A N-ICE trip to the North Pole: Understanding the link between sea ice and climate

Imagine. It’s the bitter Arctic winter, it’s dark, cold enough to kill, and your ship is stuck in sea-ice.  There’s nothing you can do against the heave of the ice, except let your ship drift along. Out of your control. This seems like a difficult prospect today, but then imagine it happening over a century ago.

This is exactly what did happen when Norwegian explorer, Fridtjof Nansen, intentionally trapped his ship, Fram, in Arctic sea-ice in 1893 in an attempt to reach the North Pole. For about three years, Fram drifted with the ice until finally reaching the North Atlantic. Whilst a main motivation for their extraordinary journey was to find the Pole, they also made a number of scientific observations that had a profound influence on the (at the time) young discipline of oceanography.

Scientists led by the Norwegian Polar Institute (NPI) are now – pretty much on the 120th anniversary of the original expedition – repeating the journey, this time purely in the name of science.  I’m a member of the international team, meaning that the University of Bristol gets to play its part.

View from near the Norwegian Polar Institute, Tromsø, at about
2.30pm in the afternoon! Tromsø is on a small island,
surrounded by beautiful mountains, but has very long, dark winters.

The group I’m working with are investigating the role of newly formed sea-ice and freshwater on the flow of heat and nutrients through Arctic oceans, which plays a key role in regulating climate both locally and on a global scale.  The sea-ice in the Arctic is diminishing at an alarming rate, with between 9.4 and 13.6% decline per decade in the perennial sea-ice from 1979 to 2012 according to the last Intergovernmental Panel on Climate Change report [1]. If we are to understand how the sea-ice might change in the future, and what impact this might have on other systems, we have to be able to understand the physics of the system today.

My role is to help to chemically analyse the seawater, in order to trace the freshwater input to the oceans.  The amount of freshwater will determine the density of the water, and so will control the degree of stratification or sinking, which will be important for the transport of heat.

In November, I went to visit the Norwegian Polar Institute in Tromsø in the very north of Norway for a pre-cruise workshop.  I got to meet a number of the Norwegian Young Sea-Ice (N-ICE2015) team, and visit Norway – a place I’d never been before as Antarctica is my usual stomping ground! We had two days of learning about the scientific interests of all the group members, and finding our way around some of the high-tech instrumentation that we will have at our disposal. I also got a tour of the ship that N-ICE2015 will use: the R/V Lance. By the end, everyone was keen to set off – although everyone will now have to wait until January…

This blog is written by Cabot Institute member Kate Hendry, Earth Sciences, University of Bristol.

Further information

You can find out more about N-ICE2015 at the project website.

[1] Climate Change 2013: The Physical Science Basis. Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

From Apollo 11 to Beagle 2: the amazing life of Professor Colin Pillinger

Professor Colin Pillinger, the Bristol-born scientist, passed away today at the age of 70. Although he is probably best known as the leader of the Beagle 2 project, the attempt to land a British spacecraft on Mars, he was involved in ground-breaking scientific research for over 40 years.

The man famed for his whiskers…

In 1968, Colin joined the University of Bristol as a postdoctoral researcher working within the Organic Geochemistry Unit. Along with Geoff Eglinton and James Maxwell, he helped to analyse the first samples of lunar soil and rock retrieved from the Apollo 11 moon landings (Abell et al., 1970). To avoid contamination, the samples were transported from Houston triple-bagged, opened in a clean room and extracted using purified solvents and reagents. Yet despite all these precautions, the Apollo 11 soil did not show any molecular fossils accepted as biological markers. Although less newsworthy, the Bristol-based team also identified the presence of methane on the moon, produced by chemical reactions driven by the solar wind. All of this work would not have been possible without the development of sensitive analytical techniques. Colin was a brilliant analytical chemist and two of his greatest achievements were pioneering mass spectrometry methods which allowed measurements to be made on a thousand times smaller samples than anyone else and building a semi-autonomous mass spectrometer which could survive the rigours of a rocket launch. Developments in mass spectrometry have allowed scientists working within the Cabot Institute to investigate a variety of environmental problems here on earth (e.g. assessment of sewage pollutants in soils and freshwaters, effect of soil fauna upon the decomposition of soil organic matter and the development of chemical proxies for methane emissions from cattle). In my research, I use mass spectrometry to investigate past warm climates. Using this technique, I can reconstruct the temperature or the precipitation patterns of  high CO2 worlds and use this to inform us about future climate change.

Colin (front) and James Maxwell
(back) 
analysing the lunar samples
from Apollo 11
Over the next twenty years, Colin was involved in a variety of research, from the geothermal maturation of oils (Didyk et al., 1975) to the genesis of basaltic magma in the earth’s mantle (Mattey et al., 1984). It was during this time, he began to study the evolution of life on Mars. Although there was a hiatus in space missions to Mars following the Viking missions in 1976, it was possible to continue researching life on Mars using Martian meteorites. In 1994, Colin and co-authors used carbon and oxygen isotopes to show that carbonates preserved within a Martian meteorite were precipitated from a low-temperature fluid in the Martian crust. From this they were able to conclude that the Martian climate was once warm and wet (Romanek et al., 1994). In the 1990’s, Colin took charge of Beagle 2, a British-based lander which was to be deployed on the European Space Agency’s (ESA) 2003 Mars Express mission. Named after HMW Beagle, which twice carried Charles Darwin, the aim was to search for organic matter on and below the surface of Mars (Wright et al., 2003). Launched on the 2nd of June 2003, Beagle 2 was scheduled to enter the Martian atmosphere on Christmas Day 2003; however, all contact was lost with Beagle 2 upon its separation from the Mars Express 6 days previous. Regrettably no one knows exactly what happened to Beagle 2.

Once landed, it was hoped that Beagle 2 would look
something like this…

In the days and months that followed, the media turned on Pillinger and British space research. The ESA and the UK government held a joint investigation and eventually published a 42 page report which suggested that Beagle 2 was doomed from before it was even attached to Mars Express. Debates even took place which argued whether the UK should be involved with space programmes at all! I think there are some important analogues between Beagle 2 and the recent Climategate scandal. Although there was no evidence of fraud or scientific misconduct, the intense media coverage of the documents stolen from climate researchers at the University of East Anglia created public confusion about the scientific consensus on climate change. But I admired Colin Pillinger’s response to scientific failure. He faced the media with the same cheerful candour with which he had promoted the original idea. He highlighted the cruel nature of science. Experiments fail. Things go wrong. But by adopting this approach he gained the respect of many people, including my own.For more information on Colin’s research, you can access his website:

http://colinpillinger.com/barnstormpr.co.uk/index.asp/
Extra reading:
  • Abell, P. I., Draffan, G. H., Eglinton, G., Hayes, J. M., Maxwell, J. R., and Pillinger, C. T., 1970, Organic Analysis of the Returned Lunar Sample: Science, v. 167, no. 3918, p. 757-759.
  • Didyk, B. M., Alturki, Y. I. A., Pillinger, C. T., and Eglinton, G., 1975, Petroporphyrins as indicators of geothermal maturation: Nature, v. 256, no. 5518, p. 563-565.
  • Mattey, D. P., Carr, R. H., Wright, I. P., and Pillinger, C. T., 1984, Carbon isotopes in submarine basalts: Earth and Planetary Science Letters, v. 70, no. 2, p. 196-206.
  • Romanek, C. S., Grady, M. M., Wright, I. P., Mittlefehldt, D. W., Socki, R. A., Pillinger, C. T., and Gibson, E. K., 1994, Record of fluid–rock interactions on Mars from the meteorite ALH84001: Nature, v. 372, no. 6507, p. 655-657.
  • Wright, I. P., Sims, M. R., and Pillinger, C. T., 2003, Scientific objectives of the Beagle 2 lander: Acta Astronautica, v. 52, no. 2–6, p. 219-225.