‘Heavy metals’ contaminate 17% of the world’s croplands, say scientists

arsenic poisoning showing as black spots on a persons hands.
Arsenic poisoning. Image credit: Anita Ghosh-REACH

Nearly 17% of the world’s croplands are contaminated with “heavy metals”, according to a new study in Science. These contaminants – arsenic, cadmium, lead, and others – may be invisible to the eye, but they threaten food safety and human health.

Heavy metals and metalloids are elements that originate from either natural or human-made sources. They’re called “heavy” because they’re physically dense and their weight is high at an atomic scale.

Heavy metals do not break down. They remain in soils for decades, where crops can absorb them and enter the food chain. Over time, they accumulate in the body, causing chronic diseases that may take years to appear. This is not a problem for the distant future; it’s already affecting food grown today.

Some heavy metals, such as zinc and copper, are essential micronutrients in trace amounts. Others – including arsenic, cadmium, mercury, and lead – are toxic even at low concentrations.

Some are left behind by natural geology, others by decades of industrial and agricultural activities. They settle into soils through mining, factory emissions, fertilisers or contaminated water.

When crops grow, they draw nutrients from the soil and water – and sometimes, these contaminants too. Rice, for instance, is known for taking up arsenic from flooded paddies. Leafy greens can accumulate cadmium. These metals do not change the taste or colour of food. But they change what it does inside the body.

The quiet health crisis beneath our crops

Long-term exposure to arsenic, cadmium, or lead has been linked to cancer, kidney damage, osteoporosis, and developmental disorders in children. In regions where local diets rely heavily on a single staple crop like rice or wheat, the risks multiply.

The Science study, led by Chinese scientist Deyi Hou and his colleagues, is one of the most comprehensive mapping efforts. By combining recent advances in machine learning with an expansive dataset of 796,084 soil concentrations from 1,493 studies, the authors systematically assessed global soil pollution for seven toxic metals: arsenic, cadmium, cobalt, chromium, copper, nickel, and lead.

The study found that cadmium in agricultural soil frequently exceeded the threshold, particularly in the areas shaded in red in this map:

shaded world map
A map of the aggregate distribution of seven heavy metals reveals lots of hotspots around the world.
Hou et al / Science

The authors also describe a “metal-enriched corridor” stretching from southern Europe through the Middle East and into south Asia. These are areas where agricultural productivity overlaps with a history of mining, industrial activity and limited regulation.

How science is reading the soil’s story

Heavy metal contamination in cropland varies by region, often shaped by geology, land use history, and water management. Across central and south-east Asia, rice fields are irrigated with groundwater that naturally contains arsenic. That water deposits arsenic into the soil, where it is taken up by the rice.

Fortunately, nature often provides defence. Recent research showed that certain types of iron minerals in the soil can convert arsenite – a toxic, mobile form of arsenic – into arsenate, a less harmful species that binds more tightly to iron minerals. This invisible soil chemistry represents a safety net.

In parts of west Africa, such as Burkina Faso, arsenic contamination in drinking and irrigation water has also affected croplands. To address this, colleagues and I developed a simple filtration system using zerovalent iron – essentially, iron nails. These low-cost, locally sourced filters have shown promising results in removing arsenic from groundwater.

In parts of South America, croplands near small-scale mines face additional risks. In the Amazon basin, deforestation and informal gold mining contribute to mercury releases. Forests act as natural mercury sinks, storing atmospheric mercury in biomass and soil. When cleared, this stored mercury is released into the environment, raising atmospheric levels and potentially affecting nearby water bodies and croplands.

Cropland near legacy mining sites often suffers long-term contamination but with the appropriate technologies, these sites can be remediated and even transformed into circular economy opportunities.

Evidence-based solutions

Soil contamination is not just a scientific issue. It’s a question of environmental justice. The communities most affected are often the least responsible for the pollution. They may farm on marginal lands near industry, irrigate with unsafe water, or lack access to testing and treatment. They face a double burden: food and water insecurity, and toxic exposure.

There is no single fix. We’ll need reliable assessment of contaminated soils and groundwater, especially in vulnerable and smallholder farming systems. Reducing exposure requires cleaner agricultural inputs, improved irrigation, and better regulation of legacy industrial sites. Equally critical is empowering communities with access to information and tools that enable them to farm safely.

Soils carry memory. They record every pollutant, every neglected regulation, every decision to cut corners. But soils also hold the potential to heal – if given the proper support.

This is not about panic. It’s about responsibility. The Science study provides a stark but timely reminder that food safety begins not in the kitchen or market but in the ground beneath our feet. No country should unknowingly export toxicity in its grain, nor should any farmer be left without the tools to grow food safely.The Conversation

——————————

This blog is written by Dr Jagannath Biswakarma, Senior Research Associate, School of Earth Sciences and Cabot Institute for the Environment, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Jagannath Biswakarma
Jagannath Biswakarma

How the great phosphorus shortage could leave us short of food

You know that greenhouse gases are changing the climate. You probably know drinking water is becoming increasingly scarce, and that we’re living through a mass extinction.

But when did you last worry about phosphorus?

It’s not as well-known as the other issues, but phosphorus depletion is no less significant. After all, we could live without cars or unusual species, but if phosphorus ran out we’d have to live without food.

Phosphorus is an essential nutrient for all forms of life. It is a key element in our DNA and all living organisms require daily phosphorus intake to produce energy. It cannot be replaced and there is no synthetic substitute: without phosphorus, there is no life.

Our dependence began in the mid-19th century, after farmers noticed spreading phosphorus-rich guano (bird excrement) on their fields led to impressive improvements in crop yields. Soon after, mines opened up in the US and China to extract phosphate ore – rocks which contain the useful mineral. This triggered the current use of mineral fertilisers and, without this industrial breakthrough, humanity could only produce half the food that it does today.

Testing crops in 1940s Tennessee.
Franklin D. Roosevelt Presidential Library and Museum

Fertiliser use has quadrupled over the past half century and will continue rising as the population expands. The growing wealth of developing countries allows people to afford more meat which has a “phosphorus footprint” 50 times higher than most vegetables. This, together with the increasing usage of biofuels, is estimated to double the demand for phosphorus fertilisers by 2050.

Today phosphorus is also used in pharmaceuticals, personal care products, flame retardants, catalysts for chemical industries, building materials, cleaners, detergents and food preservatives.

Phosphorus is not a renewable resource

Reserves are limited and not equally spread over the planet. The only large mines are located in Morocco, Russia, China and the US. Depending on which scientists you ask, the world’s phosphate rock reserves will last for another 35 to 400 years – though the more optimistic assessments rely on the discovery of new deposits.

It’s a big concern for the EU and other countries without their own reserves, and phosphorus depletion could lead to geopolitical tensions. Back in 2008, when fertiliser prices sharply increased by 600% and directly influenced food prices, there were violent riots in 40 different developing countries.
Phosphorus also harms the environment. Excessive fertiliser use means it leaches from agricultural lands into rivers and eventually the sea, leading to so-called dead zones where most fish can’t survive. Uninhibited algae growth caused by high levels of phosphorus in water has already created more than 400 coastal death zones worldwide. Related human poisoning costs US$2.2 billion dollars annually in the US alone.

With the increasing demand for phosphorus leading to massive social and environmental issues, it’s time we looked towards more sustainable and responsible use.

There is still hope

In the past, the phosphorus cycle was closed: crops were eaten by humans and livestock while their faeces were used as natural fertilisers to grow crops again.

These days, the cycle is broken. Each year 220m tonnes of phosphate rocks are mined, but only a negligible amount makes it back into the soil. Crops are transported to cities and the waste is not returned to the fields but to the sewage system, which mainly ends up in the sea. A cycle has become a linear process.

We could reinvent a modern phosphorus cycle simply by dramatically reducing our consumption. After all, less than a third of the phosphorus in fertilisers is actually taken up by plants; the rest accumulates in the soil or is washed away. To take one example, in the Netherlands there is enough phosphorus in the soil today to supply the country with fertiliser for the next 40 years.

Food wastage is also directly linked to phosphorus overuse. In the most developed countries, 60% of discarded food is edible. We could also make agriculture smarter, optimising the amount of phosphorus used by specially selecting low-fertiliser crops or by giving chickens and pigs a special enzyme that helps them digest phosphorus more efficiently and therefore avoid extensive use of phosphorus-heavy growth supplements.

 

Original phosphorus cycle (left); the broken cycle (centre); and an optimised cycle (right).
Author provided

It takes vast amounts of energy to transform phosphate ore into “elemental phosphorus”, the more reactive and pure form used in other, non-agricultural sectors. Inventing a quicker route from raw rocks to industrially-useful compounds is one of the big challenges facing the future generation. The EU, which only has minimal reserves, is investing in research aimed at saving energy – and phosphorus.

We could also close the phosphorus cycle by recycling it. Sewage, for instance, contains phosphorus yet it is considered waste and is mainly incinerated or released into the sea. The technology to extract this phosphorus and reuse it as fertiliser does exist, but it’s still at an early stage of development.

When considering acute future challenges, people do not often think about phosphorus. However, securing enough food for the world’s population is at least as important as the development of renewable energy and the reduction of greenhouse gases. To guarantee long-term food security, changes in the way we use phosphorus today are vital.
———————————-
This blog is written by Charly Faradji, Marie Curie Research Fellow, School of Chemistry, University of Bristol and Marissa de Boer, Researcher VU Amsterdam, Project Manager SusPhos, VU University Amsterdam

Charly Faradji

This article was originally published on The Conversation. Read the original article.