We Need to Talk About Transport

 

The transition to zero-carbon is essential to the mitigation of climate change, but despite Paris Agreement commitments, transport emissions are still on the rise. The transition to clean forms of transport is a hot topic for the upcoming climate change conference COP26, which will take place in November 2021 in Glasgow.

Researchers agree that there are solutions to the transport problem, both simple and innovative, but we need to act fast. That much is clear from a local example; Bristol needs to reduce carbon dioxide emissions by 88%, to meet its ambitious net zero targets by 2030. For National Clean Air Day (17th June), I have been finding out about research on clean transport from experts at the Cabot Institute for the Environment at the University of Bristol.

Professor Martin Hurcombe, ‘Access and Active Leisure in a Time of Pandemic: Tales of Two Cities’

Self-proclaimed ‘MAMIL’ (middle-aged man in lycra), Professor Martin Hurcombe from the Modern Languages department is a keen cyclist, a passion he has integrated into his research. As an offshoot of his research in literary studies, Martin became fascinated by the French sports press and the way it represented cycling. As a result, he is currently writing a book exploring attitudes towards cycling from the late nineteenth century up to the present.

Martin is also working with the Brigstow Institute on an exciting project entitled ‘Access and Active Leisure in a Time of Pandemic: Tales of Two Cities’. This comparative study of Bristol and Bordeaux is exploring how the pandemic has highlighted longstanding issues around access to and enjoyment of urban spaces via active leisure. Both cities reflected profound inequalities, entrenched geographically, economically, socially and culturally, many of which originate in the cities’ parallel histories of empire, trade and industrialisation. Martin and his fellow researchers are investigating the ways in which the pandemic has heightened these structural inequalities, but also led to some positive re-shaping of the urban environment, from reduction of road traffic to a massive increase in cycling with recent government statistics show that cycling levels during lockdown rose by up to 300% on some days.

While the benefits of cycling are clear; a healthier population, decreased congestion and a cleaner urban environment, Martin laid out various key challenges faced in its promotion and uptake. These include the attitudes of drivers towards cyclists, infrastructural challenges and issues of safety.

Why is it important to conduct cultural, qualitative research in the transport sector?

To change attitudes, we need to take a broader cultural approach, not just an infrastructural one; issues of who has a ‘right’ to occupy the streets play out on a daily basis in how a cyclist or a runner feels and acts on the roads. Despite the challenges revealed by his public engagement research, Martin seemed determined that this kind of research will be valuable in ‘finding a way we can all share this space’. Research like this can be used to draw out diversity in active leisure and dispel the traditional image of the cyclist, to broaden it to include people of all sectors of society. Martin also recently worked on ‘Putting a Positive Spin on the Story of Cycling’ (PPS), that was developed with local charity Life Cycle.

We want to demonstrate that cycling was, and is, something for everybody.

Georgina de Courcy-Bower, E-scooters in Bristol

Georgina completed her Master’s in Environmental Policy and Management during the pandemic. Following the legislation of e-scooters in the UK on 4th July 2020, a change in law brought forward to reduce crowding on public transport as a result of COVID-19, she chose to write her dissertation on this new micro-mobility. Georgina explained that the Voi scooters, introduced to Bristol as part of a shared mobility pilot scheme in UK cities, were considered and promoted as a ‘last mile’ solution to fill gaps between transport links and homes or offices, in hopes to draw more people away from their cars and tackle congestion and air pollution – two key issues associated with the car-dominated transport system known to Bristol.

Georgina decided to investigate the viability of these e-scooters as a solution to sustainable urban transport in Bristol, by conducting a policy analysis to explore the successes and failures of implementation of e-scooters in cities around the world. Overall, e-scooters were found to be a positive alternative to cars. However, Georgina did come across certain roadblocks to their success in her research; for example, the lifecycle analysis of e-scooters shows that they still produce significant emissions, particularly compared to active travel, because of their production and dissemination.

Are e-scooters a viable part of the solution to sustainable transport?

 The most effective way to encourage a modal shift away from cars will be to reallocate space to all other road users, such as forms of public transport or active travel. She suggested that we need to begin ‘designing cities around people’, proffering the local example of Cotham Hill, where the road has been closed to through-traffic to allow restaurants and businesses to expand onto the street and create a safer space for pedestrians and cyclists. Georgina concluded that when e-scooters are paired with other ambitious policies, they are more likely to provide public benefit. However, e-scooters cannot act alone in decarbonising the transport system.

Understanding the city as a complex system and taking a more holistic approach to environmental transport sustainability is likely to be the most successful strategy.

Dr Colin Nolden, Riding Sunbeams

Dr Colin Nolden is the non-executive director of Community Energy South, an umbrella organisation for community energy groups. A member organisation pioneered the idea of connecting community-owned solar farms to the railway traction system, realising that it would be possible to repurpose existing solar PV technology to do so. This idea led to the formation of a spin-off company, now known as Riding Sunbeams.
The current railway system’s electricity is supplied through supply points to the national electricity grid. Therefore, decarbonisation of electrified railways currently hinges upon the decarbonisation of our electricity grid. Riding Sunbeams provides an alternative to this with huge rail decarbonisation potential; supplying renewable energy directly into railway electricity substations and overhead rail gantries, bypassing the grid entirely. This can be achieved without the need for costly electricity grid reinforcements. Network Rail seemed like the obvious choice to approach with Riding Sunbeams’ innovation, especially given that they are the UK’s biggest single electricity user.

What are the social benefits of renewable, community energy?

Colin was in charge of conducting a Social Impact Framework (SIF) for the project and found that there is great potential for positive social impacts; community energy groups that could be developing solar traction farms are strongly rooted in local communities, and provide local jobs, volunteering opportunities and reduce economic leakage from geographical areas. So far, Riding Sunbeams has successfully implemented one pilot project, in the summer of 2019, a solar array of just over 100 panels connected to the railway outside Aldershot station in the UK. Since April 2019, Riding Sunbeams have also been exploring the potential for integrating other clean energy technologies like wind power.
There has been significant support for the technology from the government and people championing it within Network Rail, and as a result Riding Sunbeams has procured funding from Innovate UK and the Department for Transport. Colin explained that the SIF demonstrated a variety of positive social impacts to community-owned traction supply that could tick a lot of the boxes Network Rail want to tick. Nevertheless, he concluded that

Despite good will and innovation, ‘it takes a long time to disentangle things and implement new systems.

Emilia Melville, Moving Bristol Forward’s Transport Manifesto

Researcher, Emilia Melville, is one member of the team behind Moving Bristol Forward’s Transport Manifesto and its vision for a better transport future for Bristol. Moving Bristol Forward is a collaboration between Zero West and Transport for Greater Bristol Alliance (TfGB). Emilia became involved through Zero West, a community interest company, whose mission is to get the west of England to zero carbon. Teamed up with TfGB, it was important to them that this project had a significant participatory element. As a result of consultations with the public, a manifesto was written that envisions a different future for our cities; one that integrates many voices and imagines streets not overcrowded by cars, but filled with active travellers and efficient, clean public transport. To read the Manifesto’s 8 key aims, click here. The goal is to gain endorsements from organisations and policymakers, along with support from the public.

How Bristol measures up to other cities in terms of moving towards clean transport?

There is a lot of good will, citing such schemes as Playing Out Bristol, a resident led movement restoring children’s freedom to play out in the streets and spaces where they live. However, Bristol faces many challenges, not least because of its heavy car-dependency. This is partly due to car-oriented planning and construction that happened in the 1960s. Commuters face issues such as a lack of connections between the outskirts and the centre, and not feeling safe on public transport or in active travel has been a recurring problem cited in public engagement sessions. The city lacks a combined transport authority, like TfL in London, that would allow for integrated ticketing, better-connected routes and an overall better coordination. Nevertheless, while the issues Bristol faces do require serious thinking about major urban planning changes, there have been examples of successful conversions in the past. Queen’s Square, now a beautiful and well-loved park, once had a dual carriageway and major bus route running through it! In 1999, the City Council made a successful grant application to restore it as a park as part of the Heritage Lottery Fund’s Urban Parks Programme.
Queens square, Bristol, before and after dual carriageway was removed to create the well-loved park it is today (Photo by Bristol Live).
To get behind the manifesto, you can write to your local representatives, share it on social media platforms or tell your friends and family about it.

My Thoughts on Our Talks About Transport

I asked Emilia what she would say to the person that does not believe in the power of the individual, for example, someone who thinks ‘it won’t make a difference if I ride my bike versus drive my car, so I’ll just drive’. She replied that, firstly, riding your bike is great! You inhale much less air pollution than someone in a car, can make eye contact with fellow road-users and get a good burst of exercise. She concluded that change needs to happen at different levels: it is important that we show policymakers that we want to see change, whether that be by writing to them to endorse the manifesto, or increasing the presence of active travellers in the streets. As Martin explained in our conversation, critical mass is key! The same can be said for using public transport; the higher the demand is for it, the more likely we are to see policy changes that increase investment in it, thus resulting in greater regularity and efficiency of services.
As the UK hosts COP26 for the first time, this is a key opportunity to galvanise efforts to achieve the UK’s legally-binding net zero emissions goal by 2050. Speaking with the four transport experts led me to these conclusions:
The Department for Transport needs to encourage the public to avoid journeys by car that can be taken by other means of transport.
• There is a need to shift necessary journeys to the most sustainable modes, and alongside this, clean up motorised journeys by transitioning to Zero Emissions Vehicles.
• Alternatives to private cars need to be made more readily available, accessible and attractive.
• Finally, we should build on the momentum of the shift towards active travel brought around by the pandemic, encourage a return to public and active transport and a shift away from motorised travel.
———————————–
This blog is written by Lucy Morris, Master’s by Research (MScR) student at Cabot Institute for the Environment. Lucy is currently researching ‘Why Framing Animals Matters: Representing Non-human Animals On-screen’ and produced this blog as part of a part-time role as communications assistant at the Cabot Institute.
Lucy Morris

 

 

Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

 

 

Powering the economy through the engine of Smart Local Energy Systems

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable growth?

This summer the UK’s Department for Business, Energy and Industrial Strategy (BEIS) requested submission of inputs on Post-Pandemic Economic Growth. The below thoughts were submitted to the BEIS inquiry as part of input under the EnergyREV project.

However, there are points raised here that, in the editing and summing up process of the submission, were cut out, hence, this blog on how the UK could power economic recovery through Smart Local Energy Systems (SLES).

1. Introduction: Factors, principles, and implications

In order to transition to a sustainable and flourishing economy from our (post-)COVID reality, we must acknowledge and address the factors that shape the current economic conditions. I suggest to state the impact of such factors through a set of driving principles for the UK’s post-COVID strategy. These factors are briefly explained below along with suggested principles that acknowledge and account for these factors:

1. Zero-carbon economy targets: Given the zero-carbon economy targets for 2050, one could clearly see that any investment other than that in carbon-neutral or carbon-reducing assets will either jeopardise the set targets, or lead to stranding these assets within the next 30 years. As a result, we suggest Principle 1: focus the UK’s investments on green and renewables-based initiatives.

2. Energy is the engine of the economy: It is therefore essential to both grow and expand the clean energy system so that the economy, as a whole, flourishes. This leads us to Principle 2: special focus on supporting greening of the energy system is of prime importance.

3. Localisation trend: Evidently, localisation is emerging as a strong trend due to a number of diverse reasons, such as:

  • Health: continuous threat of the spread of the COVID-19 virus. The restricted mobility between variously affected localities is likely to be expected, at least, within the medium term, as local outbreaks occur and are contained [1];
  • Technology: most renewable energy technologies are dependent on the availability of locally distributed renewable sources. For instance, tidal energy can only be harvested on the shore side, while sufficient solar generation can be expected from localities with sunny weather, etc.
  • Local governance: local communities have a stronger sense of their identity and many prefer to work together (locally) in order to address the challenges they face.
  • Resilient architectures: distributed, decentralised organisations (be it for critical and non-critical infrastructure, businesses, community, etc.) are much more resilient when faced by threats (e.g., from floods to disease outbreaks).

Thus, we suggest Principle 3: the UK should aim for a locally distributed systems architecture across all areas of infrastructure, business, and society.

4. Smart, globally inter-connected ecosystem: While distributed and decentralised assets are most resilient to systemic failures, they also must be monitored, coordinated and interconnected if they are to act as a single economic and social ecosystem and not just as a set of disjointed assets. Thus, we suggest Principle 4: Smart technology must underpin the distributed, de-centralised economy and ecosystems for monitoring, access, coordination, control and communication.

The UK has already taken the first steps towards smart local energy systems (SLES) through a programme of research and development embodied in 4 large-scale demonstrators (The Energy Superhub Oxford, ReFLEX Orkney, Project Leo, Smart Hub SLES), several design projects  and numerous pilots [19]. And, more than that, many innovative businesses (such as Verv and Electron) and non-for profit organisations (such as Community Energy England, Centre for Sustainable Energy) and local/regional authorities (such as Bristol and Manchester City Councils) are well underway in implementing much of the above in practice. Yet, these activities must be systematically replicated while contextually adapted to each locality, and radically scaled up.

As stated by P. Devine-Wright [2], “Local Energy involves professional organisations, primarily partnerships between public and private sectors, with a focus upon public authorities taking a coordinating role to leverage private sector investment in local energy provision.” Here, the local energy landscape is defined to include a range of energy related activities [3]: generating energy; reducing energy use through energy efficiency and behaviour change; managing energy by balancing supply and demand; and purchasing energy.

All of this draws on a range of skills: organisation, communication, management, governance, regulation, technical and technological, business innovation and so on.

The smart aspect of energy system often implies digitally supported coordination of decision-making for a system to optimise its resource use and waste reduction (both generation and consumption), fault tolerance and recovery from failures, support for human decision-making for efficiency and comfort. All of this draws on the skills of software, hardware, and power system engineers [4]. Thus, a particular attention needs to be paid to the “smart” technology occupations and skills training.

On the other hand, the smart energy system will not fulfil its potential without smart users, thus the household and business users also need to acquire skills in the functioning and use of digital energy systems [5–8].

The above noted principles have many implications, a few of which we note below:

1. If clean and renewables-based economy is to take off (as driven by principles 1 and 2) there is a need for a long-term cross-party commitment to investment into and development of such energy systems. There is ample evidence that uncertain, unpredictable, and changeable policy on renewable energy leads to dis-investment and skills loss in these sectors.

2. If distributed architectures are to be successful across the UK’s economy, local authorities would require more financial independence and regulatory support, as well as more accountability for fostering grass-root innovation and participation in the energy sector and economic transition.

3. If smart technology is to underpin the transition, a wide variety of training and educational programmes need to be delivered (from on-the-job training to mass educational programmes through media and specialised university degrees) to enable country-wide participation and contribution. The various areas of skills development are discussed further in section 2.

1.1. On Green Jobs

It is also worth noting that the first two suggested principles necessitate both transition to renewables-based technologies and to green jobs. Currently there are a number of definitions of what a ‘green job’ is [9–11]. To state briefly, it appears that any job has the potential of becoming a green or greener job by changing the practices of the company or service/product lifecycle, as long as it will reduce the environmental impact of enterprises and economic sectors, ultimately to levels that are sustainable [11].

However, this does not offer any means to statistically distinguish between green and non-green jobs [11]. Should a green job be defined by the level of emissions involved or the purpose of the job [12]? Moreover, the standard data concerning employment and the labour market structure does not account for any definition of green jobs either.

Nevertheless, some work has focused on defining profiles of ‘green jobs’ and observing if such jobs differ from non-green ones in terms of skill content and of human capital. For instance, [13] notes that green jobs require more interpersonal skills and require more formal education, work experience and on-the-job training.

Yet other research notes that many of the green jobs that will be in demand as a result of a transition to a low carbon economy are not new jobs as such. Rather, the transition will see a shift of workers in conventional energy industries such as engineers and installers, to apply their expertise in the low-carbon sector [14].

Thus, on green jobs, we observe that:

1. Transition to SLES with green jobs not only has the potential to support the economy to  flourish, but will also lead to a more skilled and better qualified workforce within the UK overall.

2. In order to support this transition (and to monitor and coordinate the job market, as per principle 4) clear definition of and operationalisation for statistical data collection on green jobs is needed.

2. Areas of Skills Development

The transition to smart local energy systems has the capacity to create jobs across a number of areas within the UK economy:

2.1 Energy System

With respect to job creation, the renewables-based smart local energy systems are a workforce intensive. They require workforce for the manufacture, distribution, sale, installation, operation, and maintenance of the wide variety of locally distributed generation resources. For instance, to outfit a dwelling with PV panels, panel manufacturers and retailers must be present, installers must be available, as well as maintenance operators for the post-installation period. Additionally, various energy service providers (such as demand-side management, peer to peer trading and storage service operations) can create new businesses, working with the installed distributed generation resources. A similar set of activities is required for integration of all other renewable energy sources, from wind, bio-gas, tidal, wave, anaerobic digestion, to hydrogen. Finally, a set of aggregation and grid regulation service providers must step in to ensure that the renewables-powered localities remain reliably supplied by electricity, irrespective of the generation intermittency and are seamlessly integrated with the UK electricity grid at large and comply with the grid regulations.

Furthermore, we underline that the transition to smart local energy systems is not limited to the electricity generation and use, but must integrate heating and cooling and transportation areas.

2.2 Transportation

To support transition of transportation, the vehicle stock within the country must be re-fitted to either electric sources (electric vehicles: EVs) or to bio-gas or hydrogen fuels. This, in turn, will require new charging and re-fuelling infrastructure installation across the UK’s motorways and cities, as well as workforce to operate these. While the current workforce in refuelling stations can be re-trained to operate the new charging/re-fuelling stations through on-the-job training, the vehicle maintenance workforce will require substantial re-training as EV maintenance is dramatically different from that of present conventional fossil-powered vehicles.

2.3 Heating and Cooling

Similar to renewables-based generation sources for electricity, the transition of heating and cooling systems requires installation of new technology (such as air and ground heat pumps, bore holes, sun-powered hot water tanks, waste heat recycling). This, too, has to be supported by manufacturing, installation and maintenance professionals. Many, such as gas boiler installers, must be re-trained to new skills, e.g., heat pump installation. Some will be attracted from other domains, e.g., builders to carry out the bore hole construction. Yet others will be required to train as engineers.

2.4 Building and Retrofit

Transition to the new energy sources will require integration of such sources into the fabric of the UK’s built environment. This implies both training and regulation for the new built, and retrofit of the existing building stock. This too is a large and labour-intensive transition area, as the workforce must be trained to work in accordance with zero-carbon construction practices.

Similarly, a large-scale retrofit activity is required, e.g., to undertake energy audits, draft proofing advice provision, external and internal wall insulation. Recent experience with provision of funding for retrofit with no skilled parties to deliver it has demonstrated that poor quality workmanship and poor reputation of the scheme can cause more damage than help to further the causes of energy efficiency. Thus, measures (such as register of qualified retrofit providers, contract award only upon qualification confirmation, post-installation quality assurance/audit) must be taken to ensure that retrofit work is undertaken by qualified professionals, for which quality assurance processes and monitoring bodies need to be put in place as well.

2.5 Regulation and Governance

The energy sector is highly regulated and will remain so in the future due to both technical requirements (e.g., maintaining grid frequency) and critically of its continuous availability (e.g., for operation of other businesses and welfare of population). Yet, transition to SLES will require substantial regulatory review and adaptation. For instance, to enable small-scale generation and trading across household and non-energy businesses, the consumers should be able to change suppliers (as they will be often buying from their peers) very frequently (e.g., every 30 minutes) [15].

In addition, new governance structures will be necessary, e.g., a governing body to ensure consistent data collection and standard formats of data sharing across industries.

2.6 Teaching and Training

As noted before, the green jobs will require more interpersonal skills, as well as formal education, particularly in all areas of engineering as well as professionals able to work across disciplines [16]. On-the-job training [13], and re-skilling for the workforce that shifts from the conventional to the low-carbon sector [14] will also be needed alongside mass education of the population at large for using smart energy systems and services. Thus, new education and re-training programmes will be required.

Moreover, many of those currently employed in the energy or related sectors (e.g., building and transport) cannot afford to take time off for additional education and training (e.g., due to financial pressures) [17] and so on-the-job, or paid-for training delivery modes are necessary.

2.7 Impact on Supply Chains

We must also note that the supply chains of the noted areas will, in turn, be changed and re-invigorated: from manufacturing and delivery of new hardware for renewable technology, to research and development investments across the affected sectors and their suppliers.

3. Skills Needed

As discussed above, the transition to SLES requires a wide ranging workforce, with many requiring re-skilling or up-skilling. Below we provide an overview of the preliminary set of skills which are expected to be in short supply in the near future. These skills have been noted as particularly relevant by a set of current energy system practitioners [16, 17], which, though are not definitive for the UK, can be considered sufficiently representative and indicative:

1. Soft Skills, i.e., skills that are necessary for engaging with stakeholders, such as negotiating, building partnerships, organisational skills, listening and communication, time management, etc.

2. Technical Skills, i.e., sills required to install, set up, operate, and maintain the hardware and software necessary (e.g., installation and operation of heat pumps, or EV charging stations, maintenance of wind turbines and data analysis for optimisation of distributed generation and consumption, etc.).

3. Project Management Skills, such as carrying out feasibility studies, handling procurement, identification and coordination of multiple stakeholders, risk management, etc.

4. Financial Skills relate to the skills to finance or obtain funding for projects, such as accounting, fundraising, financial modelling, putting new business models together.

5. Legal skills, such as navigating the regulatory framework, assessing planning permission, managing contracts, challenging smart energy system policy.

6. Skills for Building and Retrofit, such as building carbon neutral dwellings, draft-proofing and laying insulation, inside and outside wall insulation, etc.

7. Policy Making Skills, i.e., setting out policies with insight into their short- and long-term impact, and possible ramifications on other directly and indirectly related activities within the energy sector. This requires understanding of the current state, processes and trajectories within the energy systems, as well as continuous engagement with the sector.

8. Skills for Population at Large which include, to name a few, confidence to engage with smart technology for automaton, control and optimisation of own appliances, understanding of own behavioural impact on energy system and the wider eco-system and so ability to choose the best considered behaviour in a given situation (e.g., with whom to share data or allow access to devices, etc.), ability to engage with energy efficiency measures and benefit from local renewable generation programmes and businesses, etc.

4. Avenues for Skills Acquisition

How can the Government best retain key skills and re-skill and up-skill the UK workforce to support the recovery and sustainable

4.1 Skills Retention

The recent Global Talent Index Report (GETI) [18] carried out by 17,000 respondents from 162 countries has shown that although there is an obvious skills shortage, the most worrying issue for the renewable energy sector is, in fact, the political landscape. A lack of subsidies is of huge concern to the renewable industry, significantly more so than to the conventional and better established non-renewable sectors.

However, the skills shortage is a looming crisis that many are also worried about: 60% of respondents believe there is only 5 years to act before it hits. So what talent is lacking? The discipline of Engineering was reported to be in highest need (50%) and project leadership following with 25%. The latter reinforced by the lack of understanding of the system as a whole: how multiple energy generation methods can work together and complement each other, the role of legal experts and policy makers in steering the path to change, the implementation of effective and relevant training and education programmes and how all of these factors come together.

The key risks to the sector, as a result of talent shortages, include decreased efficiency, loss of business and reduced productivity. These consequences will trigger a negative feedback loop since it is likely that there will be less incentive to work in the renewable energy industry if it is a failing one.

The top three methods to attract the right talent, agreed amongst hiring managers and professionals, include:

  • Better training: Currently training provided at the universities is often considered too theoretical, and new graduates seem to lack practical experience [17], thus more practical, hands-on training is desirable.
  • Clearer career progression will help the employees envision their long-term placement with this sector. Yet, clear pathways for progression are still missing.
  • Increased remuneration and benefits packages are expected to make the jobs more attractive.

However, remuneration was one of the least common reasons for choosing to work in this sector. A possible explanation could be that the majority of the workforce in the renewable industry are between the ages of 25-34. The concern for the climate is more apparent among the younger employees who may enter the sector as they wish to take action against global warming rather than for gaining “job perks” [16].

4.2 Re-Skilling: cross-sector mobility

As noted in section 3 above, many of the skills necessary for enabling transition to SLES are generic, e.g., available within project managers or other workers across other domains. This is an indicator that the workforce currently employed (or recently made redundant) in other areas of economic activity could move to respective positions within the SLES domain. In order to enable such cross-sector mobility (which is relevant for retaining the skilled workforce in employment in the post-COVID environment and throughout the rapid transition to SLES), it is necessary to:

1. make information about the job profiles in SLES widely available across other sectors where adequately qualified staff may be in access of the current sectoral needs (e.g., air travel, retail, hospitality). This will ensure that those outside of SLES sector who may not have looked at SLES as a viable area of work, become aware of the open opportunities;

2. provide demonstrative cases of career transition. The cases of transition should be publicised for each sector specifically, e.g., a case whereby a manager working in airline industry has transitioned to SLES for the airline industry; a case where a store manager from retail industry is transitioning to SLES project management can be publicised within retail industry, etc. This will ensure that each sector worker can envision that those like her can transition to the SLES area. To reinforce the message that the given person has the right skill set for a particular area of SLES, the employers of those who are made redundant could be encouraged to provide this information directly to them;

3. provide opportunities for engagement, e.g., through “open days” whereby all potentially interested parties could visit a SLES workplace and/or have a (video/phone) chat with someone in a similar position of responsibility. This will help the potential applicants to envision the new sector and job to which they would be suited.

Opportunities for re-skilling and career progression/review are already available within many trade unions as part of mid-career review. We suggest that the trade unions could also be drawn upon in supporting the transition to new careers within the SLES sector.

4.3 Up-Skilling the Workforce

The need for training and up-skilling the workforce is clear, both currently in the energy sector and that newly transitioning into it (e.g., due to rapid evolution and change within the technologies, standards, and customer expectations).

However, much of the workforce will be unable to re-enter full time education or training with no income to sustain themselves and their families. As a result, those currently employed in the energy sector (as per our ongoing study) have strong preferences for:

  • Shorter training courses which can be undertaken e.g., on a one or two leave day basis;
  • Locally available training that is accessible in close proximity to the home/workplace;
  • Paid training opportunities which will not lead to loss of earnings, as this dis-incentivises those in need of training (e.g., the builders are reluctant to take time off to qualify for zero-carbon construction if they have sufficient work in the current building industry);
  • Recognition of ‘learning by doing’ or workplace training;
  • Training through apprenticeships which provides the necessary practical experience along with theory content. This method of training is particularly well regarded by much of the industry.

4.4 Skills for the New Normal

We must also consider the skills necessary for the new normal work. Given that the impact of COVID will continue to unfold for, at least, the medium time, and that the UK economy must be prepared for potential other future pandemics, we suggest that particular attention should be paid to providing training for the workforce to be able to work remotely/from home, focusing on such skills as, for instance:

  • digital technology literacy;
  • self-organisation and time management;
  • self-care and mental health;
  • use of online collaboration tools and techniques.

References

[1]  LeicestershireLive. Live updates: Pressure on government over lockdown release, door-to-door testing. https://www.leicestermercury.co.uk/news/leicester-news/lockdown-data-map-latest-updates- 4297621, 2020.

[2]  P. Devine-Wright. Community versus local energy in a context of climate emergency. Nat Energy, 4:894–896, 2019.

[3]  DECC. Community energy strategy. https://www.gov.uk/government/publications/community- energy-strategy, 2015.

[4]  West of England joint committee. https://westofengland-ca.moderngov.co.uk/documents/s891/ 13, 2019.

[5]  Christopher J Brown and Nils Markusson. The responses of older adults to smart energy monitors. Energy policy, 130:218–226, 2019.

[6]  Denise J. Wilkins, Ruzanna Chitchyan, and Mark Levine. Peer-to-peer energy markets: Understanding the values of collective and community trading. In Proceedings of the 2020 CHI Conference on Hu- man Factors in Computing Systems, CHI ’20, page 1–14, New York, NY, USA, 2020. Association for Computing Machinery.

[7]  Caroline Bird and Ruzanna Chitchyan. Towards requirements for a demand side response energy management system for households. arXiv preprint arXiv:1908.02617, 2019.

[8]  Ruzanna Chitchyan and Caroline Bird. Theory as a source of software requirements. In Proceedings of the 28th International Requirements Engineering Conference, RE’2020. IEEE, 2020.

[9]  Gabriela Miranda, Hyoung-Woo Chung, David Gibbs, Richard Howard, and Lisa Rustico. Climate Change, Employment and Local Development in Extremadura, Spain. OECD Local Economic and Employment Development (LEED) Working Papers 2011/04, OECD Publishing, Paris, 2011.

[10]  Construction Industry Training Board. Skills Needs Analysis of the Construction and Built Environment Sector in Wales Theme : Onsite and offsite construction in Wales. Technical report, CITB, 2013.

[11]  Con Gregg, Olga Strietska-Ilina, and Christoph Büdke. Anticipating skill needs for green jobs: A practical guide. ILO, Geneva, 2015.

[12]  Joshua Wright. Green Jobs, Part 3: Green Pathways: A data-driven approach to defining, quantifying, and harnessing the green economy, 2009.

[13]  Davide Consoli, Giovanni Marin, Alberto Marzucchi, and Francesco Vona. Do green jobs differ from non-green jobs in terms of skills and human capital? Research Policy, 45(5):1046–1060, 2016.

[14]  Olga Striestska-Ilina, Christine Hofmann, Durán Haro Mercedes, and Jeon Shinyoung. Skills for Green Jobs: A Global View: Synthesis Report Based on 21 Country Studies. International Labour Office, Skills and Employability Department, Job Creation and Enterprise Development Department, Geneva, 2011.

[15]  Jordan Murkin, Ruzanna Chitchyan, and David Ferguson. Goal-based automation of peer-to-peer electricity trading. In From Science to Society, pages 139–151. Springer, 2018.

[16]  Yael Zekaria and Ruzanna Chitchyan. Exploring future skills shortage in the transition to localised and low-carbon energy systems. 2019.

[17]  Yael Zekaria and Ruzanna Chitchyan. Qualitative study of skills needs for community energy projects. In Conference on Energy Communities for Collective Self-Consumption, 2020.

[18]  Airswift and Energy Job line. The Global Energy Talent Index Report 2019, 2019.

[19] Prospering from energy revolution, url: https://www.ukri.org/innovation/industrial-strategy-challenge-fund/prospering-from-the-energy-revolution/#pagecontentid-8, Accessed 20 Sept. 2020.

—————————–

This blog is written by Cabot Institute member Dr Ruzanna Chitchyan, at the University of Bristol. Ruzanna is a senior lecturer in Software Engineering and an EPSRC fellow on Living with Environmental Change. She works on software and requirements engineering for sustainability.

Dr Ruzanna Chitchyan

 

 

Capturing the value of community energy

Energise Sussex Coast and South East London Community Energy are set to benefit from a new business collaboration led by Colin Nolden and supported by PhD students Peter Thomas and Daniela Rossade. This is funded by the Economic and Social Research Council with match funding provided by Community Energy South from SGN. In total, £80,000 has been made available from the Economic and Social Research Council Impact Accelerator Account to launch six new Accelerating Business Collaborations involving the Universities of Bath, Exeter and Bristol. This funding aims to increase capacity and capability of early career researchers and PhD students to collaborate with the private sector. Match funding from SGN (formerly Scotia Gas Network) provided by Community Energy South for this particular project will free up time and allow Energise Sussex Coast and South East London Community Energy to provide the necessary company data and co-develop appropriate data analysis and management methodologies.

The Capturing the value of community energy project evolved out of the Bristol Poverty Institute (BPI) interdisciplinary webinar on Energy and Fuel Poverty and Sustainable Solutions on 14 May 2020. At this event Colin highlighted the difficulty of establishing self-sustaining fuel-poverty alleviation business models, despite huge savings on energy bills and invaluable support for some of the most marginalised segments of society. Peter also presented his PhD project, which investigates the energy needs and priorities of refugee communities. With the help of Ruth Welters from Research and Enterprise Development and Lauren Winch from BPI, Colin built up his team and concretised his project for this successful grant application.

The two business collaborators Energise Sussex Coast (ESC) and South East London Community Energy (SELCE) are non-profit social enterprises that seek to act co-operatively to tackle the climate crisis and energy injustice through community owned renewable energy and energy savings schemes. Both have won multiple awards for their approach to energy generation, energy saving and fuel poverty alleviation.

However, both are also highly dependent on grants from energy companies such as SGN with complicated and highly variable reporting procedures. This business collaboration will involve the analysis of their company data (eight years for ESC, ten years for SELCE) to take stock of what fuel poverty advice and energy saving action works and what does not, and to grasp any multiplier effects associated with engaging in renewable energy trading activities alongside more charitable fuel poverty alleviation work.

Benefits for ESC and SELCE include the co-production of a database to help them establish what has and has not worked in the past, and where to target their efforts moving forward. This is particularly relevant in the context of future fuel-poverty alleviation funding bids. With a better understanding of what works, they will be able to write better bids and target their advice more effectively, thus improving the efficiency of the sector more broadly.

 

It will also help identify new value streams, such as those resulting from lower energy bills. Rather than creating dependents, this provides the foundation for business model innovation through consortium building and economies of scale where possible, while improving targeted face-to-face advice where necessary. It will also explore socially distant approaches where face-to-face advice and engagement is no longer possible.

With a better understanding how and where value is created, ESC and SLECE, together with other non-profit enterprises, can establish a platform cooperative while creating self-renewing databases which enable more targeted energy saving and fuel poverty advice in future. Such data also facilitates application for larger pots of money such as Horizon2020, and the establishment of a fuel poverty ecosystem in partnership with local authorities and other organisations capable of empowering people instead of creating dependents. This additional reporting will capture a wider range of value and codify it to be submitted as written evidence to the Cabinet Office and Treasury at national level, while also acting as a dynamic database for inclusive economy institutions and community energy organisations at regional and local level.

People

Dr Colin Nolden is a Vice-Chancellor’s Fellow based on the Law School, University of Bristol, researching sustainable energy governance at the intersection of demand, mobility, communities, and climate change. Alongside his appointment at the University of Bristol, Colin works as a Researcher at the Environmental Change Institute, University of Oxford. He is also a non-executive director of Community Energy South and a member of the Cabot Institute for the Environment.

Peter Thomas is a University of Bristol Engineering PhD student and member of the Cabot Institute for the Environment investigating access to energy in humanitarian relief by combining insights from engineering, social sciences, and anthropology.

Daniela Rossade is a University of Bristol Engineering PhD student investigating the transition to renewable energy on the remote island of Saint Helena and the influence of renewable microgrids on electricity access and energy poverty.

Partner Companies

Energise Sussex Coast Ltd

South East London Community Energy Ltd

Community Energy South

Contact

For more information on the project contact: Dr Colin Nolden colin.nolden@bristol.ac.uk

——————————

This blog is written by Dr Colin Nolden, Vice-Chancellor’s Fellow, University of Bristol Law School and Cabot Institute for the Environment.

Colin Nolden