Migration, mobilities and the ecological context

In this special blog series, Migration Mobilities Bristol (MMB) and the Cabot Institute for the Environment bring together researchers from across the University of Bristol to explore connections between movement and the environment from a multi-disciplinary perspective. Their diverse approaches highlight the importance of developing frames that incorporate both migration and environment, and in so doing benefit our understandings of both. 

————————————-

Migration can make you happy. When I see the first swifts arrive in the spring, I stop in my tracks and smile broadly at all and everyone. I have to restrain myself from telling people walking down the street that ‘they’ are back. Swifts are one of the wonders of the world – they make Concorde look clunky, they hurtle down streets in towns screaming wildly at dusk seemingly just for the fun of it, and scientists have calculated that the distance they fly over their lifetime is equivalent to flying to the moon and back seven times!

Dahlia (Bishop of Llandaff). Image credit: Jane Memmott

Migratory species like swifts have two homes and they are generally well regarded in both places. It’s a bit more touch and go whether alien species are welcome or not, and highly context dependent. For example, we deliberately introduce species from all around the world into our gardens without qualm – looking out the window onto my front garden, I’ve got honey bush and pineapple lilies from South Africa, Dahlias from Mexico, a Hebe from New Zealand, devil’s tobacco from Chile and foxgloves from seed collected down the road! In contrast, my local nature reserves are doing their best to remove Rhododendron, Cotoneaster and Himalayan balsam.

Context really is key here. Thus, gardens are grown for colour, relaxation, fruit, vegetables, and art (and I consider gardening as much of an art as a science) and they are highly managed and artificial habitats. In fact, they are increasingly considered as outdoor rooms in the media, and no one worries what countries their botanical furniture is from. In contrast, nature reserves are usually more natural settings where we want to capture natural patterns and processes, so there is an expectation that the species present should be native. And there is good evidence that while most alien species are harmless, some species (approximately 1%) can be very damaging to the environment and the economy.

Honey bush leaves (Melianthus major). Image credit: Jane Memmott

Migration is about mobility, and mobility is a key part of the scientific process. Thus, universities are ecosystems which provide intellectual homes to academics from all over the world. My own department is home to scientists from Africa, Germany, Brazil, Switzerland, Brazil, Italy and China and those are just the people I’ve bumped into over the last few days. COVID has put a bit of a spanner in the works on the mobility front, but mobility is so key to business that academics have quickly found other ways to be mobile. For example, in my own research group, we have been running a large project in a remote part of Nepal entirely by Zoom for the last two years. But, by dint of the internet and some incredible UK staff and amazing project partners in Nepal, we have trained field staff in ten remote villages in the Himalayas to collect diet data for both bees and villagers, using protocols that would have been very new to them. The data is then uploaded by the field staff to the internet and arrives on the computers the other side of the world as if by magic.

Mobility is such a large part of a scientist’s life that when it goes wrong it can feel shocking. I’ve had two encounters with mobility of scientists being blocked, one involving myself, another a visiting scientist. Mine was, I suspect, a straightforward random immigration check, but it did leave me rather shaken. I was travelling to Canada for the first time and got taken out of the queue and then grilled for 30 minutes on the nature of my visit. I was giving a plenary talk at a conference and had fortunately remembered to print out my letter of invitation. Unfortunately, I hadn’t actually read it for six months and so I probably did sound a bit suspicious. They did eventually let me in and it was an excellent trip thereafter. The second time was when a restoration ecologist from Latin America, who was visiting my research group for six months, went to Spain with his family for a weekend and upon return his whole family was issued with deportation papers. There is something deeply shocking about seeing the hostile environment process in action, especially when mobility is simply part of normal academic interchange. After some high-level work by an international lawyer this too was fixed. Restoration ecology is much more of a long-term process, but the restoration of mobility was much faster in this instance, if a lot more stressful.

Swift (Apus apus). Image credit: Wikimedia Commons.

Migration and mobility are everyday events in the environment. They can be natural such as the return of swifts each year, or they can be assisted such as the reintroduction programmes for species that have become extinct in the UK. One of the biggest reintroduction success stories is the red kite, a bird that you are almost guaranteed to see now if you drive down the M4 motorway or look out of the train window from Didcot to London. These are big and very beautiful predatory birds – imagine a paprika coloured swallow with a 6ft wingspan! My last few Saturdays have been spent driving from Bristol to a hospital in Hampshire to visit a sick relative and one of the things that has made this less stressful is counting the red kites along the motorway. Last Saturday was a 12-kite day, my highest count yet.

To end, migration, mobility and the environment are inextricably linked. There is both natural and human assisted movement of species in the environment. Species can be both welcome and unwelcome depending on the context. It’s complicated, but it’s the everyday bread and butter of ecologists around the world. With alien plants bringing colour and bizazz to our gardens and swifts bringing happiness as they return to their second homes in the UK, there is a lot to like about migration and mobility in the environment.

—————————-

This blog is written by Cabot Institute for the Environment member, Jane Memmott, Professor of Community Ecology in the School of Biological Sciences, University of Bristol. Her research interests include pollination ecology, invasion ecology, biological control and restoration ecology. In each case she considers how ecological networks can be used as a tool to answer environmental questions.

Professor Jane Memmott

Looking back over a decade of Urban Pollinating in Bristol

Bees on Teasel
Two bumble bees on Teasel. Credit: crabchick

As the UK prepares to host the UN Climate Change Conference COP26 (31 October – 12 November) and the UN Convention on Biological Diversity COP15 takes place online (11-15 October), I have been looking back over a decade of urban pollinating in Bristol.

One of the four COP26 goals is ‘adapt to protect communities and natural habitats’ which includes Nature Based Solutions (NBS). These are answers to global environmental challenges which are created or inspired by natural processes based on or utilising the functions of nature. For this purpose, the Urban Pollinator Project established first here in Bristol, demonstrates perfectly how natural resolutions can benefit our ecosystems on a local, national, and global scale.

Urban Pollinators 

Before 2011 an extraordinarily little amount was known about the ecology of urban pollinators in the UK. Despite pollinators maintaining a vital role in protecting our biodiversity and upholding crucial ecosystems, their role in our ever-expanding cityscapes had yet to be examined.

Only a few plants are able to self-pollinate, and as a result they are reliant on insects, birds, bees, wasps, wind, and water to keep the cogs of pollination turning. Yet, since the 1930s 97% of wildflower meadows, home to many the many species of pollinators, have been lost. As a result of this drastic loss of habitat, a recent report found that a quarter of known bee species have not been sighted  since the 1990s. Certainly, an increase in urbanisation and expansion of cities and towns into wilder areas has contributed to such a dramatic decline. And so, the question was posed – how can we make pollinating insects more resilient and adapt to our increasingly urban landscapes?

In 2011 Dr Katherine Baldock, a researcher at the University of Bristol, set out to answer these questions. Leading teams from the University of Reading, Leeds, Edinburgh, and Bristol they embarked on a four-year nationwide initiative researching insect pollinators in urban habitats in the first study of its kind – The Urban Pollinator Project.

Findings 

In Bristol, university researchers from the project examined the introduction of wildflower meadows alongside the M32 in July and August 2011. Over half of the species on Bristol’s Biodiversity Action Plan Priority Species List are in fact pollinators, and so not only was the Urban pollinators research unique, but vital to the future of our city’s ecology.

The findings from the study were able to report no significant difference between an abundance of pollinators and rare species in these urban wildflower meadows when compared with farms, wild areas, and nature reserves. They were also able to locate “hot spots” of pollinator diversity in cities and most importantly they were able to provide practical advice to the government, wildlife organisations, city councils and local individuals as to how to increase and improve pollinator biodiversity in urban habitats. (report)

In 2014, researchers from the Urban Pollinators Project went on to work alongside the Department for Environment, Food and Rural Affairs (Defra) using their findings to provide practical advice to the UK as part of the National Pollinator strategy, using Bristol as an example of where urban pollinating strategies had already been implemented.

Local impact 

Locally, the team of urban pollinators have left a big impression on the Bristol community. The research conducted by the urban pollinators has gone on to have a significant impact on local wildlife trusts, businesses, individuals, and policies, influencing and advising on many successful conservation initiatives across the city.

At the University of Bristol, students in 2012 and 2013 planted wildflower meadows across the campus, creating a 30 square metre pollinating zone which in addition to its ecological benefits, looked great too. Many other organisations followed suit and urban wildlife zones cropped up across Bristol localities making room for pollinating insects and raising awareness for their protection throughout different communities.

In 2014, the Get Bristol Buzzing initiative was formed in yet another first of its kind. In a partnership between Avon Wildlife Trust, Bee Bristol, Bristol City Council, Bristol Friends of the Earth, Buglife, South Gloucestershire Council and the University of West England they all united, dedicated and determined to protect and increase pollinating habitat across Bristol. Similarly, they committed themselves to raising awareness for the importance of insect pollinators and spread the word around local communities, organisations, and businesses. (report)

In 2015 the University of Bristol led “The Greater Bristol Pollinator strategy” which in 2017 was able to report an increase in pollinators in the Greater Bristol area.

Global impact

The decline in pollinating insects is occurring globally, and at a rapid rate. To help to protect global biodiversity the blueprint established in Bristol could certainly provide a nature-based solution in the face of future global environmental challenges.

Today the impact of pollinators is no longer just being investigated in urban environments across the UK. Current project-lead and original member of the Urban Pollinators Project Professor Jane Memmott has recently been examining the role of pollinators in protecting food chains in Nepal. Her dedication to improving ecological networks and pollinating systems has most recently led her to a pioneering discovery that pollinating animals can improve nutrients in food in developing countries.

The project today

This year, continuing their excellent work, Professor Jane Memmott and the Urban Pollinator Project discovered that urban gardens are vital for protecting pollinating insects. Published in the Journal of Ecology, this research found that city gardens account for an impressive 85% of nectar produced in Urban areas generating the most nectar per unit area of land. With 29% of land in cities made up of domestic gardens, it truly is vital that we seek to cultivate thriving urban environments to protect our pollinating ecosystems.

Thanks to these dedicated ecologists it has been a remarkable decade for the Bristol bees, hopefully the next decade will be even better.

So, what can you do to turn your garden into a pollinating haven?

(1) Plant for our pollinators:

Bees, wasps, butterflies, and other pollinating insects love nectar and pollen rich flowers and trees. Try filling your garden, allotment, porch, windowsill, or any available space with the flowers they love!

(2) Leave areas to go wild:

Save yourself from gardening and allow plants to grow freely, the wilder the area the more pollinators it will attract.

(3) Ditch pesticides:

Many pesticides can be harmful if not kill pollinating insects. Abandoning pesticides will increase the chances of making your area a pollinating zone!

(4) Mow your lawn less:

Research published in the Biological Conservation Journal found that by mowing your lawn once every two weeks instead of one increases the number of bees in that area by a huge 30%.

(5) Make a bee house:

Make a bee house of bamboo sticks to give your local bees somewhere to lay their eggs and protect themselves from harsh weather conditions.

—————————-
This blog is written by Lois Barton, Cabot Institute for the Environment Global Environmental Challenges Master’s student and temporary Comms Assistant. Lois’s research explores the role of the arts in ecological movements in Chile, specifically surrounding how visual culture increases visibility for environmental causes.

 

Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

Bees and butterflies are under threat from urbanisation – here’s how city-dwellers can help

File 20190115 152977 13ovnf5.jpg?ixlib=rb 1.1
All a-flutter.
Shutterstock.

Pollinators such as bees, hoverflies and butterflies, are responsible for the reproduction of many flowering plants and help to produce more than three quarters of the world’s crop species. Globally, the value of the services provided by pollinators is estimated at between US$235 billion and US$577 billion.

It’s alarming, then, that pollinators are under threat from factors including more intense farming, climate change, disease and changing land use, such as urbanisation. Yet recent studies have suggested that urban areas could actually be beneficial, at least for some pollinators, as higher numbers of bee species have been recorded in UK towns and cities, compared with neighbouring farmland.

To find out which parts of towns and cities are better for bees and other pollinators, our research team carried out fieldwork in nine different types of land in four UK cities: Bristol, Reading, Leeds and Edinburgh.

An easy win

Urban areas are a complex mosaic of different land uses and habitats. We surveyed pollinators in allotments (also known as community gardens), cemeteries and churchyards, residential gardens, public parks, other green spaces (such as playing fields), nature reserves, road verges, pavements and man-made surfaces such as car parks or industrial estates.

Perfect for pollinators.
Shutterstock.

Our results suggest that allotments are good places for bees and other pollinating insects, and that creating more allotments will benefit the pollinators in towns and cities. Allotments are beneficial for human health and well-being, and also help boost local food production.

In the UK, there are waiting lists for allotments in many areas, so local authorities and urban planners need to recognise that creating more allotment sites is a winning move, which will benefit people, pollinators and sustainable food production.

Good tips for green thumbs

We also recorded high numbers of pollinating insects in gardens. Residential gardens made up between a quarter and a third of the total area of the four cities we sampled, so they’re really a crucial habitat for bees and other pollinators in cities. That’s why urban planners and developers need to create new housing developments with gardens.

But it’s not just the quantity of gardens that matters, it’s the quality, too. And there’s a lot that residents can do to ensure their gardens provide a good environment for pollinators.

Rather than paving, decking and neatly mown lawns, gardeners need to be planting flowers, shrubs and bushes that are good for pollinators. Choose plants that have plenty of pollen and nectar that is accessible to pollinators, and aim to have flowers throughout the year to provide a constant supply of food. Our research suggests that borage and lavender are particularly attractive for pollinators.

Now that’s a happy bee.
Shutterstock.

Often plants and seeds in garden centres are labelled with pollinator logos to help gardeners choose suitable varieties – although a recent study found that that ornamental plants on sale can contain pesticides that are harmful to pollinators, so gardeners should check this with retailers before buying.
Weeds are important too; our results suggest that dandelions, buttercups and brambles are important flowers for pollinators. So create more space for pollinators by mowing less often to allow flowers to grow, and leaving weedy corners, since undisturbed areas make good nesting sites.

An urban refuge

Parks, road verges and other green spaces make up around a third of cities, however our study found that they contain far fewer pollinators than gardens. Our results suggest that increasing the numbers of flowers in these areas, potentially by mowing less often, could have a real benefit for pollinators (and save money). There are already several initiatives underway to encourage local authorities to mow less often.

Roundhay Park in Leeds: not a flower in sight.
Shutterstock.

Ensuring there are healthy populations of pollinators will benefit the native plants and ecosystems in urban areas, as well as anyone who is growing food in their garden or allotment. Towns and cities could act as important refuges for pollinators in the wider landscape, especially since agricultural areas can be limited in terms of the habitat they provide.

It’s crucial for local authorities, urban planners, gardeners and land managers to do their bit to improve the way towns and cities are managed for pollinators. National pollinator strategies already exist for several countries, and local pollinator strategies and action plans are helping to bring together the key stakeholders in cities. Wider adoption of this type of united approach will help to improve towns and cities for both the people and pollinators that live there.The Conversation

———————————-
This blog is written by Cabot Institute member Dr Katherine Baldock, NERC Knowledge Exchange Fellow, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Pollination and International Development: How bees can help us fight poverty and feed the world

Animal pollinators are the industrious workers in the factory of life – transporting pollen from one flower to another to ensure successful fertilisation. 75% of our crop plants benefit from this free service which can increase the yield, quality and even shelf-life of their products. This translates to a US$235-577bn value to global agriculture each year. Many of our favourite foods – strawberries, coffee and cocoa – can end up shrivelled and tasteless without pollination. This ecosystem service is under increasing threat however, as pollinators face the potent cocktail of pressures we have laid upon them, declining in numbers across various parts of the world.

But what has all this got to do with international development? From what we can tell, communities in developing countries [1] are more reliant on pollinators than almost anyone, standing to lose important income, livelihoods, nutrition and cultural traditions if pollinators decline. And yet, although a number of researchers across the developing world have made substantial and important contributions to this field, limited resources and capacity have meant that only a small proportion of pollination research has focused on these regions. In fact, there isn’t even enough data to know what is happening to pollinators in the developing world, let alone how we can best conserve them and their values to human wellbeing.

Over two billion people in developing countries are reliant on smallholder farming and therefore indirectly reliant on pollinators, without necessarily knowing it.  Many valuable cash crops, for example coffee, cocoa and cashews, are highly pollinator dependent and almost exclusively grown in the developing world, providing income for millions of people. In fact the reliance on pollinator-dependent crops has increased faster in the developing world than anywhere else. Reliance on beekeeping for income and livelihoods has also increased and is becoming a common component of sustainable development projects worldwide.

Worryingly, declines in pollination will have deeper consequences than just the loss of crop yields and income. Because many of the most nutritionally important food groups such as fruits, nuts and vegetables are also the most pollinator-dependent, pollinator declines are likely to shift the balance of people’s diets away from these foods. As a result, many millions of people around the world, particularly in developing countries, are expected to become deficient in important micronutrients such as vitamin A, vitamin C, iron and folate, resulting in millions of years of healthy life lost.

So what is being done about all this? In recognition of the importance of pollinators to human welfare and the threats facing them, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) commissioned a global assessment of Pollinators, Pollination and Food Production, published in 2016. This triggered a great wave of political and media attention and has resulted in the incorporation of the report’s key findings into the Convention on Biological Diversity (CBD). Many governments are now in the process of developing national pollinator strategies, including the developing nations of Brazil, Argentina, Colombia, South Africa and India. On this wave of momentum, the CBD has also requested the UN Food and Agriculture Organisation (FAO) to update their International Pollinator Initiative (IPI) which aims to build greater understanding, management and conservation of pollinators around the world. This international attention won’t last forever though, so it is important that the current momentum is sustained and built upon as soon as possible, ensuring as many countries as possible – particularly in the developing world – are involved.

The UK has a valuable opportunity to contribute to these efforts. As a centre of excellence for pollination science, it is the second largest funder and producer of pollination research after the US. But only c.6% of the £95M we have contributed to pollination research in the last 10 years has any link or collaboration with a developing country (ÜberResearch 2018). As more of the UK’s Official Development Assistance budget is made available for research, there is a shift in emphasis towards research that directly contributes towards international development. New funding programmes are encouraging the UK research community to engage in collaborative projects with researchers in developing countries, building valuable research capacity. With the relevance of pollination and agro-ecology to addressing the UN’s Sustainable Development Goals, these topics may fit into this new funding landscape. However, to be effective and ethical, partners and institutions in developing countries must be involved in the design of, and stand to benefit from these collaborations. See here for a UKCDS report outlining the ways in which academics and funders can help ensure fair partnerships.

As populations in the developing world expand, along with per-capita food demands, these issues become all the more pressing. Food production will need to increase by 70% come 2050 and this cannot be achieved by simply expanding agricultural land or fertilizer input. To ensure people are well-fed, in a way that is sustainable and ethical, we will have to intensify our farming in new ways. Understanding and managing pollination may be an important part of this and is something that researchers, politicians, agriculturalists and development workers will need to engage with sooner rather than later.

[1] For simplicity, we use the term ‘developing countries’ to refer to all countries listed in the Organisation for Economic Co-operation and Development’s (OECD) Development Assistant Committee (DAC) list of Official Development Assistance (ODA) recipients. This includes countries from a range of economic classifications, from ‘Least Developed’ to ‘Upper Middle Income’ which includes the nations of China and Brazil. Whilst we group all these nations under the broad term of ‘developing country’, we acknowledge the great heterogeneity between them in terms of wealth, development and research capacity.


——————————
This blog has been kindly reposted from the UK CDS website.  It is written by Cabot Institute member Thomas Timberlake, a pollination ecology PhD researcher from the University of Bristol who undertook a three month project with the UKCDS looking at the relevance of pollination to international development.

Thomas Timberlake

To find out more about this project you can view the full report, or watch a recording of the UKCDS Pollination and International Development Webinar.

You can also listen to Tom speaking on Nature Xposed, a University of Bristol nature radio station, about the importance of pollinators in developing countries.

If you have any comments about this blog do tweet us @cabotinstitute @UKCDS.