Equity, diversity and inclusivity at sea

In summer 2017 – for the first time that we know of! – all three of the main UK ships, the RRS Discovery (pictured, with Kate’s ICY-LAB science team!), the RRS James Cook and the RRS James Clark Ross were out at the same time on expeditions, all led by female chief scientists.
Today, we can celebrate a strong representation of women in sea-going science in the United Kingdom, providing positive role models and mentors to encourage and support early career female marine scientists. However, women continue to face challenges to their progression in their careers, especially those who are also members of other underrepresented groups. 

Dr Kate Hendry led a group of women from around the UK from a range of career stages and backgrounds, who are all active or recently active in sea-going research, with the aim of writing a discussion of equity, diversity and inclusivity (EDI) issues in UK marine science. The group has recently published an article in Ocean Challenge with a focus on both successes in gender equality over the last few decades and lessons learned for improving diversity of sea-going science further and more broadly into the future.

Some of the earliest female career marine scientists in the UK started off in fisheries research in the early twentieth century, including Rosa Lee (1884-1976), who was the first woman to graduate in Maths from Bangor University and the first woman to be employed by the Marine Biological Association. She worked at the Lowestoft Laboratory (that later became the Centre for Environment, Fisheries and Aquaculture Science, Cefas), and published highly-renowned articles including in Nature. “All of this, whilst never being allowed to step foot on a research vessel, and having to leave her employment in the civil service when she got married”, commented Dr Hendry.

Rosa Lee, one of the first female UK marine scientists, in a group of staff at the Marine Biological Association’s Lowestoft laboratory in 1907(Photo courtesy of Cefas)

Dr Hendry added: “As a science community, we’ve come a long way in terms of gender balance and representation, not only in the top science jobs but also in other roles at sea including crew and marine technicians. We wanted to document the history of how these changes happened, and whether any of the pathways to gender equity could be transferred to tackling other forms of underrepresentation in UK marine science, at all career levels”.

The article ends with some firm recommendations to the community to improve sea-going EDI into the future, including the formation of a special interest group by the UK marine science organisation, The Challenger Society, and guidance to the Natural Environment Research Council (NERC) for additional training, financial support, and recognition.

—————————-

Cabot Institute member Dr Kate Hendry is an Associate Professor in the School of Earth Sciences at the University of Bristol.

Dr Kate Hendry

 

 

UK science policy in a changing Arctic: The Arctic Circle Assembly 2019

Arctic Circle – the largest international gathering on Arctic issues. Image by Kate Hendry

The Arctic is one of the most rapidly changing regions on Earth. Its lands and oceans are undergoing unprecedented transitions, from permafrost melting to sea ice thinning, and its people are vulnerable to the knock-on effects of climate change.

At the same time, Arctic governments (state, regional and local) are looking towards the future of economic development, broadened participation and connectivity, and improved health and education. All of these socioeconomic and environmental challenges are going on against the background of a complex governance structure and heightened geopolitical pressures.

Harpa, Reykjavik, the location of the Arctic Circle Assembly

Unlike the Antarctic, there is no one treaty or agreement that underpins Arctic governance, which is instead reliant on the Arctic Council and a plethora of bilateral and multilateral agreements.

The Arctic Circle is a not-for-profit organisation that forms the largest “network of international dialogue and cooperation on the future of the Arctic”, with the ambitious aim to promote open discussion between state and non-state players, including the private sector, universities, think tanks, environmental and conservation associations, Indigenous communities, and interested members of the public.

L-R: Henry Burgess, Head of the UK Arctic Office; Rosa Degerman, UK Science and Innovation Network in Finland; and Tatiana Iakovleva UK Science and Innovation Network in Russia

As part of a PolicyBristol project, joint with the UK Arctic Office (under the Natural Environment Research Council) and UK Science and Innovation, I was fortunate to attend the Arctic Circle Assembly in Reykjavik this October. I was thrust into a steep learning curve of Arctic governance and policy strategies from representatives of governments (from Arctic states, to non-Arctic countries such as Switzerland, Singapore and Japan), devolved authorities (including the first ever panel discussion with Greenland’s first generation of representative diplomats, and the announcement of Scotland’s Arctic policy document), and NGOs.

All of these policy announcements and discussions were focused around the dual themes of sustainable development and environmental protection, with the ever present shadow of rapid climatic change.

Private sector representatives with an interest in the Arctic included companies promoting their climate change solutions, from renewables to climate altering technologies (or geoengineering), from manipulating glaciers, to restoring Arctic sea ice, to fixing carbon dioxide in rocks.

There were also powerful and inspiring talks from Indigenous peoples’ representatives, emphasising the desire for self-determination (“Nothing about us without us”) and the essential need to co-produce strategies towards sustainable development and scientific endeavours, embracing full collaboration with Indigenous rights holders and respecting their cultural heritage.

And scientists can play their part. The IPPC special report on the oceans and cryosphere in a changing climate (SROCC published in September 2019) brought together thousands of peer-reviewed publications across natural and social sciences, highlighting the current threats to the polar regions. The SROCC featured heavily in the Assembly – mentioned by most policy makers’ presentations – and a focus of a dedicated discussion session with the leading authors of the polar regions chapter.

However, one of the challenges faced by the report authors was the limitation within the IPCC framework of using only peer-reviewed materials. The vast majority of Indigenous Knowledge (IK) is not written in peer-reviewed journal articles, leaving us with the question of how these vital approaches can be incorporated in the future.

The changing Arctic will have profound impacts not only on the ecosystems and communities of the Arctic states, but will be felt globally through climate teleconnections and an growing global economy. The solutions to climatic change are complex, and need multiple strategies, unified international cooperation, co-production with local communities, evidence-based policy decisions, and scientific diplomacy.

However, different stakeholders and rights holders have different governance structure and different priorities. Forums such as the Arctic Circle Assembly can start to bring everyone together to the debating table, but there is still a need to make sure that the good intentions are followed through with substantive action.

——————————–
This blog was written by Cabot Institute member Kate Hendry, an Associate Professor in Geochemistry at the University of Bristol, School of Earth Sciences, and member of the UK Arctic and Antarctic Partnership. With thanks to Henry Burgess (UK Arctic Office) and Michael Meredith (British Antarctic Survey). This blog was republished with kind permission from PolicyBristol. View the original blog.

The future of sustainable ocean science

Westminster Central Hall

May 9th ushered in the 9th National Oceanography Centre (NOC) Association meeting, held among the crowds, statues, flags, and banners, at Central Hall in an unseasonably chilly and rainy Westminster. But it was the first such meeting where the University of Bristol was represented, and I was honoured to fly our own flag, for both University of Bristol and the Cabot Institute for the Environment.

NOC is – currently – a part of the Natural Environment Research Council (one of the UK Research Councils, under the umbrella of UKRI), but is undergoing a transformation in the very near future to an independent entity, and a charitable organisation in its own right aimed at the advancement of science. If you’ve heard of NOC, you’re likely aware of the NOC buildings in Southampton (and the sister institute in Liverpool). However, the NOC Association is a wider group of UK universities and research institutes with interests in marine science, and with a wider aim: to promote a two-way conversation between scientists and other stakeholders, from policy makers to the infrastructure organisations that facilitate – and build our national capability in – oceanographic research.

The meeting started with an introduction by the out-going chair of the NOC Association, Professor Peter Liss from the University of East Anglia, who is handing over the reins to Professor Gideon Henderson from Oxford University. The newly independent NOC Board will face the new challenges of changing scientific community, including the challenge of making the Association more visible and more diverse.

Professor Peter Liss, outgoing chair of the NOC Association,
giving the welcome talk

As well as the changes and challenges facing the whole scientific community, there are some exciting developments in the field of UK and international marine science in the next two years, which are likely to push the marine science agenda forward. In the UK, the Foreign Commonwealth Office International Ocean Strategy will be released in the next few months, and there is an imminent announcement of a new tranche of ecologically-linked UK Marine Protected Areas (MPAs) for consultation. On the international stage, a new Intergovernmental Panel on Climate Change special report on the Oceans and Cryosphere is due to be released in September; the Biodiversity Beyond National Jurisdiction (BBNJ) report on deep sea mining will be announced in the next few months; and the next United Nations Framework Convention on Climate Change (UNFCCC ) Conference of Parties (COP) climate change conference, scheduled for the end of this year in Chile, has been branded the “Blue COP”.

The afternoon was dedicated to a discussion of the upcoming UN Decade of Ocean Science for Sustainable Development, starting in 2021. With such a wealth of national and international agreements and announcements in next two years, the UN Decade will help to “galvanise and organise” the novel, scientific advice in the light of ever increasing and cumulative human impacts on the oceans.
Alan Evans, Head of the International and Strategic
Partnerships Office and a Marine Science Policy Adviser, giving a presentation
on the UN Decade of Ocean Science for Sustainable Development
The UN Decade is aligned strongly with the key global goals for sustainable development and has two overarching aims: to generate ocean science, and to generate policy and communication mechanisms and strategies. The emphasis is being placed on “science for solutions”, bringing in social scientists and building societal benefits: making the oceans cleaner, safer, healthier and – of course – all in a sustainable way.

Research and development priorities include mapping the seafloor; developing sustainable and workable ocean observing systems; understanding ecosystems; management and dissemination of open access data; multi-hazard warning systems (from tsunamis to harmful algal blooms); modelling the ocean as a compartment of the Earth system; and pushing for a robust education and policy strategy to improve “ocean literacy”.

Whilst these are exciting areas for development, the scheme is still in its very early stages, and there’s a lot to do in the next two years. As the discussion progressed, it was clear that there is a need for more “joined-up” thinking regarding international collaboration. There are so many international marine science-based organisations such that collaboration can be “messy” and needs to be more constructive: we need to be talking on behalf of each other. On a national level, there is a need to build a clear UK profile, with a clear strategy, that can be projected internationally. The NOC Association is a good place to start, and Bristol and the Cabot Institute for the Environment can play their parts.

Lastly, a decade is a long time. If the efforts are to be sustained throughout, and be sustainable beyond The Decade, we need to make sure that there is engagement with Early Career Researchers (ECRs) and mid-career researchers, as well as robust buy-in from all stakeholders. Whilst there are several national-scale organisations with fantastic programs to promote ECRs, such as the Climate Linked Atlantic Sector Science (CLASS) fellowship scheme and the Marine Alliance for Science and Technology for Scotland (MASTS) doctoral training program, this needs to be extended to ambitious international ECR networking schemes. Together with the future generation of researchers, we can use the momentum of the UN Decade make marine research sustainable, energised and diverse.

———————————

This blog is written by Dr Kate Hendry, a reader in Geochemistry in the University of Bristol School of Earth Sciences and a committee member for the Cabot Institute for the Environment Environmental Change Theme. She is the UoB/Cabot representative on the NOC Association, a member of the Marine Facilities Advisory Board (MFAB), and a co-chair of a regional Southern Ocean Observing System (SOOS) working group.

Why we’re looking for chemicals in the seabed to help predict climate change

File 20190128 108370 ansjbe.jpg?ixlib=rb 1.1
Alex Fox, Author provided

Hidden in even the clearest waters of the ocean are clues to what’s happening to the seas and the climate on a global scale. Trace amounts of various chemical elements are found throughout the seas and can reveal what’s going on with the biological reactions and physical processes that take place in them.

Researchers have been working for years to understand exactly what these trace elements can tell us about the ocean. This includes how microscopic algae capture carbon from the atmosphere via photosynthesis in a way that produces food for much marine life, and how this carbon sequestration and biological production are changing in response to climate change.

But now scientists have proposed that they may also be able to learn how these systems were affected by climate change long ago by digging deep into the seabed to find the sedimentary record of past trace elements. And understanding the past could be key to working out what will happen in the future.

Trace elements can teach us an amazing amount about the oceans. For example, ocean zinc concentrations strikingly resemble the physical properties of deep waters that move huge quantities of heat and nutrients around the planet via the “ocean conveyor belt”. This remarkable link between zinc and ocean circulation is only just beginning to be understood through high-resolution observations and modelling studies.

Dissolved zinc concentrations in the oceans.
Reiner Schlitzer, data from eGEOTRACES., Author provided

Some trace elements, such as iron, are essential to life, and others, such as barium and neodymium, reveal important information about the biological productivity of algae. Different isotopes of these elements (variants with different atomic masses) can shed light on the types and rates of chemical and biological reactions going on.

Many of these elements are only found in vanishingly small amounts. But over the last few years, an ambitious international project called GEOTRACES has been using cutting-edge technological and analytical methods to sample and analyse trace elements and understand the chemistry of the modern ocean in unprecedented detail. This is providing us with the most complete picture to date of how nutrients and carbon move around the oceans and how they impact biological production.

Carbon factories

Biological production is a tangled web of different processes and cycles. Primary production is the amount of carbon converted into organic matter by algae. Net export production refers to the small fraction of this carbon bound up in organic matter that doesn’t end up being used by the microbes as food and sinks into the deep. An even smaller portion of this carbon will eventually be stored in sediment on the ocean floor.

As well as carbon, these algae capture and store a variety of trace elements in their organic matter. So by using all the chemical information available to us, we can get a complete view of how the algae grow, sink and become buried within the oceans. And by looking at how different metals and isotopes are integrated into ancient layers of sedimentary rock, we can reconstruct these changes through time.

Sampling the seabed.
Micha Rijkenberg, Author provided

This means we can use these sedimentary archives as proxy records of nutrient use and net primary production, or export production, or sinking rates. This should enable us to start answering some of the mysteries of how oceans are affected by climate change, not only in relatively recent Earth history but also in deep time.

For example, as well as enlightening us on active processes within the modern ocean, scientists have analysed what zinc isotopes are in seabed fossils from tens of thousands of years ago, and even in ancient rocks from over half a billion years ago. The hope is that they can use this information to reconstruct a picture of how marine nutrients have changes throughout geological history.

But this work comes with a note of caution. We need to bring our knowledge about modern biogeochemistry together with our understanding of how rocks form and geochemical signals are preserved. This will enable us to be sure that we can make robust interpretations of the proxy records of the prehistoric seabeds.

Collecting the samples.
Micha Rijkenberg, Author provided

How do we go about doing this? In December 2018, scientists from GEOTRACES met with members of another research project, PAGES, who are experts in reconstructing how the Earth has responded to past climate change. One approach we developed is to essentially work backwards.

First we need to ask: what archives (shells, sediment grains, organic matter) are preserved in marine sediments? Then, which of the useful metal and isotope signatures from seawater get locked up in these archives? Can we check – using material from the surface of deep-sea sediments – whether these archives do provide useful and accurate information about oceanic conditions?

The question can also be turned around, allowing us to ask whether there new isotope systems that have yet to be investigated. We want to know if GEOTRACES uncovered interesting patterns in ocean chemistry that could be the start of new proxies. If so, we might be able to use these ocean archives to shed light on
how the uptake of carbon in marine organic matter responds to, and acts as a feedback on, climate in the future.

For example, will a warmer world with more carbon dioxide enhance the growth of algae, which could then absorb more of this excess CO₂ and help to act as a break on man-made carbon emissions? Or will algae productivity decline, trapping less organic matter and spurring on further atmospheric warming into the future? The secrets could all be in the seabed.

————————–
This blog is written by Cabot Institute member Katharine Hendry, Reader in Geochemistry, University of Bristol and Allyson Tessin, Visiting research fellows, University of Leeds.  This article is republished from The Conversation under a Creative Commons license. Read the original article.

Unless we regain our historic awe of the deep ocean, it will be plundered

File 20171107 1017 1vsenhn.jpg?ixlib=rb 1.1
Image credit: BBC Blue Planet

In the memorable second instalment of Blue Planet II, we are offered glimpses of an unfamiliar world – the deep ocean. The episode places an unusual emphasis on its own construction: glimpses of the deep sea and its inhabitants are interspersed with shots of the technology – a manned submersible – that brought us these astonishing images. It is very unusual and extremely challenging, we are given to understand, for a human to enter and interact with this unfamiliar world.The most watched programme of 2017 in the UK, Blue Planet II provides the opportunity to revisit questions that have long occupied us. To whom does the sea belong? Should humans enter its depths? These questions are perhaps especially urgent today, when Nautilus Minerals, a mining company registered in Vancouver, has been granted a license to extract gold and copper from the seafloor off the coast of Papua New Guinea. Though the company has suffered some setbacks, mining is still scheduled to begin in 2019.

Blue Planet’s team explore the deep. Image credit BBC/Blue Planet

This marks a new era in our interaction with the oceans. For a long time in Western culture, to go to sea at all was to transgress. In Seneca’s Medea, the chorus blames advances in navigation for having brought the Golden Age to an end, while for more than one Mediterranean culture to travel through the Straits of Gibraltar and into the wide Atlantic was considered unwisely to tempt divine forces. The vast seas were associated with knowledge that humankind was better off without – another version, if you will, of the apple in the garden.

If to travel horizontally across the sea was to trespass, then to travel vertically into its depths was to redouble the indiscretion. In his 17th-century poem Vanitie (I), George Herbert writes of a diver seeking out a “pearl” which “God did hide | On purpose from the ventrous wretch”. In Herbert’s imagination, the deep sea is off limits, containing tempting objects whose attainment will damage us. Something like this vision of the deep resurfaces more than 300 years later in one of the most startling passages of Thomas Mann’s novel Doctor Faustus (1947), as a trip underwater in a diving bell figures forth the protagonist’s desire for occult, ungodly knowledge.

An early diving bell used by 16th century divers. National Undersearch Research Program (NURP)

Mann’s deep sea is a symbolic space, but his reference to a diving bell gestures towards the technological advances that have taken humans and their tools into the material deep. Our whale-lines and fathom-lines have long groped into the oceans’ dark reaches, while more recently deep-sea cables, submarines and offshore rigs have penetrated their secrets. Somewhat paradoxically, it may be that our day-to-day involvement in the oceans means that they no longer sit so prominently on our cultural radar: we have demystified the deep, and stripped it of its imaginative power.

But at the same time, technological advances in shipping and travel mean that our culture is one of “sea-blindness”: even while writing by the light provided by oil extracted from the ocean floor, using communications provided by deep-sea cables, or arguing over the renewal of Trident, we perhaps struggle to believe that we, as humans, are linked to the oceans and their black depths. This wine bottle, found lying on the sea bed in the remote Atlantic, is to most of us an uncanny object: a familiar entity in an alien world, it combines the homely with the unhomely.

Wine bottle found in the deep North Atlantic. Laura Robinson, University of Bristol, and the Natural Environment Research Council. Expedition JC094 was funded by the European Research Council.

For this reason, the activities planned by Nautilus Minerals have the whiff of science fiction. The company’s very name recalls that of the underwater craft of Jules Verne’s adventure novel Twenty Thousand Leagues under the Seas (1870), perhaps the most famous literary text set in the deep oceans. But mining the deep is no longer a fantasy, and its practice is potentially devastating. As the Deep Sea Mining Campaign points out, the mineral deposits targeted by Nautilus gather around hydrothermal vents, the astonishing structures which featured heavily in the second episode of Blue Planet II. These vents support unique ecosystems which, if the mining goes ahead, are likely to be destroyed before we even begin to understand them. (Notice the total lack of aquatic life in Nautilus’s corporate video: they might as well be drilling on the moon.) The campaigners against deep sea mining also insist – sounding not unlike George Herbert – that we don’t need the minerals located at the bottom of the sea: that the reasons for wrenching them from the deep are at best suspect.

So should we be leaving the deep sea well alone? Sadly, it is rather too late for that. Our underwater cameras transmit images of tangled fishing gear, cables and bottles strewn on the seafloor, and we find specimens of deep sea animals thousands of metres deep and hundreds of kilometres away from land with plastic fibres in their guts and skeletons. It seems almost inevitable that deep sea mining will open a new and substantial chapter on humanity’s relationship with the oceans. Mining new resources is still perceived to be more economically viable than recycling; as natural resources become scarcer, the ocean bed will almost certainly become of interest to global corporations with the capacity to explore and mine it – and to governments that stand to benefit from these activities. These governments are also likely to compete with one another for ownership of parts of the global ocean currently in dispute, such as the South China Sea and the Arctic. The question is perhaps not if the deep sea will be exploited, but how and by whom. So what is to be done?

A feather star in the deep waters of the Antarctic. BBC NHU
Rather than declaring the deep sea off-limits, we think our best course of action is to regain our fascination with it. We may have a toe-hold within the oceans; but, as any marine scientist will tell you, the deep still harbours unimaginable secrets. The onus is on both scientists and those working in what has been dubbed the “blue humanities” to translate, to a wider public, the sense of excitement to be found in exploring this element. Then, perhaps, we can prevent the deep ocean from becoming yet another commodity to be mined – or, at least, we can ensure that such mining is responsible and that it takes place under proper scrutiny.
The sea, and especially the deep sea, will never be “ours” in the way that tracts of land become cities, or even in the way rivers become avenues of commerce. This is one of its great attractions, and is why it is so easy to sit back and view the deep sea with awed detachment when watching Blue Planet II. But we cannot afford to pretend that it lies entirely beyond our sphere of activity. Only by expressing our humility before it, perhaps, can we save it from ruthless exploitation; only by acknowledging and celebrating our ignorance of it can we protect it from the devastation that our technological advances have made possible.-
——————————-
This blog is written by Laurence Publicover, Lecturer in English, University of Bristol and Katharine Hendry, Reader in Geochemistry, University of Bristol and both members of the University’s Cabot Institute. This article was originally published on The Conversation. Read the original article.

A N-ICE trip to the North Pole: Understanding the link between sea ice and climate

Imagine. It’s the bitter Arctic winter, it’s dark, cold enough to kill, and your ship is stuck in sea-ice.  There’s nothing you can do against the heave of the ice, except let your ship drift along. Out of your control. This seems like a difficult prospect today, but then imagine it happening over a century ago.

This is exactly what did happen when Norwegian explorer, Fridtjof Nansen, intentionally trapped his ship, Fram, in Arctic sea-ice in 1893 in an attempt to reach the North Pole. For about three years, Fram drifted with the ice until finally reaching the North Atlantic. Whilst a main motivation for their extraordinary journey was to find the Pole, they also made a number of scientific observations that had a profound influence on the (at the time) young discipline of oceanography.

Scientists led by the Norwegian Polar Institute (NPI) are now – pretty much on the 120th anniversary of the original expedition – repeating the journey, this time purely in the name of science.  I’m a member of the international team, meaning that the University of Bristol gets to play its part.

View from near the Norwegian Polar Institute, Tromsø, at about
2.30pm in the afternoon! Tromsø is on a small island,
surrounded by beautiful mountains, but has very long, dark winters.

The group I’m working with are investigating the role of newly formed sea-ice and freshwater on the flow of heat and nutrients through Arctic oceans, which plays a key role in regulating climate both locally and on a global scale.  The sea-ice in the Arctic is diminishing at an alarming rate, with between 9.4 and 13.6% decline per decade in the perennial sea-ice from 1979 to 2012 according to the last Intergovernmental Panel on Climate Change report [1]. If we are to understand how the sea-ice might change in the future, and what impact this might have on other systems, we have to be able to understand the physics of the system today.

My role is to help to chemically analyse the seawater, in order to trace the freshwater input to the oceans.  The amount of freshwater will determine the density of the water, and so will control the degree of stratification or sinking, which will be important for the transport of heat.

In November, I went to visit the Norwegian Polar Institute in Tromsø in the very north of Norway for a pre-cruise workshop.  I got to meet a number of the Norwegian Young Sea-Ice (N-ICE2015) team, and visit Norway – a place I’d never been before as Antarctica is my usual stomping ground! We had two days of learning about the scientific interests of all the group members, and finding our way around some of the high-tech instrumentation that we will have at our disposal. I also got a tour of the ship that N-ICE2015 will use: the R/V Lance. By the end, everyone was keen to set off – although everyone will now have to wait until January…

This blog is written by Cabot Institute member Kate Hendry, Earth Sciences, University of Bristol.

Further information

You can find out more about N-ICE2015 at the project website.

[1] Climate Change 2013: The Physical Science Basis. Working Group 1 Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

Frontiers of Science: Stimulating conversations between scientists

It’s been a fantastic start to the UK-India Frontiers of Science meeting in Khandala, India. The Royal Society organises Frontiers of Science meetings to stimulate conversations between scientists of different disciplines, and between scientists from different countries.
Bringing together people who don’t normally talk to each other is key: you have no idea until to you talk to them that there are other scientists out there who, for example, have developed a method that does exactly what you want to do, but in a different context. Or, equally, would benefit from your analytical method or computational model.
It’s also just plain refreshing to hear about subjects that you don’t study, and how different people tackle problems.

Networks while networking, and motoring on the microscopic level!

Today, there were two sessions: one on statistical models and one on cellular motors. We heard about how to use networks to figure out flavour combinations in cookery (bring on Heston Blumenthal…), and how extraordinary molecules “walk” through cells, carrying cargo around that is essential for our bodies to function. And all the time, my mind was buzzing with ideas and inspiration.
We then had a policy session, based on the use of biotechnology in agriculture, which was a lively discussion with lots of excellent ideas about how we, as scientists, can contribute to the subject and (probably most importantly) to the communication of the relevant science to society.

Waves in water

All of this is going on in the magical surroundings of Khandala, in a hill top retreat just over an hour away from the bustle of Mumbai. After the excitement of the science, we had an opportunity to relax with some traditional Indian music, a form called Jal Tarang meaning “waves in water”, which consists of carefully tuned ceramic bowls of water (tuned according to the amount of water in each bowl), struck with drumsticks to produce a clear, ringing tone, accompanied by Indian drums such as the tabla.

And finally …

Other than having the opportunity to take part in such a wonderful meeting, my other piece of good news this week was that I received a Royal Society research grant to fund a new piece of laboratory equipment, which will mean I can measure a lot more samples than previously.
All-in-all, not a bad few days!
————————————–
This blog has been reproduced with kind permission by the Royal Society.  You can view the original blog on their website.
This blog is written by Cabot Institute member Kate Hendry, School of Earth Sciences, University of Bristol.