Cutting edge collaborative research – using climate data to advance understanding

 

Perhaps you saw my recent blog post about an upcoming University of Bristol-led hackathon, which was to be part of a series following the Met Office’s Climate Data Challenge in March. The University of Bristol hackathon took place virtually earlier this month and was opened out to all UK researchers to produce cutting-edge research using Climate Model Intercomparison Project 6 (CMIP6) data. The event themes ranged from climate change to oceanography, biogeochemistry and more, and, as promised, here’s what happened.

An enabling environment

The event wouldn’t have run smoothly without the hard work of the organising team including James Thomas from the Jean Golding Institute who set up all the Github documentation and provided technical support prior and during the hackathon event. The hackathon was also a great opportunity to road test a new collaboration space that the Centre for Environmental Data Analysis (CEDA) have developed to provide a new digital platform, JASMIN Notebook Service.

As part of the introduction to the event, Professor Kate Robson Brown, Jean Golding Institute director, spoke about data science and space-enabled data. This was an excellent talk especially in terms of making connections through data and training events – you can watch her speech here. If you’re interested in more on this, there’s a data week 14-18 June 2021 for University of Bristol and external participants with details here.

Collaborating for results

Altogether there were over 100 participants at the hackathon with people involved from across the Met Office Academic Partnership (MOAP) universities and the Met Office as well as participants from across the world. There were ten project themes for delegates to work around and, as with the Met Office Climate Data Challenge, I was astounded by how far the teams got over the three days. Given the CMIP6 theme, it was great to see many projects advance our understanding by updating and improving previous model evaluation and projection analyses with the new CMIP6 datasets.

Given the work that I am involved in at the Met Office on visualisation and communication, I was particularly impressed by the thought that went into making important Intergovernmental Panel on Climate Change (IPCC) figures interactive. In three days, the team working on this managed to process data and produce a working demonstration that made the results pop out of the page.

Also related to my work on using climate data to understand impacts, another project which caught my eye looked at how the Artic Tern’s migration would be affected by changes in wind regimes and sea ice in the CMIP6 ensemble. Of particular note was the creation of a “digital arctic tern” to simulate their migratory flight path.

What’s next?

There’s lots more I could say about this excellent event, and many thanks to colleagues at the University of Bristol for hosting the hackathon. Now I am looking forward to seeing how some of the work will develop further in terms of journal papers and potentially being showcased at the UN Climate Change Conference (COP26) in Glasgow in November.

#ClimateDataChallenge

—————————-

This blog is written by Dr Fai Fung, Science Manager at the Met Office and Senior Research Fellow at the University of Bristol.

Dr Fai Fung

 

 

Global Environmental Change mini-symposium

At the end of June, the Cabot Institute hosted the Global Environmental Change mini-symposium – a one hour whistle-stop tour showcasing the breadth of research within this theme of the Cabot Institute. Speakers represented different schools from the University that actively work on the spectrum of Global Environmental Change challenges, such as environmental law and policy, biodiversity conservation, biogeochemical cycles, environmental justice and environmental history.

 
Each speaker had time for a very short talk, with some choosing to focus on specific aspects of their work in depth and others instead covering the breadth of research carried out by colleagues in their school. The audience too came from a wide background, with everyone from undergraduate and masters students up to professors represented. Although with five speakers (plus some words from the theme leaders, Jo House and Matt Rigby) there was not much time for questions during the hour of talks, there was plenty of time for discussion over food and drinks afterwards.

Although it was billed as a miniature event, it set out to address grand, ambitious, global challenges. It was a short, punchy reminder of the huge range of research skills found within the Cabot Institute. We might not have solved the Earth’s challenges in an hour or two, but now that the dust has settled we certainly have a good idea of who to ask and how to start taking them on. I look forward to the mini-symposiums for the Cabot Institute’s other five research themes!

The speakers were:
Kath Baldock – Life Sciences
Alice Venn – Social Sciences and Law
Alix Dietzel – SPAIS
Kate Hendry – Earth Sciences
Daniel Haines – History

The event was hosted by:
Jo House – Geographical Sciences
Matt Rigby – Chemistry

Blog post by Press Gang member Alan Kennedy.

Tales from the field: reconstructing past warm climates

The warmest period of the past 65 million years was the early Eocene epoch (55 to 48 million years ago). During this period, the equator-to-pole temperature gradient was reduced and atmospheric carbon dioxide (pCO2) was in excess of 1000ppm. The early Eocene has received considerable interest because it may provide insight into the response of Earth’s climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions (IPCC AR4). However, climatic conditions of the early Eocene ‘greenhouse world’, are poorly constrained, particularly in mid-to-low latitude terrestrial environments (Huber and Caballero, 2011).

I recently spent a week in eastern Germany (Schoeningen, Lower Saxony) sampling an early Eocene lignite seam (Fig. 1). Lignite is a type of soft brown coal that is an excellent terrestrial climate archive. Using palynology, organic geochemistry, coal petrography and climate models, we will try to reconstruct the terrestrial environment of the early Eocene and provide insights into future climate change.

Fig. 1. A view of the mine with Dr. Volker Wilde on the far right for scale.

During this trip, we were sampling at the base of the mine beside a very large and very dusty bucket-wheel excavator (Fig. 2). A bucket-wheel excavator is a continuous digging machine over 200m long and dwarfs the large NASA Crawler that transports space shuttles to launch pads. Once the lignite is removed, it is placed upon a conveyor belt and transported immediately to a nearby power station. Unfortunately, the Schoeningen lignite will not last forever and the town will have to consider other energy sources (e.g. wind).

Fig. 2. A bucket-wheel excavator at Schoeningen mine.

Our sampling technique was less impressive yet equally effective. All we required were hammers, chisels and pick-axes (Fig. 3.). After a long day of sampling, we were taken to a very special outcrop at the top of the mine. The exposure contained well-reserved palm tree stumps from the early Eocene and provide evidence for white beaches, tropical plants and endless sunshine on the German coastline. An ideal holiday destination!

Fig. 3. Dr. Marcus Badger sampling Main Seam in high resolution.
Following fieldwork we were taken to the new Schoeningen museum containing, amongst other artefacts, the Schoeningen Spears (Fig. 4). The Schoeningen spears are 300,000 years old and are the oldest human weapons in existence. The spears were found with approximately 16,000 animal bones, amongst them 90% were horse bones, followed by red deer and bison. It has been proposed that these spears were the earliest projectile weapons and were used for ‘big game hunts’. Although this theory has been questioned, it remains one of the worlds most exciting archaeological finds.

Fig.4. The Schoeningen spears. Most were preserved fully intact.
Now we are back in Bristol its time to start processing our samples so we can understand what the early Eocene terrestrial climate was like. Watch this space!
———
The trip was in collaboration with members of Bristol (UK), Royal Holloway (UK), Gottingen (Germany) and Senckenberg (Germay).This blog was written by Gordon Inglis (http://climategordon.wordpress.com).