Why we’re looking for chemicals in the seabed to help predict climate change

File 20190128 108370 ansjbe.jpg?ixlib=rb 1.1
Alex Fox, Author provided

Hidden in even the clearest waters of the ocean are clues to what’s happening to the seas and the climate on a global scale. Trace amounts of various chemical elements are found throughout the seas and can reveal what’s going on with the biological reactions and physical processes that take place in them.

Researchers have been working for years to understand exactly what these trace elements can tell us about the ocean. This includes how microscopic algae capture carbon from the atmosphere via photosynthesis in a way that produces food for much marine life, and how this carbon sequestration and biological production are changing in response to climate change.

But now scientists have proposed that they may also be able to learn how these systems were affected by climate change long ago by digging deep into the seabed to find the sedimentary record of past trace elements. And understanding the past could be key to working out what will happen in the future.

Trace elements can teach us an amazing amount about the oceans. For example, ocean zinc concentrations strikingly resemble the physical properties of deep waters that move huge quantities of heat and nutrients around the planet via the “ocean conveyor belt”. This remarkable link between zinc and ocean circulation is only just beginning to be understood through high-resolution observations and modelling studies.

Dissolved zinc concentrations in the oceans.
Reiner Schlitzer, data from eGEOTRACES., Author provided

Some trace elements, such as iron, are essential to life, and others, such as barium and neodymium, reveal important information about the biological productivity of algae. Different isotopes of these elements (variants with different atomic masses) can shed light on the types and rates of chemical and biological reactions going on.

Many of these elements are only found in vanishingly small amounts. But over the last few years, an ambitious international project called GEOTRACES has been using cutting-edge technological and analytical methods to sample and analyse trace elements and understand the chemistry of the modern ocean in unprecedented detail. This is providing us with the most complete picture to date of how nutrients and carbon move around the oceans and how they impact biological production.

Carbon factories

Biological production is a tangled web of different processes and cycles. Primary production is the amount of carbon converted into organic matter by algae. Net export production refers to the small fraction of this carbon bound up in organic matter that doesn’t end up being used by the microbes as food and sinks into the deep. An even smaller portion of this carbon will eventually be stored in sediment on the ocean floor.

As well as carbon, these algae capture and store a variety of trace elements in their organic matter. So by using all the chemical information available to us, we can get a complete view of how the algae grow, sink and become buried within the oceans. And by looking at how different metals and isotopes are integrated into ancient layers of sedimentary rock, we can reconstruct these changes through time.

Sampling the seabed.
Micha Rijkenberg, Author provided

This means we can use these sedimentary archives as proxy records of nutrient use and net primary production, or export production, or sinking rates. This should enable us to start answering some of the mysteries of how oceans are affected by climate change, not only in relatively recent Earth history but also in deep time.

For example, as well as enlightening us on active processes within the modern ocean, scientists have analysed what zinc isotopes are in seabed fossils from tens of thousands of years ago, and even in ancient rocks from over half a billion years ago. The hope is that they can use this information to reconstruct a picture of how marine nutrients have changes throughout geological history.

But this work comes with a note of caution. We need to bring our knowledge about modern biogeochemistry together with our understanding of how rocks form and geochemical signals are preserved. This will enable us to be sure that we can make robust interpretations of the proxy records of the prehistoric seabeds.

Collecting the samples.
Micha Rijkenberg, Author provided

How do we go about doing this? In December 2018, scientists from GEOTRACES met with members of another research project, PAGES, who are experts in reconstructing how the Earth has responded to past climate change. One approach we developed is to essentially work backwards.

First we need to ask: what archives (shells, sediment grains, organic matter) are preserved in marine sediments? Then, which of the useful metal and isotope signatures from seawater get locked up in these archives? Can we check – using material from the surface of deep-sea sediments – whether these archives do provide useful and accurate information about oceanic conditions?

The question can also be turned around, allowing us to ask whether there new isotope systems that have yet to be investigated. We want to know if GEOTRACES uncovered interesting patterns in ocean chemistry that could be the start of new proxies. If so, we might be able to use these ocean archives to shed light on
how the uptake of carbon in marine organic matter responds to, and acts as a feedback on, climate in the future.

For example, will a warmer world with more carbon dioxide enhance the growth of algae, which could then absorb more of this excess CO₂ and help to act as a break on man-made carbon emissions? Or will algae productivity decline, trapping less organic matter and spurring on further atmospheric warming into the future? The secrets could all be in the seabed.

————————–
This blog is written by Cabot Institute member Katharine Hendry, Reader in Geochemistry, University of Bristol and Allyson Tessin, Visiting research fellows, University of Leeds.  This article is republished from The Conversation under a Creative Commons license. Read the original article.

Neonicotinoids: Are they killing our bees?



The UK government has announced that whilst it accepts the European Union ban on neonicotinoid pesticides, it 
does not believe that there is enough scientific evidence to support this action.

 In April, the EU banned the use of neonicotinoid pesticides for two years starting in December because of concerns over their effect on bees.  The use of these pesticides will not be allowed on flowering crops that attract bees or by the general public, however winter crops may still be treated. Fifteen countries voted for this ban, with eight voting against it (including the UK and Germany) and four countries abstaining.

Neonicotinoids were originally thought to have less of an impact on the environment and human health than other leading pesticides. They are systemic insecticides, which means they are transported throughout the plant in the vascular system making all tissues toxic to herbivorous insects looking for an easy meal. The most common application in the UK is to treat seeds before they are sown to ensure that even tiny seedlings are protected against pests.

Image by Kath Baldock

The major concern over neonicotinoids is whether nectar and pollen contains levels of pesticide is high enough to cause problems for bees. It has already been shown that they do not contain a lethal dose, however this is not the full story. Bees live in complex social colonies and work together to ensure that there is enough food for developing larvae and the queen. Since neonicotinoids were introduced in the early 1990s bee populations have been in decline and there is a growing feeling of unease that the two may be connected. Scientific research has provided evidence both for and against a possible link leaving governments, farmers, chemical companies environmentalists and beekeepers in an endless debate about whether or not a ban would save our bees.

Several studies on bees have shown that sublethal levels of neonicotinoids disrupt bee behaviour and memory. These chemicals target nicotinic acetylcholine receptors, one of the major ways that signals are sent through the insect central nervous system. Scientists at Newcastle University recently showed that bees exposed to neonicotinoids were less able to form long-term memories associating a smell with a reward, an important behaviour when foraging for pollen and nectar in the wild.

Researchers at the University of Stirling fed bumble bee colonies on pollen and sugar water laced with neonicotinoids for two weeks to simulate field-like exposure to flowering oil seed rape. When the colonies were placed into the field, those that had been fed the pesticides grew more slowly and produced 85% less queens compared with those fed on untreated pollen and nectar. The production of new queens is vital for bee survival because they start new colonies the next year. Studies in other bee species have found that only the largest colonies produce queens, so if neonicotinoids have even a small effect on colony size it may have a devastating effect on queen production.

 

So why does the government argue that there is not enough scientific evidence to support a ban on neonicotinoids?

 
Image by Kath Baldock

In 2012, the Food and Environment Research Agency set up a field trial using bumble bee colonies placed on sites growing either neonicotinoid-treated oil seed rape or untreated seeds. They found no significant difference between the amount of queens produced on each site, although the colonies near neonicotinoid-treated crops grew more slowly. The study also found that the levels of pesticide present in the crops was much lower than previously reported.

I personally think that both laboratory and field studies bring important information to the debate, however neither has the full answer. Whilst more realistic, the government’s field trial suffered from a lack of replication, variation in flowering times and various alternative food sources available to bees. Only 35% of pollen collected by the bees was from the oil seed rape plants, so where oil seed rape comprises the majority of flowering plants available to bees the effect on neonicotinoids may be more pronounced. The laboratory research can control more variables to establish a more clear picture, however the bees in these studies were often given only neonicotinoid-treated pollen and nectar to eat, which clearly is not the case in a rural landscape. Flies and beetles have been shown to avoid neonicotinoids, which could mean that bees would find alternative food sources where possible. This would have a major impact on crop pollination.

We desperately need well-designed field studies looking at the effect of neonicotinoids on bees and the environment in general. Despite an EU moratorium on growing neonicotinoid treated crops, an allowance should be made for scientists to set up controlled field trials to study the effect of these pesticides on bees during the two year ban. It could be our only chance to determine the danger these chemicals pose to vital pollinators and the wider environment.

 

This blog is written by Sarah Jose, Biological Sciences, University of Bristol

Sarah Jose