Natural Systems and Processes Poster Session

Natural Systems and Processes Poster Session 2015. Image credit Amanda Woodman-Hardy

The Natural Systems and Processes Poster Session (NSPPS) is, it appears, now quite an establishment in Bristol: 2016 will be the event’s ninth year. What is it, and what has secured its place in the University of Bristol calendar for all these years?

Well, as the name suggests, it is an academic poster session welcoming pretty much anything relating to the science of the natural world. It turns out this description covers a lot of science, with representatives from Earth Sciences, Geographical Sciences, Physics, Life Sciences, Engineering, Chemistry and Mathematics. It’s a fascinating melting pot of ideas with some quirky and abstract topics on show, but each being a tiny, crucial cogwheel in the Earth’s system. The range of topics can show off the University’s diverse scientific community, spark collaborations and simply baffle all at the same time.

Besides the ‘boring’ scientific part of the event, NSPPS is a great occasion. Set in the Wills Memorial Building Great Hall, there is a plentiful stock of free food and drink and the social side of the event is great. Often the people carrying out the research are even more colourful than the science itself (especially after some free drinks). The social side also ensures the whole event is very relaxed, making it a great opportunity to get some practice and early feedback on your poster and presentation skills before taking on external conferences. Maybe you’re thinking of going to EGU in April? Then this is the perfect warm up. Added to that, there is healthy competition with entrants battling it out for a series of prizes from staff and student votes for the best posters. They’re proper prizes too (I can verify, last year I won an Acer tablet for the staff vote), so it’s definitely worth entering!

So here’s why NSPPS is still live and kicking after 9 years: diverse science, diverse people, laid back atmosphere, prizes and (of course) free food and drink.

Where? When? Great Hall, Wills Memorial Building. 2 pm – 5 pm, Monday 7 March.
Abstract submission deadline: midnight, Friday 29 February.
Full details at https://tiny.cc/nspps
—————————-
This blog is written by Alan Kennedy from the School of Geographical Sciences at the University of Bristol.  This blog post was edited from Alan’s blog post at Ezekial Boom.

Alan Kennedy

 

 

Insights from the Natural Systems and Processes Poster Session

The Natural Systems and Processes Poster Session (NSPPS) is a University-wide poster session for postgraduate students within the Faculty of Science aimed at increasing inter-departmental connections within a relaxed and informal environment. This year’s event, which was hosted within the Great Hall of the Wills Memorial Building, was attended by ~90 PhD students from a wide variety of disciplines and hundreds more visitors came from across the University to view the posters. Most participants were interested in tackling the challenges of uncertain environmental change with an emphasis upon climate change, natural hazards and human impacts on the environment.

The Natural Systems and Processes Poster Session 2015 in the Great Hall
in the Wills Memorial Building (Image credit: D. Naafs)
Adam McAleer, a final year PhD student working in the Department of Earth Sciences, is interested in measuring the flux of greenhouse gases from restored peatlands within Exmoor National Park. The Exmoor Mires Project seeks to raise water levels via blocking of old agricultural drains in order to re-saturate the peatlands and recover its peat-forming biogeochemistry. This will potentially lead the mires to become carbon dioxide sinks and methane sources. As wetter plants were found to have a strong association to higher methane emissions, certain plant species have the potential to be used as a proxy for methane fluxes and restoration success. Mark Lunt, a third year PhD student working within the Atmospheric Chemistry Research Group, is interested in the fate of other greenhouse gases, such as hydrofluorocarbons (HFCs). Hydrofluorocarbons are organic compounds that contain fluorine and hydrogen atoms and are used as refrigerants, aerosol propellants, solvents, and fire retardants in the place of chloroflourocarbons (CFCs). Although HFCs do not harm the ozone layer, they can contribute to global warming. In developing countries, demand for HFCs are increasing rapidly; as a result, both the USA and China have agreed to begin work on phasing out hydroflourocarbons.

Felipe (left) discussing his research to staff and students  (Image credit: D. Naafs)
 
Catherine McIntyre (1st year) and John Pemberton (1st year), based within the Organic Geochemistry Unit, presented work from the NERC-funded DOMAINE project. This project aims to look at dissolved organic matter (DOM) in freshwater ecosystems and public water supplies and will focus upon the fate of carbon, nitrogen and phosphorus. Phosphorus, for example, is used to make fertilisers and can be incorporated into lakes and streams via terrestrial run-off. As phosphorus is a key limiting nutrient, it can also stimulate algal blooms and lead to eutrophication (i.e. oxygen starvation). Indeed, the global phosphorus cycle has already been highly perturbed, as shown below. As very little is known about organic phosphorus, the DOMAIN project will investigate this further using via high-resolution molecular techniques.

Four of the nine planetary boundaries  have now been crossed (Steffen et al., 2015; Science)
 
Other students are using the past to explore the future. Matt Carmichael, a final year PhD based within the School of Chemistry, is interested in understanding how the hydrological cycle varied during past warm climates. Of particular interest is the early Eocene (~48 to 56 million years ago), an interval characterised by high atmospheric carbon dioxide, high sea surface temperatures and the absence of continental ice sheets. However, the impact of these changes on the wider Earth system, especially those related to precipitation patterns, vegetation and biogeochemical cycles, remain poorly understood. This is achieved using climate models which can simulate changes in the atmosphere and the ocean during the Eocene. Future climatic change will also have a profound effect upon the hydrological cycle with the potential to make floods and droughts more extreme.

How the East Antarctic coastline might have looked during the early Eocene (Pross et al., 2012; Nature)

Collectively, the NSPPS highlights the wide variety of research undertaken with the Faculty of Science and is a great opportunity for PhD students to present their research in a relaxed setting.



————————–
This blog was written by Gordon Inglis (@climategordon) a final year PhD student within the School of Chemistry. Additional thanks to Adam McAleer, Matt Carmichael, Mark Lunt, Catherine McIntyre and John Pemberton whose work is highlighted here.