2nd Generation biofuels: a transdisciplinary dialogue

“Globally, there are politically important evidence gaps, but nationally, those evidence gaps are just not important enough for policy-makers to take account of them”.  
 
This was one comment summing up the discussion I had at a workshop on the development of 2nd generation, or cellulosic, biofuels (biofuels produced from crops or waste, that is not otherwise used as food).  The workshop’s aim was to produce ‘A transdisciplinary dialogue on the opportunities and challenges of cellulosic ethanol in the UK’, and was run by Dr. Kate Millar, the Director of the Centre for Applied Bioethics.  It was part of a number of events convened for the EU Framework 7 project, “Integrated EST-Framework” (EST-Frame).  Bringing together 12 scientists, engineers, environmental scientists and social scientists is not an easy feat, but the 24 hours’ of the workshop produced some extremely interesting discussions.
My own research considers endeavours to overcome some of the sustainability problems commonly associated with 1st generation biofuels (e.g. sugarcane and wheat), and so I was particularly interested in how the development of 2nd generation biofuels might change the sustainability landscape. Would many of the problems associated with biofuels in general – increased greenhouse gas (GHG) emissions when compared with fossil fuels, land grabbing, food insecurity and biodiversity loss – disappear if we were to start producing 2nd generation biofuels? 

Policy problems 

Oilseed rape grown for  1st
generation biofuel has limitations.
Image credit: Richard Webb
Much of the first day of the workshop was spent discussing ‘policy problems’ that would need to be overcome for the successful production of cellulosic biofuel for consumption in the UK. 2nd generation biofuels have not been viably commercialised to date largely because of the cost of production.  But this is not the only policy problem to be overcome.  2nd generation biofuel will not only come from ‘waste’, but also from crops, such as miscanthus, which are specifically grown as biofuel feedstock.  But policies to encourage the use of crop residues for biofuels, depend, first, upon the categorisation of the cellulose left behind in the farming of particular crops as ‘waste’ and, second, upon a decision that the ‘best’ use of that waste is its conversion to energy.  This decision may, in turn, depend upon an assumption relating to national energy security.
 
When discussing the problems that would need to be overcome for the production of 2nd generation biofuel, it soon became clear that our own understanding of the problems depended upon the frames through which they were envisioned, and/or the assumptions that might be made in even categorising them as problems in the first place. Such frames and assumptions need to be unpicked when making policy decisions relating to, for example, the ‘best’ use of land, the ‘best’ conversion processes, displacement effects resulting from the adoption of those policies, and the valuations made in assessing ‘costs’ resulting from the production of such biofuels.
 

Indirect land use change (ILUC)

 
One thorny issue relating to biofuels production has been that of ILUC.  ILUC has been a huge spoke in the wheel of policy-makers’ development of policy in relation to the development of biofuels, not only in the UK, but in the EU, and further afield.  Endeavouring to tackle this issue involves identifying potential knock-on effects resulting from direct land use change to biofuels feedstocks (whether 1st or 2nd generation). These might include increased GHG emissions, erosion, biodiversity loss, or increased insecurity in relation to land rights or food supply of local people.  
 
While the focus of policy-makers’ concerns in relation to ILUC has to date been GHG emissions, views in relation to all of these issues also depend upon one’s assumptions/framing.  Furthermore, such issues are by their very definition uncertain (because they involve future potential scenarios) and, in tackling each of them, require policy-makers to give value (either positive or negative value) to those potential scenarios.  Some of the values endowed by policy-makers in assessing indirect or direct land use change may be quantifiable.  Others, such as the values given by local people to their landscape before it is transformed for biofuel feedstocks, may not be.  Moreover, land use change resulting from policies made in the UK, may be taking place in countries as far afield as Africa or South East Asia, for example.  
While some participants thought that this demonstrated that even endeavouring to tackle an issue such as ILUC was purely altruistic, and therefore usually not important enough for national policy-makers to be swayed by, others argued that it was not altruism that demanded its recognition, but an appreciation of the integrated nature of our world, its people and environment, and markets for feedstocks.  Without actively sympathising with policy-makers, many participants recognised that there are no right answers when it comes to ILUC.
 

Need for a holistic approach in policy-making

 
Image by Steve Jurvetson
When discussion moved on to consider the types of evidence required for policy-makers to tackle the policy problems, we soon realised that different forms of ‘evidence’ were often integrated.  Moreover, it was not lack of evidence that was the problem for policy-makers, or even ambiguity and uncertainty in the evidence, but the appraisal of that evidence.  This requires political decisions to be taken, something that policy-makers seem, ironically, to be distinctly uncomfortable with in relation to this area.
 
The workshop was a valuable exercise.  To paraphrase one participant: many of the technical or economic issues relating to the development of cellulosic biofuels in the UK could be resolved by taking a very narrow view of the problem.  However, such issues do encompass wider issues.  Countering the scientists’ and engineers’ ‘problem-solving’ approaches to policy issues, with social scientists’ more critical understanding of the social issues surrounding the problems is always going to be a challenge, but one that, I believe, is crucial if those problems are really going to be solved with any success.

This blog is written by Cabot Institute member Dr Elizabeth Fortin, University of Bristol Law School.

Environmental uncertainty: A challenge to both business and vulnerable communities

In September, the IPCC published the Fifth Annual Report on the Physical Basis of Climate Change.  It devotes little attention to the human and ecological impacts of global environmental and climatic change, topics that will be addressed by working group reports released in early 2014 .  Nonetheless, the trajectory of climate and other environmental changes and their implicit impacts on society are stark. Despite numerous treaties and efforts at mitigation, concentrations of carbon dioxide and other greenhouse gases continue to increase, and at greater rather than diminished rates. If those rates continue they will result in global warming of 3 to 5.5°C by 2100. This in turn, will result in dramatic changes to the global hydrological cycle, including both more evaporation and more rainfall.

A More Uncertain Climate

Flood by Paul Bates

The results will be a more hostile climate for many as land can become either drier or more flood-prone or both, changes exacerbated in coastal areas by sea level rise.  Freshwater supply will also be affected by the forecast changes in climate. The quantity of water flowing in glacier or snow-melt fed river basins will change, affecting around a sixth of the world’s population[i], while coastal freshwater will be contaminated with saline water[ii]. Areas of the Mediterranean[iii], Western USA[iv], Southern Africa[v] and North Western Brazil[vi] are projected to face decreased availability of freshwater.

Key to understanding who will be affected is our ability to predict changes in rainfall, seasonality, and temperature at a regional scale.  However, regional climatic predictions are the most challenging and least certain, especially with respect to the nature and amount of rainfall. For vast parts of the world, including much of South America, Africa and SE Asia, it is unclear whether climate change will bring about wetter or drier conditions. Thus, uncertainty will become the norm: uncertainty in rainfall; uncertainty in weather extremes and seasonality; and most importantly, uncertainty in water resources.

Those combined effects lead to an additional and perhaps the most profound uncertainty for the latter half of the 21st century: uncertainty in food production and access. In the absence of other factors, climate uncertainty and more common extreme events will compromise agriculture at all scales, yielding increased food prices and increased volatility in markets.

 

Impacts on the Poor

Although the human impacts of climate change will be diverse, their effects will be worst for the most impoverished and, by extension, least resilient population groups.  The UN reports that climate change could “increase global malnutrition by up to 25% by 2080.”  And all of this occurs against a backdrop in which access to food is already a challenge for the poorest of the world already a challenge for the poorest of the world [p5], a situation exacerbated by the global financial crash.

These risks to the poorest result from a lack of resources to mitigate harm, lack of power to protect resources, and the global competition for resources.

Those who lack the financial resources to migrate or build more hazard-resistant homes will suffer most from extreme events, as has been sharply illustrated by those suffering most in the aftermath of Typhoon Haiyan.  Those who can least afford to dig deeper wells into more ancient aquifers as water resources diminish will go thirsty.  Subsistence farmers – and those dependent on them – are less resistant to climate shocks (desertification) and adverse weather events (flooding) than commercial farmers.

Land ownership for the poorest is often tenuous, and displacement from land a serious problem for many.  Previous switches to biofuels have led to land competition, resulting in both loss of land to subsistence [p6]  farmers, and diversion of commercial production leading to shortages [p7]  and increased food prices. Within communities, these effects are not evenly spread as marginalised groups, such as women, are the least likely to hold land tenure [p8] .  Similarly, there is increased competition for water [p9]  between peoples, but also between water for industry (including agriculture) and water for drinking. When water is scarce, pollution of fresh water is common, and governance is weak, the poorest are likely to lose out.

 

Image by Mammal Research UnitUniversity of Bristol

Food competition will most likely be exacerbated by other factors: rising demand from a rapidly expanding population and a growing demand for meat from a global ‘middle class’; the increased economic divide between post-industrial and developing nations; the ongoing depletion of soil nutrients and associated impacts on the nutritional value of our food.  The combination of these factors will result in profound impacts on food security. Who decides what gets grown? Who can afford it in the context of global markets and the loss of agricultural land? The poorest members of even the wealthiest societies are the most vulnerable to dramatic and unpredictable changes in food costs[p10] .

‘Wicked Problems’

These issues yield a profoundly challenging ethical issue: the wealthy who are most responsible for anthropogenic climate change, via the greatest material consumption and energy demand, have the greatest resilience to food market fluctuations and the greatest means for avoiding their most deleterious impacts.  Therefore, these issues challenge all governments to dramatically and swiftly act to decrease greenhouse gas emissions and mitigate the associated climate change.

Unfortunately, many proposed mitigation strategies could also have negative consequences for food prices and availability. Increasing energy prices, such as those brought about by a carbon tax, will be passed onto food prices.  Genetically modified foods could be essential to feeding a growing population, and we would urge that future efforts expand to incorporate a greater degree of climate resilience in crops; however, the patents on those crops can make them financially inaccessible to the poorest nations or build critical dependencies.

Although sustainable agriculture and crops might reduce the impact of climate change and uncertainty in some countries, these solutions can be deleterious for the poorest.  They are more likely to live in regions and areas most negatively affected by climate change, most likely to be relying on subsistence/small scale agriculture and least likely to have access to the global market as consumers.  In other words, a stable global market will be of little direct benefit to them; in fact, most of these populations are likely to face competition for land/water use from globalised markets (for biofuels or commercial farming).  In short, what builds food resilience in one nation might be exposing the most economically vulnerable in another.

In fact, when properly mobilised for the benefit of the community, access to new energy sources – even if in the form of fossil fuels – can be transformative and facilitate the economic growth needed to access increasingly globalised food markets [p12].    Domestic access to gas reduces the need to collect wood for fires, reducing deforestation, improving air quality, and freeing up time for communities to address other development needs.

This is not an argument against mitigation of climate change, but it does need to be balanced against human development needs; and this represents one of the world’s most profound challenges. In some circles, we consider this a ‘wicked’ problem: a problem that has multiple causes, probably in interaction, and where information is incomplete, such that proposed solutions might be incomplete, contradictory, complex and work across multiple causes in complex systems.

Challenges and Opportunities

Biofuel by La Jolla

Wicked problems are not intractable, however, and previous studies of land use for biofuels provide clues as to how a complex solution could be more sustainable for all; well planned switches to biofuels which consider local custom in land tenure can provide more land for agriculture, and reduce deforestation pressure.

In such situations, we argue, solutions which focus on halting or slowing climate change alone, and then coping with the business and development problems that they might create answer the wrong question.  Our challenge to the business (and academic) community, then, is to engage with some wicked questions:

  • What are the business opportunities in improving the social and physical environment?
  • Can the global agricultural system be a single resilient network, rather than a competition?
  • What technology or innovation is needed to support a resilient food network?
  • How can innovative solutions to these challenges generate local income, allowing reinvestment in education and development?

These are difficult questions but they also represent opportunities for development and growth in poor communities.  A world with increasing environmental uncertainty is a challenge for both businesses and vulnerable communities.  But it could also be a shared opportunity for growth and development: to innovate and identify new solutions, to co-invest in local resilience and risk reduction, and to share the growth that arises from more stable communities.

 


[i] Z Kundzewicz, L Mata, N Arnell, P Doll, P Kabat, K Jimenez, K Miller, T Oki, Z Sen & I Shiklomanov, Freshwater Resources and their Manegemtn. Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press2007
[ii] R Buddemeier, S Smith, S Swaaney & C Crossland, The Role of the Coastal Ocean in the Disturbed and Undisturbed Nutrient and Carbon Cycles,  LOICZ Reports and Studies Series2002, 84
[iii] P Etchevers, C Golaz, F Habets & J Noilhan, Impact of a Climate Change on the Rhone River Catchment Hydrology,Journal of Geophysical Research2002, 4293
[iv] J Kim, T Kim, R Arritt & N Miller, Impacts of Increased CO2 on the Hydroclimate of the Western United States, Journal of Climate2002, 1926
[v] M Hulme, R Doherty & T Ngara, African Climate Change, Climate Research2001, 145
[vi] J Christensen, B Hewitson, A Busuioc, A Chen, X Gao, I Held, R Jones, R Kolli, W Kwon, R Laprise, V Magana Rueda, L Mearns, C Menendez, J Raisanen, A Rinke, A Sarr & P Whetton, Regional Climate Change, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007, 847

————

This blog is written by Prof Rich Pancost, Director of the Cabot Institute and Dr Patricia Lucas, School for Policy Studies, both at University of Bristol.

Prof Rich Pancost

This blog has kindly been reproduced from the Business Fights Poverty blog.