Why green jobs aren’t good jobs – yet

Image credit: Oakland Images

In his speech at the October Conservative Party Conference, Prime Minister Boris Johnson spoke of his vision of a transition of the UK national economy to one of high wages, high skills, and high productivity. One day later, the government unveiled its plans to decarbonise the UK power system by 2035.

These two events are not unrelated. A key plank of government environmental policy is how it might function to create new jobs (and save others). The ‘Net Zero Strategy’, also released in October and ahead of COP26, is a case in point, promising 440,000 jobs by 2030. Johnson’s Ten Point Plan for a Green Industrial Revolution pledged 60,000 jobs from offshore wind, 10,000 from nuclear, 50,000 in retrofitting and energy efficiency, and 30,000 in nature protection and restoration.

A ‘green’ job is a broad category – ranging from renewable energy production to organic agriculture and environmental education. They are the electricians, the roofers, the horticulturalists, the refuse and recyclable collectors. These jobs are fast-growing. Globally, there may be 24 million such jobs by 2030.

Yet, it is essential to question what these ‘green’ jobs might look like – and how they may differ from current work. If Johnson hopes for green jobs to be driving force towards a new decarbonised economy, current trends suggest that such words and hopes may dissolve into hot air.

Green jobs as a new environmentalism?

Decarbonisation will create new sets of winners and losers across the UK. These will not just be fossil fuel companies but also communities dependent on carbon-heavy work. One in five jobs in the UK may be affected by the transition to net-zero, with impacts heavily skewed by geography. Many regions, towns and communities are economically dependent on industries that others may see as dirty and in need of change. From airport towns like Hounslow to the oil and gas jobs in Aberdeen, a move away from fossil fuels will change the livelihoods for many.

‘Transition’ and ‘decarbonisation’ are words that are often met with fear – of jobs lost, local economies disrupted, and communities broken. The decline of fossil fuel industries elsewhere have proved traumatic – a loss of jobs in the Appalachia coalfields coincided with an opioid epidemic. History can also loom large. In the region of Latrobe Valley, Australia, memories of privatisation and redundancies remain central when discussing what comes next in the wake of decarbonisation agendas.

Contemporary environmental movements have often found themselves bogged down in a false decision between jobs and environmental health. Extinction Rebellion’s targeting of Canning Town underground station in 2019 is symbolic of a vision that has not only failed to make space for working people – but can also have a distinct lack of sympathy for their concerns. In France, the efforts of the Gilets Jaunes have highlighted what happens when decision-makers fail to understand how environmental policy (in this case increased fuel taxes) intersect with patterns of inequality.

Yet, working-class environmentalism can – and does – exist. The Green Bans movement in New South Wales in the 1970s provides a powerful example of how coalitions can be built by labour movements and environmentalists – to protect green spaces and local communities from re-development. For such a coalition to emerge today, environmentalism needs to move beyond a focus on communities making sacrifices – and towards comprehensively addressing people’s fears of lost jobs, unemployment, or loss of income.

A green job represents a key site at which such a coalition can be built. Whilst Johnson calls for such work should not be understood as motivated by the desire to build such an alliance, it does represent a repurposing of decarbonisation agendas. Moving them beyond shuttered industries and lost jobs and towards new forms of work.

This is not necessarily new. Previous economic transitions involved direct government action to protect livelihoods in flux. In the USA, government policies have supported communities in the wake of the closure of nearby military bases (redeveloping bases into university campuses or new business quarters) and awarded billions of dollars in compensation to tobacco farmers facing lost income due to government regulation. In the UK, the forced decline of the coal mining industry was accompanied by schemes that aimed at retraining redundant miners, encouraging entrepreneurialism, and creating coalfield ‘enterprise zones’, although none proved successful.

All such schemes demonstrate that government policy must be enacted to mitigate the impacts of policies elsewhere. New jobs and livelihoods aren’t magicked out of the air. This necessity remains evident in today’s quest for net-zero. Recent research commissioned by the Scottish Trade Union Congress has shown the importance of such concerted policy –an active industrial strategy, public ownership and significant investment can lead to up to 367,000 energy jobs in Scotland alone.

Low wages, lost skills

For all the talk of the ‘good’ jobs to be created by decarbonisation, the tangibility of such gains remains unclear.

Decarbonisation can also happen without such job creation and with any new jobs being poorly paid and precarious. In Germany, regional unemployment levels led to solar panel manufacturers imposing low wages. In the USA, non-unionised workers working on utility-scale solar projects are paid substantially less than others working elsewhere. Offshore wind projects in the UK have been found to used irregular migrant labour, paying substantially below the minimum wage and demanding extensive working hours.

A further complicating factor is how skills and training can be transferred from carbon-heavy industries to the renewables sector. Whilst the latter demands new skills and training programmes, there do remain some skills that are transferable. Plumbers and pipefitters in the gas sector may be able to move over to green hydrogen with limited fuss. Oil rig workers already have the skills and awareness of working at height to find a new home in the offshore wind sector.

Whilst the core skills may be the same, they are often treated as distinct. Recent work shows the roadblocks put in the way of workers moving from the oil and gas sector to the offshore wind industry. The two sectors often fail to recognise the training courses completed by workers in the other –requiring enrolment in a new course that significantly overlaps. The result is the need for two qualifications, with workers paying for training costs out of their own pocket. The only winners here are the training companies themselves.

What next?

81% of oil and gas workers surveyed in the UK would consider leaving the sector but are concerned about job security. This is understandable. Once a solar park or offshore wind plant is built – it reverts to skeleton staffing, for maintenance only. Community, small-scale and rooftop solar often involve ad-hoc and localised projects – with where the next job might come from uncertain.

In the USA, trade unions have sought to provide their own vision of decarbonisation – evident in Climate Jobs New York and the Texas Climate Jobs project. Such projects are centred on the protection of current working conditions and practices and the stemming of any circumvention of union labour. This has led to a series of project labour agreements, with renewable energy companies pledging to work with unions to provide good, secure, well-paid, high-skilled green jobs.

Supply chains and manufacturing are also key – with the parts required by the renewables sector stimulating job creation elsewhere. The success of any transition (and, with it, the provision of new forms of job security) depends on the continued health of local and regional economies. It is this that can assure a longer-term benefit of green job agendas.

Such moves represent substantial investment. The announcement of the BritishVolt electric vehicle battery factory in Blyth represents the biggest investment in the north-east since the 1980s.

In New York, a ‘Buy American’ provision has been extended to renewable energy projects – encouraging the use of national supply chains. This can also help avoid the use of forced labour elsewhere, as well as the collapse of locally significant employers. The debacle in Scotland surrounding the closure, the manufacturing firm, BiFab has demonstrated the sanctity of protecting renewables supply chains in national visions of decarbonisation.

Green jobs can be transformative. They can be targeted to address youth un- and under-employment. They can provide key points of transition for people leaving the armed forces and provide new lines of work for marginalised communities. Yet, they are not yet at the point where they represent ‘good’ jobs for all.

Transitions are rarely smooth processes. Jobs are lost and new lines of work must emerge. For a transition to net-zero to be inclusive, governments must adopt proactive frameworks to tie jobs created by moves to renewables to wider patterns of employment and economic support. Policies that decarbonise must be complemented by policies that stimulate new jobs and economic support.

The two come together. If they don’t, the jobs that power our route to net-zero will merely add to the list of losers of decarbonisation – and the split between environmentalism and labour will persist.

——————————

This blog was written by Cabot Institute for the Environment member Dr Ed Atkins, Lecturer, School of Geographical Sciences, University of Bristol. This is reposted under the under Creative Commons CC BY-NC 4.0 licence. Read the original article.

Dr Ed Atkins

 

 

Skilling up for the clean energy transition: View from Skills Work on EnergyREV

“Green Jobs not Job Cuts” by John Englart (Takver) is licensed under CC BY-SA 2.0

A couple of weeks ago I attended the “Skilling Up for the Clean Energy Transition: Creating a Net Zero Workforce” IPPR discussion. Given that we had 1.5 hours to get input from 5 presenters and about 20 participants, it was not really possible to put many thoughts across. Hence, this blog. Using some of the questions set out at the IPPR discussion, I started to put together some answers based on our work from the EnergyREV Skills work group (so far). Seeing that there is quite a lot to say, I will focus here on only 3 questions set out at the IPPR meeting:

Question 1:  What are the main challenges and opportunities we face in the transition to net-zero?

Today an average person on Earth consumes 1.5 planets [1]. In other words, we need 1.5 planets worth of forests, seas, land, and other resources to produce what an average person consumes and be able to absorb the emissions and negative impacts of it. And this number varies between developing and developed countries (e.g., 1.1 for China and 4.1 for USA).

For the UK we will be looking at 2.5 planets per person! Transitioning to net-zero economy then implies drastic change to our everyday production and consumption structures, processes, and habits.

Such change cannot be accomplished by one stakeholder, by few regulatory changes, or legislations. A systemic change in the mindset of the whole country is needed: from school education, to university level training, from industrial and societal regulations and legislation, to societal values that drive the  kinds of companies that entrepreneurs want to run, and jobs that employees want to take, to the way that products and services are valued and consumed.

In considering this transition, we take a look at the energy sector, asking: how can we transition to renewables-based, local energy systems? Let us first clarify:

Why renewables-based? Because that is the only clean, continuously available energy source.

Why local? Because renewables are locally distributed and so should be harnessed where they are located. Moreover, wherever possible, the generated energy should be consumed where it is produced to avoid transmission losses as well as extensive costs of transmission infrastructures.

1.1 So what are the challenges in transitioning to renewables-based local energy systems?

1.1.1 Political landscape 

The most recent Global Talent Index Report (GETI) [2] based on 17,000 respondents from 162 countries has shown that, although there is an obvious skills shortage, the most worrying issue for the renewable energy sector is, in fact, the political landscape. A lack of subsidies is of huge concern to the renewable industry, significantly more so than to the conventional and better established non-renewable sectors. Similarly, stability of the policies is a key determinant for investment into the new technologies and renewables sector.

1.1.2 Transitional mindset

Provisioning the right political landscape requires a transitional mindset within the society.  Such a mindset would enable people to support the policies even though many of these would threaten to uproot their normal daily lives. This social support is essential not only for accepting the (potentially unpopular) policies, but also for taking an active role in the required change of daily practices (e.g., engaging with Demand-Response services, installation of own renewable generation and storage equipment, etc.) both as a consumer, and as a professional choosing to seek employment within the zero-emissions sector.  This (I think) is the biggest challenge of all, as it requires A change of mindset and lifestyle of the whole of the country’s population. All of this cannot be achieved without:

  • widespread ecological education: Such education should be provisioned to all of the citizens: from children to retired.
  • commitment of resources to enable and support the necessary changes: it will not be enough to explain to families that driving a car is harmful for the planet; the family should get access to an alternative viable transportation option, so that they are able to get to school and work on time. To give a few examples (for UK):
    • the transportation service would need to be improved (if it takes me 1 hour to walk to my work place and  1 hour if I take the bus, what is the point of the bus?);
    • work practices would have to be changed to support flexible start/end as well as working from home/alternative locations to reduce the need for peak-time transportation pressure;
    • change in hiring practices for jobs that require physical presence, would have to account for the workers’ ability to reach their workplace in carbon-neutral way;
    • change would be needed in pricing/taxation of products, ensuring that the cost of carbon is taken into consideration (a move which, if not prepared for carefully,  will undoubtedly be met with a lot of resistance from both producers and consumers)

Without such education and resource commitments the policies to aid decarbonisation are likely to create disruption and unrest, as recently seen with the ‘gilets jaunes’ in France. When president, E. Macron proposed a rise in tax on diesel and petrol without any transitional arrangements or subsidies for the alternative cleaner, electric vehicles, protesters took to the streets in violent clashes with the police [4].

1.1.3 Skills Shortage

Skills gap (or shortage) is a disequilibrium between the skills available from workers and those demanded of them by employers.

The skills shortage is a looming crisis that many in the renewable energy sector are also worried about: in accordance with GETI [2], 60% of respondents believe there is only 5 years to act before it hits. So what talent is lacking?

  • The discipline of Engineering was reported to be in highest need, 50% of which were  mechanical and electrical/E&I engineers – both 25% –  followed by R&D at 20% and project leadership following with 25%;
  • Lack of understanding of the system as a whole: how multiple energy generation methods can work together and complement each other;
  • Legal experts and policy makers in steering the path to change;
  • Implementation of effective and relevant training and education programmes;
  • Vision of how all of these factors come together.

Such a gap can cause structural unemployment whereby the unemployed workers lack the skills needed to get the jobs. The shocks in economic activity that can lead to structural unemployment in the area of low-carbon and localised energy systems can arise from three main drivers:

  • Firstly, as industries become more energy efficient and less polluting, the demand for occupations (such as drilling engineers) decreases whereas there is an increase in the demand for others, such as solar panel technicians. In some cases the occupations are relatively transferable. For example, an individual working on oil or gas drilling sites will be able to transition to the geo-thermal industry which relies on similar methods for heat extraction. The change in market behaviour can also be encouraged by consumer habits, for instance, through mass demand for greener energy which in turn causes the industry to adapt in order to meet the demands of their customer base.
  • Secondly, entirely new occupations can emerge as a result of developments in technology. Occupations are also limited by this factor since a technology may not be available in a certain country or relocation to an area where the occupation is vacant may not be a feasible option.
  • Thirdly, the introduction of regulation and environmental policy can force the industry to alter its structure. For example, policies may be put in place that ban certain materials or processes with negative environmental impacts [3].

The key risks to the sector, as a result of skills shortages, include decreased efficiency, loss of business and reduced productivity. These consequences will trigger a negative feedback loop since it is likely that there will be less incentive to work in the given industry if it is seen as a failing one.

How could the skills shortage be addressed?  

The required skilled workers can be:

  • Attracted from other industries with transferable skills (e.g.,  increasing need for the geo-thermal energy drill operators can be filled by attracting such operators from the shrinking oil and gas industry)
  • Provisioning training: however, the length of a training course may cause long lead times and it is also necessary to incentivise individuals into enrolling in the training programmes in the first place.
    • One way to speed up this process is for companies to offer apprenticeships and teach workers the skills or training ‘on-the-job’.
    • Another option is to establish partnerships between employers and educational institutions, providing timely input on the expected types of training and shortages expected ahead of time, allowing for the training to be provisioned ahead.
  • Clearer career progression, with demonstrated career pathways and specialisation opportunities.
  • Increased remuneration and benefits packages, motivating the individuals to invest into (re-)training.

Improved societal image of clean jobs:  As shown in the recent Talent Index Report [2] , remuneration was one of the least common reasons for the young people choosing to work in the renewables sector. A possible explanation could be that for the 25-34 year olds the concern for the climate is more apparent. Hence, they may enter the sector as they wish to take action against global warming rather than for gaining “job perks”. Thus satisfaction from work that contributes to the social good could become a major motivator in its own right.

Question 2: What is the role of government, employers and trade unions in securing a skills system fit for a decarbonised future?

Our recent review of the factors that affect skills shortages [8] revealed a picture presented in Figure 1 below. Here the factors most frequently noted as affecting skills shortages are:

  1. policy and regulation (e.g., feed-in tariff which increased demand for solar installers);
  2. technology (such as automation);
  3. change in markets due to competitiveness;
  4. education (e.g., education may be of a low standard or not up-to-date); and
  5. mass changes in consumption habits (which can shift demand away from certain goods and services and towards others, which in turn increases the demand at many stages of the value chain).

Factors mentioned which are noted as of mid-range impact are:

  1. physical changes in the environment as we are seeing with the climate crisis;
  2. number  of training  providers which  may also reflect a regional shortage;
  3. job  incentives such as wages or location;
  4. demographics, i.e., in localities where younger generations relocate or where women have lower levels of participation;
  5. funding towards skills and training or R&D;
  6. social awareness for the benefit of low-carbon alternatives;
  7. structural change;
  8. labour market information whereby individuals do not know which skills  they need;
  9. the number of graduates in the necessary area (or generally) may be low; and
  10. business  model changes which cause disturbances on company-level.
Figure 1: Factors affecting skill shortages (source [8]).

2.1 Government

From bans on harmful products to the introduction of a carbon tax, the government has an extraordinarily influential power in promoting a smooth transition to low carbon and more localised energy systems through legislative prohibitions as well as by providing both incentives and disincentives. This is clearly shown in Figure 2 that illustrates the success of encouraging installations of solar panels through the introduction of the Feed-in Tariff in 2010. The growth in the number of installations post April 2016 could partly reflect the rush to set up projects before further reductions in subsidies take effect. Nonetheless, this example of a positive incentive for participation in cleaner production methods should be learnt from to support the transition.

Figure 2: Quarterly breakdown of number of installations and total installed capacity accredited under the Feed-in Tariff. Figure obtained from [5]

The tools that the government has at its disposal include:

  • Policy and regulation:
    • Ban on harmful industrial practices and products (including unpriced carbon emissions);
    • Carbon taxation;
    • Technology regulation (e.g., clear regulation on use of blockchain, acceptance of peer-to-peer energy trading, regulation of self-generation and storage, all of which will drive investment into specific technologies and enable business models);
    • Change in markets due to competitiveness by taxation, e.g., taxing fossil fuel-based vehicles to cross-subsidise the electric ones, allow continuous supplier switching for energy consumption, etc.;
    • Change the value system in economics: move away from economic growth and GDP as progress indicators to Happiness Index, Job Satisfaction, Clean Environment and alike. This will change the business models that companies use;
    • Price-based impact on consumption habits, e.g., price is cost of carbon in meat and diary products.
  • Education:
    • Public education for mindset transition through media and information which affects social awareness for the benefit of low-carbon alternatives, as well as ensure up-to date content provision;
    • Change the value system in education: school and educational curriculum review to introduce the values of environmental protection, social and personal sustainability, and provide inspirational examples of successful life not as for those who become “rich and famous” but of those who contribute to environment and society. This will both affect social awareness for the benefit of low-carbon alternatives and support change in consumption habits as well as encourage younger employees and women to get engaged with the low-carbon sector.
  • Investment:
    • Support transition with investment into infrastructure support (provide funding towards skills and training or R&D);
    • Provide re-training opportunities (through funding towards skills and training or R&D);
    • Invest into areas with high energy potential (e.g., off-shore wind, wave and tidal to get the locations attractive for families, and so workers, affecting the demographic factors).

2.2 Industry Leaders:

The tools that the industry has at its disposal are:

  • Lead by example: e.g., in renewable energy the leaders who can encourage the mindset transition are the large corporations such as Google, Apple and Facebook who are all in a race to operate on 100% renewable energy in their worldwide facilities [6] . This action is committing to investment in training and R&D, as well as technology adoption and fostering increased social awareness.
  • On-the-job training: education programmes at workplace to help to provide an adequately skilled workforce within their companies and in the wider industry. This directly relates to workers’ education and investment into skills and R&D.
  • Communication and collaboration with educational institutions and government to warn about the expected skills shortages and help train skilled employees ahead, which promotes better education and training, as well as provides clear information about the labour market to the students in schools and universities.
  • Adopt innovative business models driven by new technology and new values (e.g., social enterprises, environmentally-focused businesses, etc.).
  • Develop standards across industry: provide clear professional progression routes and job incentives, e.g., current lack of installers for heat pumps leads to plumbers with boiler installation experience being recruited for these jobs, yet these plumbers have to continue boiler maintenance to retain plumber licences.

2.3 Trade Unions:

The tools that the trade unions have at their disposal are:

  • Support career transitions:
    • Work with the management of the energy systems organisations to set transition targets and provide training for workers in transitioning to the new energy systems;
    • Work with the universities and other training organisations to develop training provision for workers in transitioning to the new energy systems;
  • Support quality assurance:
    • Lobby to accept standards and certification for new energy jobs (like heat pump installers);
    • De-risk hiring in new professions by ensuring employers are meeting their minimum obligations;
  • Hold Industry accountable:
    • by integrating the zero-carbon targets into the set of legal obligations for which the unions monitor breaches.

2.4 Others:

It should be noted that other stakeholders are also very influential, though are not discussed here due to space and time constraints. To name a few such stakeholders:

  • Individuals
  • Communities
    • Local Communities
    • Religious Groups
    • Youth Groups
    • Lobby Groups
  • Activists, etc

Question 3: What are the improvements that can be made to the skills system to overcome these challenges?

In a recent study [7]  we invited 34 researchers and practitioners from across the UK’s energy systems to discuss the current state of the skills gap with regards to the localised renewables-based energy systems in the UK. The participants talked about various examples of the current skills shortages, their causes and ways to observe and measure them. The results of the said study are presented in Table 1 below.

Table 1: Skills Shortages: Examples, Contributing Factors & Metrics (source [7])

Question 2 above already discusses what some key stakeholders can and should do to address the factors (as noted in Figure 1) underpinng skills shortages. There is no need to repeat all that has been note in response to Question 2, but only to highlight that the factors listed in Table 1 directly link up with the broader categories of factors noted in Figure 1. Thus, many of the factors noted in this table can also be addressed through tools discussed in Question 2.

Additionally, having carried out a mapping of stakeholders within the local energy systems [9], we identified the below 35 (non exhaustive) categories, all of which must be consulted when working towards a viable zero-carbon energy system provision. Thus, a solution that takes a whole systems perspective is unavoidable!

List of Stakeholder Categories to be considered in transition to clean energy systems (note, this is a non-exhaustive list):

  1. Building retrofitting
  2. Energy storage
  3. Transmission and Distribution
  4. Transport – EVs
  5. Transport – public
  6. Heating – heat pumps + geo-thermal
  7. Heating – solar thermal
  8. Heating – heat networks
  9. Heating – CHP
  10. Cooling – refrigeration
  11. Cooling – CCHP
  12. Biomass – waste to power
  13. Biomass – waste to heat
  14. Waste heat to power
  15. Wind energy
  16. Solar PV
  17. Marine energy
  18. Hydropower
  19. Hydrogen fuel and fuel cells
  20. Community energy
  21. Power plants
  22. Oil & gas
  23. Materials and components
  24. Financial services
  25. Reclamation, Reuse & Recycling (+ Waste management)
  26. Energy Efficiency
  27. Data Analytics & IoT
  28. Environmental Protection Groups
  29. Policy/Legal services
  30. Demand-side services
  31. Societal engagement & user behaviour
  32. Local government
  33. Government initiatives/departments
  34. Academia
  35. Non-academic training

 References

[1] Tim de Chant, data from Global Footprint Network. URL: https://www.footprintnetwork.org

[2] Airswift and Energy Jobline, “The Global Energy Talent Index Report 2019,” 2019.

[3] O. Striestska-Ilina, C. Hofmann, D. H. Mercedes, and J. Shinyoung, “Skills for Green Jobs: A Global View: Synthesis Report Based on 21 Country Studies,” International Labour Organization, 2011.

[4] A. France-Presse, “Extinction rebellion goes global in run-up to week of international civil disobedience,” The Guardian, 2018. [On- line]. Available: https://www.theguardian.com/world/2018/dec/30/paris-police-fire-tear-gas-yellow-vest-gilet-jaunes-protesters

[5] Ofgem, “FIT quarterly breakdown,” 2018. [Online]. Available: https://www.ofgem.gov.uk/environmental-programmes/fit/contacts-guidance-and-resources/public-reports-and-data-fit/feed-tariffs-quarterly-statistics#thumbchart-c4831688853446394-n91793

[6] A. Moodie, “Google, apple, facebook towards 100% renewable energy target,” The Guardian, 2016. [Online]. Available: https://www.theguardian.com/sustainable- business/2016/dec/06/google-renewable-energy-target-solar-wind-power

[7] Yael Zekaria, Ruzanna Chitchyan: Exploring Future Skills Shortage in the Transition to Localised and Low-Carbon Energy Systems. ICT4S 2019. URL: http://ceur-ws.org/Vol-2382/ICT4S2019_paper_34.pdf

[8] “Literature Review of Skill Shortage Assessment Models”, EnergyREV Project Report. Yael Zekaria, Ruzanna Chitchyan, Sept. 2019.

[9] “Report on Stakeholder Groups”, Yael Zekaria, Ruzanna Chitchyan, 9 July 2019

————————————–

This blog is written by Cabot Institute member Dr Ruzanna Chitchyan, at the University of Bristol. Ruzanna is a senior lecturer in Software Engineering and an EPSRC fellow on Living with Environmental Change. She works on software and requirements engineering for sustainability.