The Archers’ electric vehicle row shows why rural areas may oppose chargers – but they also have so much to gain

Muse Studio/Shutterstock

Long-running BBC radio soap opera The Archers might conjure images of an idyllic country life, but its storylines frequently highlight real tensions in British society.

The series, set in the fictional village of Ambridge, has been criticised in recent years for storylines which supposedly pander to younger listeners or fail to represent rural life accurately. But the Archers has never shied away from environmental issues, from the escapades of eco-warrior Tom Archer in the late 1990s to more recent episodes about soil health.

Lately, Ambridge has been gripped by a campaign to halt the construction of a new electric vehicle charging station, proposed on a parcel of land being sold by David and Ruth Archer – long-running characters at the centre of the series. This has provoked protests, debates about civic duty and police involvement in the rural idyll.

The placards and slogans of local opponents have fused topics of net zero and the energy transition with anxieties about the future of the countryside. What does this storyline tell us about real rural opposition to such changes?

Charging into trouble

The UK government has pledged to phase out the sale of new petrol and diesel cars by 2030. If electric vehicles (EVs) are to replace them, charging infrastructure must be expanded to help people switch.

By some estimates there are over 35,000 active EV charging ports across the UK. The Department for Transport has pledged 300,000 public chargers by 2030 to stop a patchy network of charging points putting some drivers off buying EVs and allay concerns about their potentially shorter driving range.

An electric vehicle charging point in a quiet, coastal car park.
A public charging point in Shetland, Scotland.
AlanMorris/Shutterstock

Infrastructure built to fulfil national commitments to cut emissions will have important local consequences. The concerns voiced in Ambridge might resonate in rural communities playing host to new construction projects which can bring with them increased traffic, noise and damage to the landscape.

When researching opposition to energy infrastructure for a new book, we learned about Littlehampton in Sussex, a seaside town where residents successfully opposed an on-street EV charging scheme. Residents complained about not being consulted beforehand and argued that charging points, built without off-street parking, would draw drivers from elsewhere who would take spaces from them.

Rural communities have also opposed new renewable energy projects, such as solar farms, for their potential disruption or effect on property values. Many who moved to a rural area to enjoy its natural beauty argue that new infrastructure industrialises the countryside.

Finding community support

In The Archers – like in Littlehampton, Sussex – local opposition to new EV charging stations derives from a feeling that something is happening to residents, rather than with or for them. Some Ambridge residents are suspicious of the shell corporation behind the scheme. In real-life Sussex, residents said that they weren’t properly consulted.

Rural opposition is not inevitable, however. With amenities and services often clustered in bigger towns, rural households must travel further to access them, making them particularly vulnerable to rises in the price of petrol or diesel.

This vulnerability has been exacerbated by dramatic cuts to rural bus routes. An analysis by the Guardian found that one in ten routes were axed in 2022, with 42 routes lost from the west of England alone.

Withdrawing public transport funding cuts off rural communities from essential services and friends and family elsewhere. These same communities could benefit the most from an expanded EV charging network.

A bus shelter beside an empty rural road.
Cuts to public transport funding have hit rural communities particularly hard.
Harry Wedzinga/Shutterstock

Some rural communities aren’t waiting for this to happen and have taken to sharing electric cars to fill the gaps left by lost services instead. For example, new EV clubs are being formed in Wales to give people easier access to shared transport.

These schemes ask people to pay an annual membership fee in return for being able to book a car 48 hours in advance. This is helping people get to GP appointments or job interviews.

But while those living in Greater London might access a charging point every mile on average, this number jumps to one every 16 miles in rural areas.

Plugging the gaps

One reason why rural areas are underserved by EV chargers concerns their cost-effectiveness. In areas where there might be less immediate demand, the upfront investment needed to install a charging point will take longer to pay off.

New subsidies and grants could help install more chargers in more places. But it will be necessary to work with communities to prevent conflict.

Despite the uproar in Ambridge, rural areas have a lot to gain from charging infrastructure. Residents will have differing views which planners must address.


 

This blog is written by Cabot Institute for the Environment members Dr Ed Atkins, Senior Lecturer, School of Geographical Sciences and Dr Ros Death, Lecturer in Physical Geography, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Low-technology: why sustainability doesn’t have to depend on high-tech solutions

 

Encouraging recycling is part of the low-tech approach to life.
PxHere

It’s a popular idea that the path to sustainability lies in high-tech solutions. By making everyday items like cars electric, and installing smart systems to monitor and reduce energy use, it seems we’ll still be able to enjoy the comforts to which we’ve become accustomed while doing our bit for the planet – a state known as “green growth”.

But the risks of this approach are becoming ever clearer. Many modern technologies use materials like copper, cobalt, lithium and rare earth elements. These metals are in devices like cell phones, televisions and motors. Not only is their supply finite, but large amounts of energy are required for their extraction and processing – producing significant emissions.

Plus, many of these devices are inherently difficult to recycle. This is because to make them, complex mixes of materials are created, often in very small quantities. It’s very expensive to collect and separate them for recycling.

Among others, these limitations have led some to question the high-tech direction our society is taking – and to develop a burgeoning interest in low-tech solutions. These solutions prioritise simplicity and durability, local manufacture, as well as traditional or ancient techniques.

What’s more, low-tech solutions often focus on conviviality. This involves encouraging social connections, for example through communal music or dance, rather than fostering the hyper-individualism encouraged by resource-hungry digital devices.

“Low-tech” does not mean a return to medieval ways of living. But it does demand more discernment in our choice of technologies – and consideration of their disadvantages.

Origins of low-tech

Critics have proclaimed the downsides of excessive technology for centuries, from 19th century Luddites to 20th century writers like Jacques Ellul and Lewis Mumford. But it was the western energy crisis in the 1970s that really popularised these ideas.

A person rides a cargo bike on a city road
Low-tech emphasises efficiency and simplicity.
CityHarvestNY/Wikimedia

British economist E.F. Schumacher’s 1973 book Small is Beautiful presented a powerful critique of modern technology and its depletion of resources like fossil fuels. Instead, Schumacher advocated for simplicity: locally affordable, efficient technologies (which he termed “intermediate” technologies), like small hydroelectricity devices used by rural communities.

Schumacher’s mantle has been taken up by a growing movement calling itself “low-tech”. Belgian writer Kris de Dekker’s online Low-Tech Magazine has been cataloguing low-tech solutions, such as windmills that use friction to heat buildings, since 2007. In particular, the magazine explores obsolete technologies that could still contribute to a sustainable society: like fruit walls used in the 1600s to create local, warm microclimates for growing Mediterranean fruits.

In the US, architect and academic Julia Watson’s book Lo-TEK (where TEK stands for Traditional Ecological Knowledge) explores traditional technologies from using reeds as building materials to creating wetlands for wastewater treatment.

And in France, engineer Philippe Bihouix’s realisation of technology’s drain on resources led to his prize-winning book The Age of Low Tech. First published in 2014, it describes what life in a low-tech world might be like, including radically cutting consumption.

An infographic showing principles of low-tech
Principles of low-tech include efficiency, durability and accessibility.
Arthur Keller and Emilien Bournigal/Wikimedia

Bihouix presents seven “commandments” of the low-tech movement. Among others, these cover the need to balance a technology’s performance with its environmental impact, being cautious of automation (especially where employment is replaced by increased energy use), and reducing our demands on nature.

But the first principle of low-tech is its emphasis on sobriety: avoiding excessive or frivolous consumption, and being satisfied by less beautiful models with lower performance. As Bihouix writes:

A reduction in consumption could make it quickly possible to rediscover the many simple, poetic, philosophical joys of a revitalised natural world … while the reduction in stress and working time would make it possible to develop many cultural or leisure activities such as shows, theatre, music, gardening or yoga.

Ancient solutions

Crucially, we can apply low-tech principles to our daily lives now. For example, we can easily reduce energy demand from heating by using warm clothes and blankets. Food, if it’s packaged at all, can be bought and stored in reusable, recyclable packaging like glass.

Architecture offers multiple opportunities for low-tech approaches, especially if we learn from history. Using ancient windcatcher towers designed to allow external cool air to flow through rooms lets buildings be cooled using much less energy than air conditioning. And storing heat in stones, used by the Romans for underfloor heating, is being considered today as a means of dealing with the intermittency of renewable energy.

Windcatcher towers against blue sky
Windcatchers in Yazd, Iran, cool buildings using wind.
Ms96/Wikimedia

Design and manufacture for sustainability emphasises reducing waste, often through avoiding mixing and contaminating materials. Simple materials like plain carbon steels, joined using removable fasteners, are easy to recycle and locally repair. Buses, trains and farm machinery using these steels, for example, can be much more readily refurbished or recycled than modern cars full of microelectronics and manufactured from sophisticated alloys.

In some places, the principles of low tech are already influencing urban design and industrial policy. Examples include “15-minute cities” where shops and other amenities are easily accessible to residents, using cargo bikes instead of cars or vans for deliveries, and encouraging repairable products through right-to-repair legislation in the EU and US.

Meanwhile, in Japan, there’s emerging interest in the reuse and recycling practices of the Edo period. From 1603 to 1867, the country was effectively closed to the outside world, with very limited access to raw materials. Therefore, extensive reuse and repair – even of things such as broken pottery or utensils with holes that we’d now regard as waste – became a way of life. Specialist repairers would mend or recycle everything from paper lanterns and books to shoes, pans, umbrellas and candles.

By following examples like these, we can make discerning technological choices a central part of our search for sustainable ways of living.The Conversation

————————-

This blog is written by Cabot Institute for the Environment member Professor Chris McMahon, Senior Research Fellow in Engineering, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Cooking with electricity in Nepal

PhD student Will Clements tells us how switching from cooking with biomass to cooking with electricity is saving time and saving lives in Nepal.

Sustainable Development Goal 7 calls for affordable reliable access to modern energy. However, around 3 billion people still use biomass for cooking. Smoky kitchens – indoor air pollution due to biomass cooking emissions – account for the premature deaths of around 4 million people every year. The burden of firewood collection almost always falls on women and girls, who must often travel long distances exposed to the risk of physical and sexual violence. The gravity of the problem is clear.

Wood stove in a household in Simli, a remote rural community in western Nepal. Credit: KAPEG/PEEDA

Electric cooking is a safe, clean alternative which reduces greenhouse gas emissions and frees up time so that women and girls can work, study and spend more time doing what they want.

In Nepal, many off-grid rural communities are powered by micro-hydropower (MHP) mini-grids, which are capable of providing electricity to hundreds or thousands of households, but often operate close to full capacity at peak times and are subject to brownouts and blackouts.

A project to investigate electric cooking in Nepali mini-grids was implemented in the summer of 2018 by a collaboration between Kathmandu Alternative Power and Energy Group (KAPEG), People Energy and Environment Development Association (PEEDA) and the University of Bristol in a rural village called Simli in Western Nepal. Data on what, when and how ten families cooked was recorded for a month, at first with their wood-burning stoves, and then with electric hobs after they had received training on how to use them.

A typical MHP plant in the remote village of Ektappa, Ilam in Nepal. Credit: Sam Williamson

When cooked with firewood, a typical meal of dal and rice required an average of 12 kWh of energy for five people, which is around the energy consumption of a typical kettle if used continuously for six hours! On the other hand, when cooked on the induction hobs this figure was just 0.5 kWh, around a third of the energy consumed when you have a hot shower for 10 minutes.

However, even at this high efficiency, there was insufficient spare power in the mini-grid for all the participants to cook at the same time, so they experienced power cuts which led to undercooked food and hungry families.

Many participants reverted to their wood stoves when the electricity supply failed them, and this with only ten of 450 households in the village trying to cook with electricity. The project highlighted the key challenge – how can hundreds of families cook with electricity on mini-grids with limited power?

In April 2019, the £39.8 million DFID funded Modern Energy Cooking Services (MECS) programme launched. The MECS Challenge Fund supported the Nepal and Bristol collaboration to investigate off-grid MHP cooking in Nepal further.

A study participant using a pressure cooker on an induction hob. Credit: KAPEG/PEEDA

A study participant using a pressure cooker on an induction hob. Credit: KAPEG/PEEDA
The project expands on the previous project by refining data collection methods to obtain high quality data on both Nepali cooking practices and MHP behaviour, understanding and assessing the potential and effect of electric cooking on Nepali MHP mini-grids, and using the collected data to investigate how batteries could be used to enable the cooking load to be averaged throughout the day so that many more families can cook with electricity on limited power grids.

MHP differs greatly from solar PV and wind power in that it produces constant power throughout the day and night, providing an unexplored prospect for electric cooking. Furthermore, this 24/7 nature of MHP means that there is a lot of unused energy generated during the night and off-peak periods which could be used for cooking, if it could be stored. Therefore, battery-powered cooking is at the forefront of this project.

Testing induction hobs in the MHP powerhouse. Credit: KAPEG/PEEDA

Collected data will be used to facilitate a design methodology for a battery electric cooking system for future projects, evaluating size, location and distribution of storage, as well as required changes to the mini-grid infrastructure.

Furthermore, a battery cooking laboratory is being set up in the PEEDA office in Kathmandu to investigate the technical challenges of cooking Nepali meals from batteries.

The baseline phase – where participants’ usual cooking is recorded for two weeks – is already complete and preparations for the transition phase are underway where electric stoves are given to participants and they are trained on how to cook with them.

We will be heading to Kathmandu to help with the preparations, and the team will shortly begin the next phase in Tari, Solukhumbu, Eastern Nepal.

The project will continue the journey towards enabling widespread adoption of electric cooking in Nepali MHP mini-grids, the wider Nepali national grid and grids of all sizes across the world.

————————————-
This blog is written by Will Clements and has been republished from the Faculty of Engineering blog. View the original blog. Will studied Engineering Design at Bristol University and, after volunteering with Balloon Ventures as part of the International Citizen Service, returned for a PhD with the Electrical Energy Management Research Group supervised by Caboteer Dr Sam Williamson. Will is working to enable widespread adoption of electric cooking in developing communities, focusing on mini-grids in Nepal.

The opinions expressed in this blog are those of the author and do not necessarily reflect the official policy or position of UKAid.

Will Clements

 

Uncomfortable home truths: Why Britain urgently needs a low carbon heat strategy



A new report backed by MPs and launched by Minister for Climate Change Lord Duncan on 15 October 2019, calls for an urgent Green Heat Roadmap by 2020 to scale low carbon heating technologies and help Britain’s homeowners access the advice they need to take smarter greener choices on heating their homes.  The year-long study by UK think-tank Policy Connect warns that the UK will miss its 2050 net-zero climate target “unless radical changes in housing policy, energy policy and climate policy are prioritised”. Dr Colin Nolden was at the launch on behalf of the Cabot Institute for the Environment and blogs here on the most interesting highlights of the report and questions raised.

———————————-

Policy Connect had invited a range of industry, policy, academic and civil society representatives to the launch of their Uncomfortable Home Truths report. The keynote, no less than Lord Duncan of Springbank, Minister for Climate Change, and the high-level panel consisting of Maxine Frerk, Grid Edge Policy (Chair), Alan Brown MP, House of Commons (SNP), Dr Alan Whitehead MP, House of Commons (Labour), Dhara Vyas, Citizens Advice, Adam Turk, BAXI Heating (sponsor) and Mike Foster, EUA (Energy & Utilities Alliance), (sponsor), had been briefed to answer tough questions from the crowd given the UK’s poor track record in the area of heat and home decarbonisation.

The event started with an introduction by Jonathan Shaw, Chief Executive of Policy Connect, who introduced the panel and officially launched the report. Uncomfortable Home Truths is the third report of the Future Gas Series, the first two of which focused on low-carbon gas options. This last report of the series shifts the focus from particular technologies and vectors towards heating, households and consumers. Jonathan subsequently introduced the keynote speaker Lord Duncan of Springbank, Minister for Climate Change.

Lord Duncan supported the publication of this report as timely and relevant especially in relation to the heat policy roadmap that government intends to publish in 2020. He stressed the importance of a cultural shift which needs to take place to start addressing the issue of heat at household and consumer level. He was adamant that the government was aligning its policies and strategies with its zero-carbon target according to the Committee on Climate Change and guided by science and policy. In this context he bemoaned the drive by some country representatives to put into question the targets of the Paris Agreement on Climate Change which he had witnessed as the UK’s key representative at the run-up to COP25 in Chile. The 2020 roadmap will report on the decisions which will need to be taken in homes and in technology networks, ranging from heat pumps to hydrogen and low-carbon electricity to support their decarbonisation. It requires cross-party support while depending on more research and learning from successful examples in other European countries.

Although Lord Duncan suggested that ‘it’s easier to decarbonise a power plant than a terraced house’, he told the audience to take encouragement from the fuel shift from coal towards gas starting half a century ago. But in this context he once again stressed the cultural shift which needs to go hand-in-hand with government commitment and technological progression, using the example of TV-chefs shunning electric hobs as an indication of our cultural affinity for gas. As long as heating and cooking are framed around fossil fuels, there is little space in the cultural imagination to encourage a shift towards more sustainable energy sources.

“The example of TV-chefs shunning electric hobs is an indication of our cultural affinity for gas”. Image source.

Among the questions following the keynote, one quizzed Lord Duncan about the process and politics of outsourcing carbon emissions. Lord Duncan stressed his support of Border Carbon Adjustments compliant with EU and global carbon policy ‘in lock-step with our partners’ to ensure that carbon emissions are not simply exported, which appears to support the carbon club concept. Another question targeted the UK’s favourable regulatory environment that has been created around gas, which has resulted in the EU’s lowest gas prices, while electricity prices are highest in Europe, due, among other things, to Climate Change Levies, which do not apply to gas, increasing by 46% on 1 April 2019. Lord Duncan pointed towards the ongoing review of policies ahead of the publication of the 2020 heat roadmap which will hopefully take a more vector- and technology-neutral approach. A subsequent rebuttal by a Committee on Climate Change (CCC) representative stressed the CCCs recommendation to balance policy cost between gas and electricity as on average only 20,000 heat pumps are sold in the UK every year (compared to 7 times as many in Sweden) yet the Renewable Heat Incentive is about to be terminated without an adequate replacement to support the diffusion of low-carbon electric heating technologies.

Lord Duncan stressed the need to create a simple ‘road’ which does not fall with changes in policy and once again emphasized the need for a cross-party road to support the creation of a low-carbon heating pathway. A UKERC representative asked about the government approach to real-world data as opposed to modelling exercises and their support for collaborative research projects as both modelling and competitive approaches have failed, especially in relation to Carbon Capture and Storage. Lord Duncan responded that the UK is already collaborating with Denmark and Norway on CCS and that more money is being invested into scalable and replicable demonstrators.

Following an admission wrapped in metaphors that a change in government might be around the corner and that roadmaps need to outlast such changes, Lord Duncan departed to make way for Joanna Furtado, lead author of the Policy Connect report. She gave a very concise overview of the main findings and recommendations in the report:

  • The 80% 2050 carbon emission reduction target relative to 1990 already required over 20,000 households to switch to low-carbon heating every week between 2025 and 2050. The zero-carbon target requires even more rapid decarbonisation yet the most successful policy constellations to date have only succeeded in encouraging 2,000 households to switch to low-carbon heating every week.
  • This emphasizes the importance of households and citizens but many barriers to their engagement persist such as privacy issues, disruption associated with implementation, uncertainly, low priority, lack of awareness and confusion around best approaches, opportunities, regulations and support.
  • Despite the focus on households, large-scale rollout also requires the development of supply chains so at-scale demonstrations need to go hand-in-hand with protection and engagement of households by increasing the visibility of successful approaches. Community-led and local approaches have an important role to play but better monitoring is required to differentiate between more and less successful approaches.
  • Protection needs to be changed to facilitate the inclusion of innovative technologies which are rarely covered while installers need to be trained to build confidence in their installations.
  • Regional intermediaries, such as those in Scotland and Wales, need to be established to coordinate these efforts locally while at national level a central delivery body such as the one established for the 2020 Olympics in London needs to coordinate the actions of the regional intermediaries.
  • Ultimately, social aspects are critical to the delivery of low-carbon heat, ranging from the central delivery body through regional intermediaries down to households and citizens.

 

Image source.

Chaired by Maxine Frerk of Grid Edge Policy, the panel discussion kicked off with Alan Brown who stressed the urgency of the heating decarbonisation issue as encapsulated by Greta Thunberg and Extinction Rebellion and the need to operationalize the climate emergency into actions. He called for innovation in the gas grid in line with cautions Health and Safety Regulation alterations. Costs also need to be socialised to ensure that the low-carbon transition does not increase fuel poverty. His final point stressed the need reorganize government to make climate change and decarbonisation a number 1 priority.

Dr Alan Whitehead, who has been involved with the APPCCG from the beginning, emphasized how discussions around heat decarbonisation have progressed significantly in recent years and especially since the publication of the first report of this series. He suggested that the newest report writes the government roadmap for them. In relation to the wider context of decarbonising heat, Alan Whitehead encouraged a mainstreaming of heating literacy similar to the growing awareness of plastic. He also stressed how far the UK is lagging behind compared to other countries and this will be reflected in upcoming policies and roadmaps. As his final point Alan Whitehead cautioned that the low-intrusion option of gas-boiler upgrades from biomethane to hydrogen ignores the fact that greater change is necessary for the achievement of the zero-carbon target although he conceded that customer acceptance of gas engineer intervention appears to be high.

Dhara Vyas presented Citizens Advice perspective by stressing the importance of the citizen-consumer focus. Their research has revealed a lack of understanding among landlords and tenants of the rules and regulations that govern heat. She suggested that engagement with the public from the outset is essential to protect consumers as people are not sufficiently engaged with heating and energy in general. Even for experts it is very difficult to navigate all aspects of energy due to the high transaction costs associated with engagement to enable a transition on the scale required by government targets.

Finally, representatives of the two sponsors BAXI and the Energy & Utility Alliance made a rallying call for the transition of the gas grid towards hydrogen. Adam Turk emphasized the need to legislate and innovate appropriately to ensure that the 84% of households that are connected to the gas grid can receive upgrades to their boilers to make them hydrogen ready. Similarly, Mike Foster suggested that such an upgrade now takes less than 1 hour and that the gas industry already engages around 2 million consumers a year. Both suggested that the gas industry is well placed to put consumers at the heart of action. They were supported by several members of the audience who pointed towards the 150,000 trained gas service engineers and the ongoing distribution infrastructure upgrades towards plastic piping which facilitate a transition towards hydrogen. Other members of the audience, on the other hand, placed more emphasis on energy efficiency and the question of trust.

Sponsorship of the Institution of Gas Engineers & Managers, EUC (Energy & Utility Alliance) and BAXI Heating was evident in the title Future Gas Series and support for hydrogen and ‘minimal homeowner disruption’ boiler conversion to support this vector shift among members of the audience was evident. Nevertheless, several panel members, members of the audience and, above all, Lord Duncan of Springbank, stressed the need to consider a wider range of options to achieve the zero-carbon target. Electrification and heat pumps in particular were the most prominent among these options. Energy efficiency and reductions in energy demand, as is usual at such events, barely received a mention. I guess it’s difficult to cut a ribbon when there’s less of something as opposed to something new and shiny?

———————————————-
This blog is written by Dr Colin Nolden, Vice-Chancellor’s Fellow, University of Bristol Law School and Cabot Institute for the Environment.

Colin Nolden

Indoor air pollution: The ‘killer in the kitchen’

Image credit Clean Cooking Alliance.

Approximately 3 billion people around the world rely on biomass fuels such as wood, charcoal and animal dung which they burn on open fires and using inefficient stoves to meet their daily cooking needs.

Relying on these types of fuels and cooking technologies is a major contributor to indoor air pollution and has serious negative health impacts, including acute respiratory illnesses, pneumonia, strokes, cataracts, heart disease and cancer.

The World Health Organization estimates that indoor air pollution causes nearly 4 million premature deaths annually worldwide – more than the deaths caused by malaria and tuberculosis combined. This led the World Health Organization to label household air pollution “The Killer in the Kitchen”.

As illustrated on the map below, most deaths from indoor air pollution occur in low- and middle-income countries across Africa and Asia. Women and children are disproportionately exposed to the risks of indoor air pollution as they typically spend the most time cooking.

Number of deaths attributable to indoor air pollution in 2017. Image credit Our World in Data.
Replacing open fires and inefficient stoves with modern, cleaner solutions is essential to reduce indoor air pollution and personal exposure to emissions. However, research suggests that only significant reductions in exposure can tangibly reduce negative health impacts.
The Clean Cooking Alliance, established in 2010, has focused mainly on the dissemination of improved cookstoves (ICS) – wood-burning or charcoal stoves designed to be much more efficient than more traditional models – with some success.
Randomised control trials of sole use of ICS have shown reductions in pneumonia and the duration of respiratory infections in children. However, other studies, including some funded by the Alliance, have shown that ICS have not performed well enough in the field to sufficiently reduce indoor air pollution to lessen health risks such as pneumonia and heart disease.
Alternative fuels such as liquid petroleum gas (LPG), biogas and ethanol present other options for cooking with LPG already prevalent in many countries across the world.
LPG is clean-burning and produces much less carbon dioxide than burning biomass but is still a fossil fuel.
Biogas is a clean, renewable fuel made from organic waste, and ethanol is a clean biofuel made from a variety of feedstocks.
Image credit PEEDA

Electric cooking, once seen as a pipe dream for developing countries, is becoming more feasible and affordable due to improvements and reductions in costs of technologies like solar panels and batteries.

Improved cookstoves, alternative fuels and electric cooking have been gaining traction but there is still a long way to go to solving the deadly problem of indoor air pollution.
———————-
This blog is written by Cabot Institute member Peter Thomas, Faculty of Engineering, University of Bristol. Peter’s research focusses on access to energy in humanitarian relief. This blog is co-written by Will Clements, Faculty of Engineering.