Cost of living crisis: the health risks of not turning the heating on in winter

People in the UK might be tempted to keep their heating turned off to offset the large increases in energy bills this winter. A recent YouGov poll, revealed that 21% of respondents would not turn their heating on until at least November. Could the health of these people be endangered?

Before COVID, an average of 25,000 extra deaths occurred between December and March compared with any other four-month period of the year. Even if COVID did not exist, the cost of living crisis could result in the toll from the coming winter being worse than usual.

The Marmot review (a report investigating the effects of cold homes and fuel poverty) estimated that 21.5% of all excess winter deaths could be attributed to the coldest 25% of homes in the UK population.

This would suggest that 5,000 extra deaths occur in winter because people live in cold homes. But this does not mean the cold homes cause the deaths. People who live in cold homes may have other disadvantages, making them less able to survive winter.

Would it make any difference whether they leave their heating on or off? Studies suggest temperatures should be kept to at least 18℃ to minimise the risk to health, but how easy is it to maintain this if homes are poorly insulated?

Research into what is best for people’s health ideally relies on randomised controlled trials to tell us about cause and effect. But it would be unethical to conduct a trial where some people were told to leave their heating off and others were told to keep it on to see if it had any effect on mortality. Instead, we have to rely on what are known as “longitudinal studies” where people are followed over many years and respond regularly to questionnaires.

In one such study in the 1970s, the British Regional Heart Study recruited thousands of men, then in middle age, from across Great Britain. In 2014, around 1,400 of these men, then aged 74-96 years, answered a questionnaire that included questions on home heating.

One question asked whether, during the previous winter, the respondent had: “Turned off the heating, even when you were cold because you were worried about the cost?” One hundred and thirty men (9.4%) said yes. These men seemed no more likely to die in the following two years than men who had replied no.

A larger study would have given a more robust answer. And in the absence of other direct evidence, we have to draw conclusions from indirect evidence, such as this.

The most vulnerable

Recently, researchers in Sweden tried to assess a range of questions about the effects of energy use, fuel poverty and energy efficiency improvements on people’s health. They systematically reviewed all the relevant studies on the topic. One of their findings showed consistently across four studies the link between fuel poverty and premature death.

The British Regional Heart Study showed that fuel poverty was more likely to be found among people who were single, poor and working class. This suggests that people who are the most financially vulnerable will be those most likely to leave the heating off. As with climate change, the poorest are hit hardest.

So far I have only discussed effects on health in terms of death, which in the UK concerns mainly older people. The winter deaths that occur are usually the result of heart disease, stroke and respiratory disease. Yet increasing attention has also been paid to the strong effects of the cold on mental health.

The Marmot review quoted studies that drew attention to the depressive effect of living in a cold home. Children in adolescent years may seek respite and privacy away from home, with consequent exposure to mental health risks. The misery caused by financial pressures only add to this burden.

Because the most financially vulnerable people are also the most vulnerable in their health, it should follow that interventions at government level are urgently needed to offset the likely health crisis looming from increased energy costs.

The most vulnerable will need the most help. Yet a common paradox seen in public health is that interventions applying to the whole population will lead to more lives saved than those targeted only to those at greatest risk.

This is because there are far more people in the population at moderate risk than at high risk. Only a modest proportion of people at moderate risk will benefit. Yet because this group is so much larger than the high-risk group, more lives may be saved among those at moderate risk.

Buildings in the UK clearly need to be better insulated, but these sorts of interventions will come too late for this winter. Mitigating the rising costs of energy must be the only way forward to allow homes to be heated to a comfortable level and prevent a tidal wave of excess winter deaths.The Conversation

—————————-

This blog is written by Cabot Institute for the Environment member Richard Morris, Honorary Professor in Medical Statistics, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Richard Morris

Watch Richard speak more about this issue in our Cabot Conversations video on Heatwaves and Health.

 

 

 

 

 

IPCC blog series: Working Group 1 – The Physical Science Basis

This blog is part of a series from the Cabot Institute for the Environment on the Intergovernmental Panel on Climate Change’s recent AR6 report (IPCC, AR6), with this post covering the output of Working Group 1 and the physical scientific basis of climate change. This article also features a chat with Professor Dan Lunt, a Climate Scientist at the University of Bristol who focusses on paleoclimates and climate modelling, and a Lead Author on the IPCC’s AR6 report. For links to the rest of the series, see the bottom of the post.

The IPCC begins their 6th Assessment Report by explaining the physical science basis and publishing the finding of Working Group 1 (WG1) in August 2021. This means that, rather than considering the impact on humans, ecosystems and societies covered by later working groups, this report only looks at the effects on the planet from a physical standpoint. Consider this part of the report to be describing the problem, where later reports describe the impacts and then the possible solutions.

Here are the key points from WG1, detailing the physical science basis:

Human activity has unequivocally caused a change in the global climate.

If you were in any doubt before, let this be the sole key message you take away from this report.

Human activity has caused widespread warming of the land, ocean an atmosphere, affecting weather systems, ecosystems, and the cryosphere (areas covered by ice such as mountain glaciers and the polar regions).

One of the main drivers of this change has been Greenhouse Gases (GHGs), which have been observed to be increasing in atmospheric concentration since as far back as 1750 and the beginning. These gases, such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), come from human processes that burn fossil fuels – transport, energy production, intense cattle farming for example.

Greenhouse gases in the atmosphere act like blanket, trapping rather than heart from the sun, warming the Earth. We also know from studying past climates that the Earth will get warmer with greater atmospheric CO2 levels.

Changes to the climate are happening at an unprecedented rate.

Figure 1: Graph from AR6-WG1 showing the unprecedented levels of warming seen in the last 2000 years.

You may have heard that the Earth’s climate has naturally ebbed between periods of hot and cold. This is completely true, however it can be a misleading statement that completely undersells the issue. Human activity has caused the planet to warm at an unprecedented rate. We are currently undergoing thousands of years of warming in just a few decades (fig.1) – much to fast for adaptation from the world’s ecosystems.

As such, the Earth will take millions of years to recover and reach an equilibrium. I highly encourage you to check out climatearchive.org’s simulations of the next million years using cutting edge modelling data – created by the Cabot Institute for the Environment’s Sebastian Steinig.

Climate change is ALREADY affecting every inhabited region on Earth, with observed increases in extreme weather and climate extremes.

Many people believe that the climate crisis is far off in the future, a problem to prevent before it arrives. However, this is not the case. It’s already happening under our noses. And everywhere. Every inhabited region in the world currently experiences an increased likelihood of an extreme weather event, extreme heat drought, or extreme precipitation. This summer for example, temperatures in the UK have been modelled and subsequently measured to creep above 40°C, unprecedented for a region with a usually temperate climate and setting national records.

Increased warming leads to an increase in effect and creeps towards a tipping point from which recovery is impossible.

You might have heard phrases like “2 degree C future” or “1.5 degree C rise” in the news, but what do these really mean? These numbers refer to the global mean temperature rise using a rolling average of the previous 20 years, relative to the temperature measured between 1850-1900 when climate change started to begin. Currently, the average global temperature anomaly sits above 1 degree C of warming (fig.1).

The Earth system is remarkably robust, but not quite robust enough to maintain an equilibrium with such rapid warming in a short space of time. One place where this is most stark is the cryosphere – parts of the Earth usually covered by ice all year round (glaciers, polar regions for example).

Melting has already begun and will continue to happen for decades even if emissions magically ended tomorrow. This is incredibly troubling, since the cryosphere also happens to be huge carbon store in the form of methane trapped in the ice. This creates what’s known as a feedback loop, where the effects of warming lead to greater warming in themselves.

Through studying paleoclimates, the IPCC reports that climate sensitivity and therefore “tipping point” sits at around 3 degree C, resulting in total climate breakdown.

Significant and immediate action limiting Greenhouse Gas emissions will be a major key in fighting climate change.

The one silver lining the report alludes to is that IPCC scientists are confident that the climate crisis is caused primarily by greenhouse gas concentrations, therefore we know the solution – reducing emissions quickly and effectively will mitigate against the worst warming in a big way. Pursuing a net-zero CO2 strategy and limiting other GHG emissions will be absolutely necessary. Working Group 3’s report on the Mitigation of Climate Change goes into greater detail on how governments can work together to go about this. This will be published on 29 August 2022.

Insight from IPCC WG1 author Professor Dan Lunt

Professor Dan Lunt is a Professor of Climate Science, Cabot Institute member and a key author on the IPCC’s WGI report.

How did you get involved with IPCC AR6?

Dan Lunt

“I was involved with the previous IPCC report, AR5, providing some data and graphs for a section on polar amplification in past and future climates (the disproportionate warming of the polar regions relative to the rest of the Earth system). This time round, a call went out around four or five years ago for authors to work on the upcoming Sixth Assessment Report. I applied for and was chosen to be a Lead Author on Chapter 7 of the AR6 report – a section focussed the Earth’s radiation budget and Climate Sensitivity, as well as on paleoclimates as evidence for the patterns of global warming, such as polar amplification.”

What’s one key point you’d like to get across from the work of Working Group 1?

“For me, what I would interpret as the key message would be climate change is already happening, and it’s happening all over the globe. It’s unprecedented in terms of its magnitude and its speed of change, relative to the past tens of thousands of years. It’s unequivocally caused by human activity.”

“One of the new key points in this assessment report is that there’s a lot more evidence now that there are changes in the frequency of extreme events. We now have enough data to say that this increased frequency is human induced. So that’s more droughts, floods, extreme heat events etc.”

———————————–

We recommend taking a look at the IPCC’s full reports and report summaries for yourself if you seek to further understand the evidence and reasoning behind their headline statements.

As we’ve discussed the scientific basis for climate change, you may be wondering what the real-world impacts. The specific impacts on ecosystems, global health and on human society will be covered in greater detail in our summary of WG2’s report titled “Impacts, Adaption and Vulnerability”, publishing tomorrow (Thursday, 28th of August).

 

This blog was written by Cabot Communications Assistant Andy Lyford, an MScR Student studying Paleoclimates and Climate modelling on the Cabot Institute Master’s by Research in Global Environmental Challenges at the University of Bristol.

Andy Lyford

 

 

Sit down and wake up! On Buddhist theory and planetary crisis

Mention Buddhism and you’ll often get a response shaped by its recent commodification into a self-care trend. Mindfulness apps, cheerful Buddha incense holders and the Life Changing Magic of Tidying Up have led many to assume that Buddhism, like deep breathing and scented candles is primarily a technique for managing stress. Do I even need to tell you that these assumptions are wide off the mark? Probably not, yet even those who are aware ‘Buddhism’ goes deeper than these stereotypes may be surprised to hear it paired in the same sentence with ‘post-humanism’ ‘decoloniality’ ‘deconstruction’ and even ‘anarchism’.

Yet I’m about to embark on research linking just these streams of thought. This October I’ll be studying for the MSc Society & Space with plans to continue to PhD study through the ESRC 3+1 route in 2021. My research will ask how Buddhism can help us reconceive the politics of the more-than-human world in an age of planetary crisis. Buddhist thought has a unique contribution to make here, yet it’s frequently overlooked as a source of theory for approaching these questions (and other social science questions more generally).

A statue of Jizo (Kṣitigarbha) or the Earth-Womb boddhisattva glimpsed through a doorway at the Koya-san temple complex in Kansai region, Japan.

Just like other non-Western philosophies, perceptions of Buddhism have been framed through the colonial encounter. Whilst nineteenth century explorers to Tibet, China, India and Japan, did much to inspire fascination with ‘Oriental religions’, early translations of Buddhist texts often understood Buddhism through a Christian lens, equating the Buddha with Jesus. This, and the general imperial refusal to take other ways of thought and life seriously have ensured that Buddhism is yet to receive much serious academic attention outside of religious studies and history departments.

For this reason alone, Buddhist perspectives can and should be mobilised as a source of decolonising critique. But it’s not just valuable as a perspective from which to criticise.  Contemporary Buddhisms brought to the West by Tibetan refugees and modern Japanese scholars such as D.T. Suzuki from the 1950s onwards have demonstrated the breadth, diversity and originality of Buddhist scholarship and practice. And more recently, excellent work has been carried out demonstrating historical Buddhism’s clear pertinence to contemporary philosophical and political concerns more broadly.

In fact many of most disruptive (and productive) concepts shaping contemporary humanities study today were anticipated by Buddhist thought by literally thousands of years. Put it this way – if names like Derrida, Deleuze, Whitehead, Latour, and Stengers are more familiar to social scientists today than Nagarjuna, Dogen, and Candrakirti this is not because the latter have nothing relevant to say on topics such as deconstruction, non-representational theory, subjectivity and self, embodiment, the symbolic order or the production of knowledge (although of course the way they mobilise and describe these concepts is completely different.)

Post-human concepts of relational networks and assemblages, which have so radically re-shaped geographical approaches to understanding human/environment relations, find close resonance in pratitya samutpada, or the doctrine of mutual causality, an ontology of radical relation. Pratitya samutpada sees reality as process – patterns of self-organising physical and psychological events which have no fixed structure or semiotics. This interdependence logically implies an ethic of care and kind-heartedness (towards all sentient beings), a cornerstone of Buddhist practice common to all traditions.

A moment of contemplation at the D.T. Suzuki centre in Kanazawa, Japan.

In an age of climate crisis the ethical imperative to try to relieve suffering is being interpreted increasingly to include ecological care for the more-than-human world (including heterogenous and complex ‘sentient beings’ such as watersheds, bio-regions and radioactive waste) and the resulting politics of this ‘Eco-dharma’ have many similarities to activisms inspired by deep ecology, indigenous, ecofeminist and anarchist philosophies. This global wave of ecologically-informed Buddhist practice is the starting point for my research, but I’m hoping to use it as a springboard for bringing Buddhist critique into geography more generally – applying Buddhist ideas to questions of political ecology, inter-species relationships, care-giving, and environmental governance.

Hopefully, I’ll be able to disrupt some assumptions along the way – including the idea that Zen is primarily concerned with minimalist interior design and esoteric catchphrases. For me, it offers something much more radical and ultimately subversive – a philosophical commitment to experiment with risky ideas and relentlessly question the foundations of your knowledge (as well as a strong suggestion to not take yourself too seriously, and to always be prepared for absurdity and impossibility!) I hope that these will be useful qualities for a new postgraduate researcher to bring into their academic practice and I’m sure that both Deleuze and Nagarjuna would agree.

And of course, Buddhist psychology and meditative practice do offer highly effective methods for understanding the mind, cultivating equanimity and un-learning habitual patterns of thought. It’s exactly this refusal to sit neatly in disciplinary boxes that makes Buddhism such a fascinating area of study – a philosophy of the mind and world which is simultaneously theory and practice. Buddhism asks us to move beyond dualisms of self/world, human/non-human and thought/reality which is exactly why its perspectives are essential to understanding our entangled, inter-dependent and precarious life in the age of the Anthropocene. It offers us an injunction to both sit down (learn to change your mind through meditation) and wake up (liberate yourself through taking ethical action), demonstrating beautifully Marx’s dictum that the true purpose of philosophy is not just to interpret the world, but to change it.

—————————

This blog is written by Cabot Institute for the Environment member Courtenay Crawford who is undertaking a new MSc and PhD project, funded by an ESRC 1+3 grant through the South West Doctoral Training Partnership. This blog was reposted with kind permission from the Bristol Centre for Environmental Humanities. Read the original blog.

Courtenay Crawford

Crisis in Ukraine: The energy implications

Energy security- a primarily theoretical concept in recent years that has been made startlingly real by the recent developments in Ukraine. But what could the possible repercussions of this crisis be on European energy policies and our fuel bills?

I had a chance to ask this question during a recent event at the House of Commons, hosted by the APPCCG and Sandbag. The answer surprised me.

According to Baroness Worthington, director of Sandbag and member of the House of Lords, two outcomes are broadly possible.

Figure 1: Map of Ukraine
The first scenario is of a stabilisation of the diplomatic situation and the emergence of a westward-leaning Ukraine. In this situation, it is likely that Ukraine might choose to exploit its own natural gas reserves, estimated to be in the region of 1.1 trillion cubic metres. Ukraine possesses the 26th largest natural gas reserve in the world, which is estimated to be more than half the size of the combined reserves of the EU.

If Ukraine `turns on the taps’, this would solve their immediate energy dependence on Russia and produce a revenue stream to support their economy. However, exploiting natural resources on the scale required would require significant investment, and Ukrainians would have to accept the change in land use and economic transformations that come with becoming a major energy exporter.

This optimistic outcome seems open to several criticisms. It’s unclear at this moment where investment would come from, and whether Russia would oppose competition in the European energy market. Moreover, can Ukraine ever completely replace Russia as an energy supplier? For instance, Russia’s natural gas reserves are around 40 times the size of Ukraine’s.

The second scenario is of a destabilised Ukraine, whose policies are influenced to a significant degree by Moscow. In this situation, European nations would need to purchase natural gas in the short-to-medium term from Russia and Ukraine, and tamely accept price rises and the uncertainty and energy insecurity that comes with dependence on a foreign nation for energy supplies.

This second possibility may also be criticised; Russia may not have further demands after the annexation of Crimea is completed. It may be the case that Russia wish to return to business as usual as quickly as possible, and may choose to offer energy supplies on favourable terms to Europe in order to encourage the resumption of trade and renewed trust.

In my view, both scenarios will result in one predominant outcome: the loss of trust. It seems unlikely that Russia can regain the trust of the West quickly; by it’s very nature, trust takes years to accrue and moments to lose. Energy security will become a much larger talking point in the next few years if relations with Russia continue to remain cool. Nations that previously were willing to base their energy supply on foreign gas purchases will choose instead to pay a price or environmental premium to source those supplies from more trusted sources.

The nations most likely to make changes to their energy mix as a result of this crisis are Germany and Poland. Germany’s choice to abandon nuclear fission after the Fukushima crisis leaves them slightly more vulnerable to a loss of fuel supplies from abroad, and they may choose to shift further towards renewables, or attempt the politically difficult U-turn of returning to nuclear power. Poland uses natural gas and coal to power much of its economy, a significant portion of which is purchased from Russia. Since the fall of the Soviet Union, Poland has been consistently suspicious of Russia, and may decide that now is the time to reduce or remove their dependence on Russian supplies.

Figure 2: DECC figure for natural gas supplies by source, 2010-2013
As for the fuel bills of UK consumers, it’s unlikely that we will see any immediate effects. If sanctions on Russia are imposed, this may raise gas prices worldwide, but the UK does not directly obtain its supplies from Russia. The most likely change to the UK’s energy mix will be one that was on the cards already- an expansion in the exploitation of shale gas. Using energy security as a primary argument, supporters of shale gas may now find it easier to convince others that fracking and onshore gas exploitation should continue or be accelerated.

Perhaps the Ukraine crisis will be the public relations coup the shale gas industry has been looking for.

This blog is written by Neeraj Oak, Cabot Institute.
Neeraj Oak