#CabotNext10 Spotlight on Low Carbon Energy

Dr Paul Harper (left) and Professor Tom Scott (right)

In conversation with Professor Tom Scott and Dr Paul Harper, theme leads at the Cabot Institute

Why did you choose to become a theme leader at Cabot Institute?

T.S: There is no single technology solution for our low carbon energy and net zero ambitions. Therefore, being a theme leader gives me the chance to work and coordinate research from all areas, such as wind, solar, nuclear and hydro, so we can work together to develop solutions.

P.H: I became increasingly inspired by renewable energy during my time at Bristol studying Aerospace Engineering (2000-2004, a long time ago now!). I know this is a real cliche, but I wanted to do something with my career that would help tackle some of the major challenges facing society around climate change and environmental sustainability. After completing my undergraduate degree and a PhD at Bristol in composite materials, I began a postdoc research post linked to tidal energy devices and also became involved in some the early development work of the Cabot Institute, so it has always had a special place in my heart. 10 years on and it is great to look back on so many new research developments in Low Carbon Energy and environmental sustainability more generally that have taken place across the University because of Cabot.

In your opinion, what is one of the biggest global challenges associated with your theme?

P.H: This is biased towards my interests in renewable energy, but I think the following are all major challenges associated with the Low Carbon Energy Theme:

  • Bringing down costs of both mainstream technologies (wind, solar) and more novel, less mature technologies (e.g., wave, tidal).
  • Applying circular design principles to prevent material going to landfill at end-of-life.
  • Designing improved ways of storing energy and integrating many distributed energy supply sources.
  • Electrification of the heating and transport sectors to increase the potential contribution of renewables.

T.S: Replacing fossil fuels with a mixed portfolio of viable and renewable alternatives. This is the fundamental challenge to tackle if the UK is to reach its 2050 Net Zero target, and if we are to provide reliable energy sources for future generations globally.

As we are looking into the future, what longer term projects are there in your theme?

T.S: In my specialist area of nuclear energy, there are several major projects and technologies in development to support low carbon energy production:

STEP – the Spherical Tokamak for Energy Production (STEP) programme will develop the world’s first commercial fusion plant in the UK, with a site set to be selected by the end of 2022. Complementary, large scale international consortia fusion projects ITER and DEMO are already underway.

Geological Disposal Facility (GDF) siting – The UK has begun the search for a site where radioactive waste can be stored permanently in a way that doesn’t burden future populations. We have to show we can deal with the waste produced by nuclear fission energy production to ensure support for nuclear power as a key low carbon energy source.

Advanced Modular Reactors (AMR) – We need to get the most from existing fission power, wherein there is much more value we can get from just producing electricity. Heat, Hydrogen and direct air-capture of CO2 are all viable from nuclear and AMRs, which operate at higher temperatures are the way to best exploit these other opportunities which will provide much more value than the current electricity-only proposition.

What’s more, Hydrogen will be the largest growth commodity in the next few decades. It gives us the opportunity to address issues around energy storage and transfer and especially, decarbonisation of transport, either directly as fuels for cars or indirectly as a precursor substance for making ammonia which can be used in heavy transport e.g., shipping.

Alongside all these technology developments, we will need to see a change in energy transport and storage infrastructure. For example, hydro or battery storage can help mitigate the intermittencies suffered by solar or wind. Equally, we cannot immediately swap methane for hydrogen in our domestic gas network and hence we need to upgrade or replace our infrastructure, with the former being much preferable and affordable.

Bringing the public along on this transitional journey will be incredibly important because they need to understand and support some of the tough technical decisions that need to be made.

P.H: A huge proportion of the world’s population has no existing access to a sustainable electricity supply and working on international development projects is vital to ensure communities can improve quality of life through access to low carbon energy. We currently have a rapidly growing portfolio of projects linked to international development and I think this trend is likely to continue in the future.

We are lucky to have a very large number of projects across a wide variety of different areas. The Cabot website gives a very good flavour of our diversity of projects (Energy | Cabot Institute for the Environment | University of Bristol) and these involve collaborations with a range of multinational companies, SMEs and start-ups, NGOs and policy makers.

Across the portfolio of projects in your theme, what type of institutions are you working with? (For example, governments, NGO’s)

T.S: The Government and its research organisations including National Nuclear Laboratory, UK Atomic Energy Authority.  I am also a member of the Nuclear Innovation & Research Advisory Board (NIRAB).

Working with other Universities in the UK and overseas as well as government research organisations and industry. It’s important that all these parties are talking and working together to ensure that there is both a push and a pull for the research we are doing towards net zero carbon by the middle of the century.

Please can you give some examples and state the relevant project.

T.S: My fellowship awarded earlier this year (Research Chair in Advancing the Fusion Energy Fuel Cycle) has the remit of doing just that. Being funded by the Royal Academy of Engineering and UKAEA, but with the remit to work with (and pull together) other academics with companies across a wide spectrum, from Cornish Lithium, to Rolls-Royce, EDF, Hynamics, Urenco and many others to advance the fuel cycle for future fusion power stations but also to develop spin-off opportunities in hydrogen storage, isotope production and even diamond batteries!

The South West Nuclear Hub provides a focus for civil nuclear research, innovation and skills in the South West of the UK, bringing together a strategic alliance of academic, industrial and governmental members, creating a unique pool of specialist talent and expertise that can be tapped into by industry

What disciplines are currently represented within your theme?

P.H: I’m sure I’ve missed some out but the main ones that spring to mind Engineering (all disciplines), Physics, Chemistry, Geography, Sociology, Economics and Law. We also have particularly close link with Cabot’s Future Cities Theme.

In your opinion, why is it important to highlight interdisciplinary research both in general and here at Bristol?

T.S: It’s quite simply because some of the big societal challenges are so multifaceted that they de facto require a multidisciplinary solution! At UoB we have a wealth of expertise and a wide network of collaborators that we can draw on to address key aspects around energy.

We can’t do everything, but we have been working hard to understand what we’re good at, our USPs and we’ll be concentrating on strengthening these going forwards as well as developing new opportunities.

P.H: In order to implement effective low carbon energy systems in society, interdisciplinary research is vital. You can design the most innovative and technically brilliant energy technologies but if they are not well suited to the social and economic environment where they will be deployed, they are of very limited value. For example, the type of energy system best suited to a UK community can be very different to the best solution for a community in the developing world, which may have no existing electrical grid infrastructure, relatively little access to skilled labour for installation/maintenance and relatively low incomes.

Are there any projects which are currently underway in your theme which are interdisciplinary that you believe should be highlighted in this campaign?

T.S: STEP is a classic example; you’d be forgiven for thinking it was just a big physics project (because this is what it was for many years) but now it is actually a huge interdisciplinary effort involving engineers, computer scientists, materials people (like myself), environmentalists, economists, and social scientists. The Physicists are still there working very hard too, but they are complemented by all this other activity which will help deliver this big scientific ambition into an actual working power station.

Is there anything else you would like to mention about your theme, interdisciplinary research and working as part of Cabot Institute?

P.H: It is essential to remember importance of teaching alongside research; the University are training the next generation of graduates who can address society’s environmental challenges and Cabot can play a key role in this through initiatives such as the Cabot MRes programme. I’m very pleased that within the Low Carbon Energy Theme, our members are playing a very active role in supporting both undergraduate courses and postgraduate study opportunities linked to Low Carbon Energy topics such as renewable energy.

T.S: The Cabot Energy theme is open and inclusive for anyone and any discipline! We enjoy a healthy debate about energy and the pros and cons of how we produce it, distribute it and use it. We’re proud to have different opinions and an open forum for discussion.

Please do come and join us even if you’re the tiniest bit curious and would like to help contribute to our collective efforts.

For more information, visit Low Carbon Energy.

Evacuating a nuclear disaster area is (usually) a waste of time and money, says study

Asahi Shimmbun/EPA

More than 110,000 people were moved from their homes following the Fukushima nuclear disaster in Japan in March 2011. Another 50,000 left of their own will, and 85,000 had still not returned four-and-a-half years later.

While this might seem like an obvious way of keeping people safe, my colleagues and I have just completed research that shows this kind of mass evacuation is unnecessary, and can even do more harm than good. We calculated that the Fukushima evacuation extended the population’s average life expectancy by less than three months.

To do this, we had to estimate how such a nuclear meltdown could affect the average remaining life expectancy of a population from the date of the event. The radiation would cause some people to get cancer and so die younger than they otherwise would have (other health effects are very unlikely because the radiation exposure is so limited). This brings down the average life expectancy of the whole group.

But the average radiation cancer victim will still live into their 60s or 70s. The loss of life expectancy from a radiation cancer will always be less than from an immediately fatal accident such as a train or car crash. These victims have their lives cut short by an average of 40 years, double the 20 years that the average sufferer of cancer caused by radiation exposure. So if you could choose your way of dying from the two, radiation exposure and cancer would on average leave you with a much longer lifespan.

How do you know if evacuation is worthwhile?

To work out how much a specific nuclear accident will affect life expectancy, we can use something called the CLEARE (Change of life expectancy from averting a radiation exposure) Programme). This tells us how much a specific dose of radiation will shorten your remaining lifespan by on average.

Yet knowing how a nuclear meltdown will affect average life expectancy isn’t enough to work out whether it is worth evacuating people. You also need to measure it against the costs of the evacuation. To do this, we have developed a method known as the judgement or J-value. This can effectively tell us how much quality of life people are willing to sacrifice to increase their remaining life expectancy, and at what point they are no longer willing to pay.

You can work out the J-value for a specific country using a measure of the average amount of money people in that country have (GDP per head) and a measure of how averse to risk they are, based on data about their work-life balance. When you put this data through the J-value model, you can effectively find the maximum amount people will on average be willing to pay for longer life expectancy.

After applying the J-value to the Fukushima scenario, we found that the amount of life expectancy preserved by moving people away was too low to justify it. If no one had been evacuated, the local population’s average life expectancy would have fallen by less than three months. The J-value data tells us that three months isn’t enough of a gain for people to be willing to sacrifice the quality of life lost through paying their share of the cost of an evacuation, which can run into billions of dollars (although the bill would actually be settled by the power company or government).

Japanese evacuation centre. Dai Kurokawa/EPA

The three month average loss suggests the number of people who will actually die from radiation-induced cancer is very small. Compare it to the average of 20 years lost when you look at all radiation cancer sufferers. In another comparison, the average inhabitant of London loses 4.5 months of life expectancy because of the city’s air pollution. Yet no one has suggested evacuating that city.
We also used the J-value to examine the decisions made after the world’s worst nuclear accident, which occurred 25 years before Fukushima at the Chernobyl nuclear power plant in Ukraine. In that case, 116,000 people were moved out in 1986, never to return, and a further 220,000 followed in 1990.

By calculating the J-value using data on people in Ukraine and Belarus in the late 1980s and early 1990s, we can work out the minimum amount of life expectancy people would have been willing to evacuate for. In this instance, people should only have been moved if their lifetime radiation exposure would have reduced their life expectancy by nine months or more.

This applied to just 31,000 people. If we took a more cautious approach and said that if one in 20 of a town’s inhabitants lost this much life expectancy, then the whole settlement should be moved, it would still only mean the evacuation of 72,500 people. The 220,000 people in the second relocation lost at most three months’ life expectancy and so none of them should have been moved. In total, only between 10% and 20% of the number relocated needed to move away.

To support our research, colleagues at the University of Manchester analysed hundreds of possible large nuclear reactor accidents across the world. They found relocation was not a sensible policy in any of the expected case scenarios they examined.

More harm than good

Some might argue that people have the right to be evacuated if their life expectancy is threatened at all. But overspending on extremely expensive evacuation can actually harm the people it is supposed to help. For example, the World Heath Organisation has documented the psychological damage done to the Chernobyl evacuees, including their conviction that they are doomed to die young.

From their perspective, this belief is entirely logical. Nuclear refugees can’t be expected to understand exactly how radiation works, but they know when huge amounts of money are being spent. These payments can come to be seen as compensation, suggesting the radiation must have left them in an awful state of health. Their governments have never lavished such amounts of money on them before, so they believe their situation must be dire.

The ConversationBut the reality is that, in most cases, the risk from radiation exposure if they stay in their homes is minimal. It is important that the precedents of Chernobyl and Fukushima do not establish mass relocation as the prime policy choice in the future, because this will benefit nobody.

————————————-
This blog has been written by Cabot Institute member Philip Thomas, Professor of Risk Management, University of Bristol.

Professor Philip Thomas

This article was originally published on The Conversation. Read the original article.

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.

Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.

Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:

“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellites, high-altitude drones or even spacecraft.

“There are so many possible uses that we’re asking the public to come up with suggestions of how they would utilise this technology by using #diamondbattery.”

Since making the invitation, we have been overwhelmed by the number of amazing ideas you’ve been sharing on Facebook, Twitter and by email. In this blog, we take a brief look at some of the top suggestions to date, and offer some further information on what may and may not be possible.

10 of our favourite ideas (in no particular order!)

Medical devices
From ocular implants to pacemakers, and from insulin pumps to nanobots, it’s clear that there is a great deal of potential to make a difference to people’s lives in the medical field. Many devices must be implanted within the body, meaning long battery life is essential to minimise the need for replacements and distress to patients.

@rongonzalezlobo suggests that the #diamondbattery could power nanorobots which can be injected into a person or animal to sense and transmit information about the health of the individual to an external device. This could be particularly helpful to diabetes patients, for example.

 

@TealSkys also suggests they could be used to monitor vital signs in individuals in high-risk jobs such as explorers, military
professionals or miners.

 

@JulianSpahr suggests we also investigate ICDs (Implantable Cardioverter Defibrillators- small devices which can treat people with dangerously abnormal heart rhythms) and DBS (deep brain stimulation – a surgical procedure used to treat a variety of disabling neurological symptom most commonly the debilitating symptoms of Parkinson’s disease).
The opportunities for implantable #diamondbattery powered devices appear to be significant.

GPS trackers or Geo-markers
GPS trackers are rating highly so far, and could offer an opportunity for us to keep tabs on pets or valuable items without worrying about device batteries running out of charge. Implantable devices using a #diamondbattery would not need to be replaced, minimising discomfort to tracked animals. Indeed, @Boomersaurus suggests we could also use these for tagging animals in wildlife studies.

In addition to Geo-tagging/ tracking, some of you have suggested that the #diamondbattery could be used to power permanent geomarkers.

 

The Internet of Things
A major concern surrounding the new wave of ‘Internet of Things’ (IoT) technologies is the amount of power they might consume. IoT devices require a constant stream of power to transmit over wireless frequencies which could cause issues as these proliferate.

@CIMCloudOne suggests the #diamondbattery could become the new default for IoT devices in the future.

 

Safety and security
A number of you suggested that the #diamondbattery could be extremely useful in smoke detectors.

The US National Fire Protection Association states that 21% of home fire deaths resulted from fires in homes with no working smoke alarms, where around 46% of the alarms had missing or disconnected batteries. Dead batteries caused one-quarter (24%) of the smoke alarm failures.

If feasible, this suggestion from @StarhopperGames could therefore not only prevent annoying late-night battery beeps, but may also help avoid preventable death.

 

However, a question remains as to whether the battery would be sufficient to power the alarm (and not just the detector).
@idbacchus suggested we use the #diamondbattery to power Black Box transmitters in aeroplanes to ensure it is possible to track and record planes for safety reasons.

 

Remote sensing
Many corners of our planet are far from civilisation and are inaccessible, complex environments. If we are to study the seas, or mountains (or indeed, space) effectively over long periods, low-powered devices with long-life batteries are required.

Many of you called for the use of these batteries in sea and remote location studies:

 

 

Seismology and building resilience
Seismic sensors that are located underground could help us to detect early warnings for earthquake risk.

 

Additionally, small sensors housed within the foundations of buildings/ within building walls may also prove helpful for indoor environment sensing, structural resilience, heat etc.

Mechanical bees
Whilst this is possibly the most futuristic of all the suggestions, we felt that it warranted a mention for innovation! @TheSteveKoch suggests a low-power #diamond battery might be able to power mechanical bees in the future.

 

Watches
It’s often impossible to know when a watch battery is about to run out, and when it does, it can feel disastrous to the owner. Perhaps a #diamondbattery watch could help people around the world avoid those missed appoints and trains in the future.

 

Space exploration
Of course, when we send devices out into space we need to know that they have sufficient battery life and sufficient levels of resilience to maintain operations for long periods. @johnconroy and others noted the opportunities for space probes and radio transmitters on the moon:

 

Bringing the internet to new areas
Finally, whilst it’s currently unclear what the power requirements would be for this idea, deployment of low power UAVs in remote areas to deliver free internet sounds like a highly worthwhile cause.

 

If you are inspired by these ideas and think you might have a suggestion for future diamond battery uses, send us a tweet at
@cabotinstitute or @UoBrisIAC with the hashtag ‘#diamondbattery’.

Is nuclear green?

It may not be surprising to you that printing the question “Is nuclear green?” on two large banners at the Bristol Harbour Festival in July caused a bit of a stir, but this is exactly what Dr Tom Scott (reader in Nuclear Materials and member of the Cabot Institute at the University of Bristol) and his group of volunteers wanted to do.  I joined the group at their stall next to the MShed to listen to their conversations with the public ignited by this thought provoking question.

The volunteers largely comprised of Bristol members of the South West Nuclear Hub (a joint research partnership – which Dr Scott co-directs – with Oxford University), University of Bristol physics undergraduates and some employees of Magnox Ltd a nuclear company in the South West. Together, they rolled out a wide range of activities at their marquee that invited everyone to join in and voice their opinions without judgement.

A live opinion poll with green and red plastic tokens (to vote “yes” and “no” respectively) was placed amongst the crowds along the harbour side to encourage participation and, in general, people were happy to vote publicly. We asked people to explain why they thought that way as they voted: “The sooner that they build Hinkley C the better!” one man announced as he dropped in his green token. (Hinkley C is the name of the new nuclear power station scheduled to be built at Hinkley Point in Somerset.) A red token voter proclaimed “We should go back to coal!” as he dropped his token in. Some members of the public even pretended to scoop up large numbers of tokens to demonstrate the intensity of their view.

Yes/No board to take note of people’s thoughts and feelings about nuclear energy.

The juxtaposition of the words “nuclear” and “green” in the question “Is Nuclear Green?” suggests that there is no straight-forward answer, but yet intense opinions on the matter persist. Nuclear energy, in general, suffers from a negative public opinion and there are three key reasons for this:

  1. the perceived risk of the waste product
  2. the potential for disasters like Chernobyl to happen again
  3. the historical link between nuclear energy and nuclear weapons.

Dr Scott and his volunteers set about to change public opinion on nuclear energy by presenting the facts on their activities in a neutral light, such that the public would feel free to make up their own minds.

One of the activities at the stall, popular with children, had a Scalextric set (a slot car racing set) connected to a pedal generator – demonstrating how much human power was required to drive the toy cars. Further inside the marquee, you’d see a bucket of coal, 16kg of which is required to meet the electrical demands of one person per day. Many were impressed when they were then presented with a dummy pellet of nuclear waste the size of the end of their thumb that would produce enough energy for their entire lifetime.

This dummy pellet of nuclear waste shows how much nuclear material
would be needed to produce enough energy for your entire lifetime.

Meeting the energy demands of today is a pressing global issue and nuclear power provides a virtually carbon-free way of producing a large quantity of electrical power. Festival-goers were also surprised to learn that due to the large amounts of cement used to install solar and offshore wind power stations, the amount of carbon dioxide released is greater per unit of energy produced than nuclear over the lifetime of the power station.

However, people are generally fearful of the toxicity of waste that nuclear power reactors produce and how it is dealt with. By mimicking Bruce Forsyth’s TV show, Play Your Cards Right, people could learn about the relative radioactivity from different sources. For example, if you went on three transatlantic flights in a year, you would exceed the average annual occupational exposure of a nuclear power station worker.

What gives off the most radioactivity?

“But what if it all goes wrong?” said one lady from Bristol. This fear is understandable given disasters such as Chernobyl, Three Mile Island and Fukushima and it has resulted in publicly driven change. In Germany, for example, large anti-nuclear protests occurred in the wake of the Fukushima nuclear disaster in March 2011 caused by a tsunami. Partly in response to these protests, the German government have scheduled all nuclear power stations in Germany to be shut down by 2022.

It would be foolish to suggest that the effects of the Fukushima disaster are innocuous and that nothing went wrong. However, it surprised people to learn that despite the large number of fatalities caused by the tsunami directly, there were no recorded fatalities due to short term overexposure of radiation at Fukushima. Of course, the long term effects are unknown and it would be surprising if there were not any future health risks from the disaster.

Many older members of the public were concerned about the connection between nuclear power and nuclear weapons. It is a fact that the idea of using nuclear energy to generate electricity was borne out of the nuclear arms race that started during the Second World War. Nowadays though, the link between nuclear weapons and nuclear energy is unfounded in the UK because the plutonium required to make the weapons is not extracted from nuclear waste reprocessing.

The University of Bristol nuclear research group talking to
the public about nuclear energy at the Bristol Harbour Festival.

The physics of nuclear fission is very well understood by the scientists and engineers working in nuclear energy, and the risks of using this process to generate electricity are met with very strict safety standards. Despite these rigorous safety measures, nuclear power gets a bad press because the evidence for its potential to harm is clearly visible: the waste has to be specially treated before it is buried and the mass evacuations are put into place following a disaster. Nuclear power station disasters are etched into people’s memories because of their scale but the actual risk posed by a nuclear incident is much lower than maintained by the public.

On the other hand, large quantities of greenhouse gases are continuing to be released into the atmosphere from burning fossil fuels and although there is also visible evidence for climate change, the serious threat it poses to our planet it is diluted by politics. This plight is encapsulated by the most solemn of quotes from the event;

“I suppose the truth of it is, that the thing that isn’t green is humanity.” 

Perhaps nuclear fission could be a necessary interim energy source before cleaner nuclear fusion takes over in 50-100 years time.
——————————–
This blog is written by Cabot Institute member and PhD student Lewis Roberts.

Read more about nuclear research at the University of Bristol by visiting the Interface Analysis Centre website.

Learning lessons from Fukushima

When disasters happen scientists pretty much have a duty to try to understand what happened and why, and to try to learn the lessons. This week the catastophist Gordon Woo of Risk Management Solutions gave a seminar here at the Cabot Institute and suggested that the question that we should really ask is not “why did this happen?” but “why did this not happen before?”. This is also one of the ideas that emerged from a recent exercise that we undertook to try to understand the recent events at the Fukushima nuclear power plant in Japan. The range of skills available within Cabot allowed us to take a fundamentally holistic approach to the analysis that wouldn’t have been possible for any single individual. The results of the analysis are here, but two main points emerge.

First, there is the need to tackle is “chained” or “cascaded” hazards, which, as very low probability events, have traditionally been treated as independent random events and hence have too low a likelihood of coinciding together. There may be hidden dependencies, which are not always either obvious or intuitive, requiring careful analysis to tease out or recognise. This is particularly the case for complex infrastructure like nuclear power stations.

Second, it is no longer adequate to rely on deterministic assessments of hazards and risks from natural hazards as these cannot account properly for uncertainty. Dealing with uncertainty requires a probabilistic analysis that looks at the full range of possible situations that may arise, not just a single one that a company or regulator has (perhaps somewhat arbitrarily) decided is the ‘worst case’. Probabilistic approaches should now be regarded as mandatory, and application of rigorous, structured approaches to assessing risk are needed. Such assessments must include evaluation of all credible alternative models for natural processes, rather than just adopting particular models that happen to support inherited views.