witness agricultural change in action. Since the turn of the millennium the large site, on previously colonial, then state-held land had been an apple orchard and had now turned to olive oil. The medium one had been focused on cattle, making use of previous common land, that was now enclosed land, and was now diversifying with oil, watermelons, and more. The small producer produced a full range of things including olives for their own oil and most recently had established a side income in both fish and honey production.

Firstly, we learnt how to make money. Morocco’s heavily financed agricultural development programme, Plan Maroc Vert, which aims to intensify the agricultural system into a new-age competitive beacon of the modern food system, offers attractive incentives to spruce up agriculture in the country with new machines. All you need is to write a proposal (a report), have money to invest (from bank credit perhaps) and an impressive part of your money will be returned to you in state subsidies within two years.

So, for example, all three of the small, medium and large producers we visited, had benefited from a 100% state subsidy for irrigation of their crops. In the case of the ‘super-intensive’ large producer this meant state funding for the irrigation of 65,780[2] olive trees from groundwater on a rapidly declining water table. Some of the more landscape-savvy of the seminar group reminded us that olive trees had been grown in the region for centuries precisely because they did not need this kind of constant watering but could grow deep roots and access scarce water themselves. This, however, is not of interest to the ‘super-intensive’ producer. This producer is simply interested in the logic of economic growth, which in this case says: plant the trees closer, and add the chemical nutrients to the water while you’re at it. And so, these 65,780 trees are watered with the addition of nitrogen, phosphorus, potassium and ammonium, yet no studies are evident of what all these substances may be doing to the groundwater. By any other logic this would be a big concern, nitrogen pollution, particularly. Nitrogen pollution of water supplies, or more simply, of the nitrogen cycle, is one of the only planetary ecosystem boundaries that we have already crossed as a human race. This was not relevant in the lesson of how to make money.

Yet, I work with people, so where were they in the Moroccan olive grove? Well, it seems they have been replaced by a machine in this super-intensive oil production. The company, with links to power as far up as it goes, has invested in a machine that drives over the trees like a bridge. It shakes their branches and collects their olives.  So much for an investment in rural employment.

Some new olive trees defy the machine but are pretty un-reliable as employers too. These trees that the machine can’t manage provide jobs for only a very precarious seasonal and short-term workforce. I was told that 100 people would be employed for a space of around 200 hectares, and these jobs would last 2-3 months. The company assured us though that these workers would get both contracts and, in order to have those contracts, bank accounts. Thank goodness the banks aren’t losing out.

I should be kinder in tone about the small and medium sized farmers that we visited. Not only did their olive oil taste a lot richer, but they invited us to tea, and allowed us to share their experience of oil production more closely.  They humoured our partial language skills and our many, many questions. This was the second major thing we learnt on the trip – we were a team. We were a slightly chaotic, and erratic team, but really quite effective. A little like slugs on a cabbage, we chewed up every bit of information every which way.

Releasing a group of 13 researchers at a family farm, was a bit like inviting children to a playground, or providing clowns with an audience. Each of us found something to play with, interact with, reflect upon and smile. Some of us looked at the trees or identified the plant specimens. Others wrote notes, or took pictures, or carried out semi-formal interviews with whichever family member we felt most comfortable with. Others played with material toys, climbing ladders, smelling fruit or knocking on enormous oil containers to discover them empty. As we found the olive branches, force-fed powder food through irrigated pipes, or in the smaller farm providing shade for some resident chickens, this seminar group grew together, discovering the knowledge of the peasant farmer.  This experience was far richer and engaging than any power point presentation or report.

More images can be found on the original blog.

References

[1] “Workshop on Agricultural Labour and Rural Landscapes in the Arab World” Organised by the Thimar collective and supported by the École Nationale d’Agriculture de Meknès, the Leverhulme Trust and the London School of Economics.

[2] Calculated based on 286 plants/hectare in a cultivated area of 230 hectares, this was the details of the holding advertised by the company.

——————————————
This blog is written by Lydia Medland, a PhD student at the University of Bristol’s School of Sociology, Politics and International Studies who is looking at the role of seasonal workers in global food production, specifically in Morocco and Spain.  This blog has been reposted with kind permission from her Eating Research blog.  View the original blog post.

Lydia Medland

Read Lydia’s other blog: Watermelon work

After 2016; how to achieve more inclusive food policy?

Having spent my British Academy Postdoctoral Fellowship researching forms of governance that aspire to achieve that nebulous concept of ‘sustainability’ in relation to certain parts of the global agro-food/fuel system, it seemed fitting that the last event I attend in this capacity should be City University’s annual Food Symposium.  This year’s Symposium enabled Prof. Tim Lang, who is passing the baton of running City’s influential Food Centre to Prof. Corinna Hawkes, and a number of his colleagues, to reflect on the past 25 years of food policy. But it also provided an unprecedented opportunity to 40 audience members from both academia and civil society to imagine a more utopian future – not difficult in our troubled present – to table their vision of ‘How to do food policy better’. We heard from a headteacher, a producer, a proud ‘Colombian peasant’, a farmer’s daughter, a student, the BBC chef of the year, a former advertiser, a community food network coordinator.  We then went on to hear from a panel of those who have been working to enable such diverse voices to be heard both in relation to the research they have been undertaking or the programmes they have been endeavouring to implement.

While my own work has been predominantly focused on issues brought to the fore in international development, it is clear that inequalities and unequal vulnerabilities exist extensively in the global North, as well as the global South.  Although we as researchers recognise the need for a holistic and systemic approach to food and agriculture, this is rarely translated into more holistic food policy.  But we have seen that policies that do not adopt a systemic approach to food and agriculture may instead produce extensive social, cultural and environmental problems related to food and farming across the globe.

There are so many pressing reasons to change our diets, for our own health, and the health of the planet, but we carry on producing and selling food which is bad for us, and pursuing agricultural production on a scale that feeds such consumption.  While this may not be in the same vein as the productionism pursued in the 1970s and 1980s, agricultural production continues to be tenaciously coupled with carbon emissions. And knowledge alone is insufficient to change this food and agriculture system of mass consumption and supermarket driven value chains.

As we heard a number of times, we are not only going through a period of weak food policy, but the intensive agricultural regime is in crisis.  And there is a lack of progressive consensus as to what any kind of food project should be. Given that 40% of EU legislation relates to food and agriculture, this does not bode well for this soon-to-be-Brexiting-less-than-united-kingdom.

While we can indeed celebrate that the need for ‘sustainable consumption’ and ‘sustainable production’ is generally accepted, and that ‘food and nutrition’ is even on the public health agenda, we also have much to fight for.  For many at the Symposium, there was a palpable anger at the policies that have led to growing inequality and hunger in this country.  While there is an evidential link between low income, diet and poor health, there remains an ongoing rhetoric of ‘blame’ and ‘undeserving’. And low income must in turn be linked with other vulnerabilities, such as gender, infancy, maternity, citizenship status (or lack of it).  But as Prof. Liz Dowler aptly summarised, the circumstances in which people are having to live are being ignored by governments whose own policies have caused them to be in this predicament. So with a growing reliance on charity, such as food banks, people are deprived even of any sense of ‘entitlement’ and ‘rights’, even when it comes to food. Whether or not a human being goes hungry or malnourished should never be dependent on deserving, even on citizenship. And governments, rather than charities, must be held accountable.  Nevertheless, there is a fear that Brexit, and a rise in anti migrant feeling, is going to make inequalities harder.

A Symposium on food policy would be remiss, however, if it did not link government policies with a recognition that access to nutritious food is also determined by corporate power.  This needs to take in supermarkets, fast food chains, the catering sector.  And this is indeed where power lies. And that power does not only involve selling much of the wrong kinds of food to people, but also squeezing the power of farmers who, as many argued, need to be central in finding a solution to the crisis of carbon based food production.  Prof. Terry Marsden suggested the need to build alliances between producers and consumers and take out the power of the middle of the value chain. Although at the Symposium it was widely agreed that there needs to be greater inclusivity of those voices who are affected by, but rarely manage to influence, food policy, I would argue that this view is slightly myopic of the wider agrofood system.  This system is indeed driven by wider agri-industrial policies and corporate interests, but ones which have very little to do with food at all.  Such policies explain the EU Renewable Energy Directive mandating the production of biofuel from prime agricultural land.  And such policies are repeated and repeated in country after country, and drive down incentives that farmers might otherwise have to grow nutritious food – our horticulture sector, for instance, is hardly thriving.  So while an annual Symposium on Food Policy is hugely valuable, and indeed this was one of the best conferences I have ever been to (not least for its inclusion of diverse civil society voices amongst academics), I would argue that food policy cannot be considered without a systemic lens cast much more widely than just food.

Blog post by Dr Elizabeth Fortin, Senior Research Associate, School of Law, and PolicyBristol Coordinator

Is benchmarking the best route to water efficiency in the UK’s irrigated agriculture?

Irrigation pump. Image credit Wikimedia Commons.

From August 2015 to January 2016, I was lucky enough to enjoy an ESRC-funded placement at the Environment Agency. Located within the Water Resources Team, my time here was spent writing a number of independent reports on behalf of the agency. This blog is a short personal reflection of one of these reports, which you can find here. All views within this work are my own and do not represent any views, plans or policies of the Environment Agency. 

Approximately 71% of UK land (17.4 million hectares) is used for agriculture – with 9.3 million hectares (70%) of land in England used for such operations. The benefits of this land use are well-known – providing close to 50% of the UK’s food consumption.  Irrigated agriculture forms an important fulcrum within this sector, as well as contributing extensively to the rural economy. In eastern England alone, it is estimated that 50,000 jobs depend upon irrigated agriculture – with the sector reported to contribute close to £3 billion annually to the region’s economy.
It is estimated that only 1-2% of the water abstracted from rivers and groundwater in England is consumed by irrigation. When compared to the figures from other nations, this use of water by agriculture is relatively low.  In the USA, agricultural operations account for approximately 80-90% of national consumptive water use. In Australia, water usage by irrigation over 2013/14 totalled 10,730 gigalitres (Gl) – 92% of the total agricultural water usage in that period (11,561 Gl).
However, the median prediction of nine forecasts of future demand in the UK’s agricultural sector has projected a 101% increase in demand between today and 2050. In this country, irrigation’s water usage is often concentrated during the driest periods and in the catchments where resources are at their most constrained. Agriculture uses the most water in the regions where water stress is most obvious: such as East Anglia. The result is that, in some dry summers, agricultural irrigation may become the largest abstractor of water in these vulnerable catchments.
With climate change creating a degree of uncertainty surrounding future water availability across the country, it has become a necessity for policy and research to explore which routes can provide the greatest efficiency gains for agricultural resilience. A 2015 survey by the National Farmers Union  found that many farmers lack confidence in securing long term access to water for production – with only a third of those surveyed feeling confident about water availability in five years’ time. In light of this decreasing availability, the need to reduce water demand within this sector has never been more apparent.
Evidence from research and the agricultural practice across the globe provides us with a number of possible routes. Improved on-farm management practice, the use of trickle irrigation, the use of treated wastewater for irrigation and the building of reservoirs point to a potential reduction in water usage.
Yet, something stands in the way of the implementation of these schemes and policies that support them: People. The adoption of new practices tends to be determined by a number of social factors – depending on the farm and the farmer. As farmers are the agents within this change, it is important to understand the characteristics that often guide their decision-making process and actions in a socio-ecological context.
Let’s remember, there is no such thing as your ‘average farmer’. Homogeneity is not a word that British agriculture is particularly aware of. As a result, efforts to increase water use efficiency need to understand how certain characteristics influence the potential for action. Wheeler et al. have found a number of characteristics that can influence adaptation strategies. For example, a farmer with a greater belief in the presence of climate change is more likely to adopt mitigating or adaptive measures. Importantly, this can also be linked to more-demographic factors. As Islam et al. have argued, risk scepticism can be the result of a number of factors (such as: age, economic status, education, environmental and economic values) and that these can be linked to the birth cohort effect.
This is not to say that all farmers of a certain age are climate-sceptics but it does point to an important understanding of demography as a factor in the adoption of innovative measures. Wheeler et al. went on to cite variables of environment values, commercial orientation, perceptions of risk and the presence of an identified farm successor as potentially directing change in practice . Research by Stephenson has shown that farmers who adopt new technologies tend to be younger and more educated, have higher incomes, larger farm operations and are more engaged with primary sources of information.
Yet, there is one social pressure that future policy must take into account – friendly, neighbourly competition. Keeping up with the Joneses. Not wanting Farmer Giles down the lane knowing that you overuse water in an increasingly water-scarce future. This can be harnessed within a system of benchmarking. Benchmarking involves the publication of individual farm’s water use, irrigation characteristics and efficiency and farming practice. Although data is supplied anonymously, individual farmers will be able to see how they measure up against their neighbours, competitors and others elsewhere.
Benchmarking is used in other agricultural sub-sectors. A 2010 survey found that 24% of farmers from different sectors used benchmarking in their management processes. This is particularly evident in the dairy sector, where both commercial and public organisations use the methods as a way to understand individual farm performance – an important example of this would be DairyCo’s Milkbench+ initiative. In 2004, over 950,000 hectares of irrigated land in Australia, 385,000 hectares in China and 330, 000 hectares in Mexico were subjected to benchmarking processes as a mean to gauge their environmental, operational and financial characteristics.

The result is that irrigators would have the means to compare how they are performing relative to other growers – allowing the answering of important questions of ‘How well am I doing?’ ‘How much better could I do?’ and ‘How do I do it?’ Furthermore, this route can be perceived as limiting the potential for ‘free-riding’ behaviour within a catchment as well emphasise the communal nature of these vulnerable resources. We’ve all seen ‘Keeping up with the Joneses’ result in increased consumption – benchmarking provides us with an important route to use this socialised nudging for good.

————————————————————–

This blog is written by Cabot Institute member Ed Atkins, a PhD student at the University of Bristol who studies water scarcity and environmental conflict.

 

Ed Atkins