How glacier algae are challenging the way we think about evolution

Wirestock Creators/Shutterstock

People often underestimate tiny beings. But microscopic algal cells not only evolved to thrive in one of the most extreme habitats on Earth – glaciers – but are also shaping them.

With a team of scientists from the UK and Canada, we traced the evolution of purple algae back hundreds of millions of years and our findings challenge a key idea about how evolution works. Though small, these algae are having a dramatic effect on the glaciers they live on.

Glaciers are among the planet’s fastest changing ecosystems. During the summer melt season as liquid water forms on glaciers, blooms of purple algae darken the surface of the ice, accelerating the rate of melt. This fascinating adaptation to glaciers requires microscopic algae to control their growth and photosynthesis. This must be balanced with tolerance of extreme ice melt, temperature and light exposure.

Our study, published in New Phytologist, reveals how and when their adaptations to live in these extreme environments first evolved. We sequenced and analysed genome data of the glacier algae Ancylonema nordenskiöldii. Our results show that the purple colour of glacier algae, which acts like a sunscreen, was generated by new genes involved in pigment production.

This pigment, purpurogallin, protects algal cells from damage of ultraviolet (UV) and visible light. It is also linked with tolerance of low temperatures and desiccation, characteristic features of glacial environments. Our genetic analysis suggests that the evolution of this purple pigment was probably vital for several adaptations in glacier algae.

We also identified new genes that helped increase the algae’s tolerance to UV and visible light, important adaptations for living in a bright, exposed environment. Interestingly these were linked to increased light perception as well as improved mechanisms of repair to sun damage. This work reveals how algae are adapted to live on glaciers in the present day.

Next, we wanted to understand when this adaptation evolved in Earth’s deep history.

The evolution of glacier algae

Earth has experienced many fluctuations of colder and warmer climates. Across thousands and sometimes millions of years, global climates have changed slowly between glacial (cold) to interglacial (warm) periods.

One of the most dramatic cold periods was the Cryogenian, dating back to 720-635 million years ago, when Earth was almost entirely covered in snow and ice. So widespread were these glaciations, they are sometimes referred to by scientists as “Snowball Earth”.

Scientists think that these conditions would have been similar to the glaciers and ice sheets we see on Earth today. So we wondered could this period be the force driving the evolution of glacier algae?

After analysing genetic data and fossilised algae, we estimated that glacier algae evolved around 520-455 million years ago. This suggests that the evolution of glacier algae was not linked to the Snowball Earth environments of the Cryogenian.

As the origin of glacier algae is later than the Cryogenian, a more recent glacial period must have been the driver of glacial adaptations in algae. Scientists think there has continuously been glacial environments on Earth up to 60 million years ago.

We did, however, identify that the common ancestor of glacier algae and land plants evolved around the Cryogenian.

In February 2024, our previous analysis demonstrated that this ancient algae was multicellular. The group containing glacier algae lost the ability to create complex multicellular forms, possibly in response to the extreme environmental pressures of the Cryogenian.

Rather than becoming more complex, we have demonstrated that these algae became simple and persevered to the present day. This is an example of evolution by reducing complexity. It also contradicts the well-established “march of progress” hypothesis, the idea that organisms evolve into increasingly complex versions of their ancestors.

Our work showed that this loss of multicellularity was accompanied by a huge loss of genetic diversity. These lost genes were mainly linked to multicellular development. This is a signature of the evolution of their simple morphology from a more complex ancestor.

Over the last 700 million years, these algae have survived by being tiny, insulated from cold and protected from the Sun. These adaptations prepared them for life on glaciers in the present day.

So specialised is this adaptation, that only a handful of algae have evolved to live on glaciers. This is in contrast to the hundreds of algal species living on snow. Despite this, glacier algae have dramatic effects across vast ice fields when liquid water forms on glacier surfaces. In 2016, on the Greenland ice sheet, algal growth led to an additional 4,400–6,000 million tonnes of runoff.

Understanding these algae helps us appreciate their role in shaping fragile ecosystems.

Our study gives insight into the evolutionary journey of glacier algae from the deep past to the present. As we face a changing climate, understanding these microscopic organisms is key to predicting the future of Earth’s icy environments.The Conversation

————————–

This blog is written by Dr Alexander Bowles, Postdoctoral research associate, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Alexander Bowles
Alexander Bowles

‘New’ man-made gases: Ozone crisis or hoax?

Image by PiccoloNamek (English wikipedia)
[GFDL (www.gnu.org/copyleft/fdl.html),
via Wikimedia Commons

You may have noticed a story reported on widely recently on the discovery of 4 ‘new’ man-made ozone-depleting gases. This follows the publication of a study in the journal Nature Geoscience on the first measurements of these gases, their abundances in the atmosphere and estimated global emission rates. Responses to the reporting of this publication have ranged from the Daily Mail’s “Ozone Crisis” to the inevitable internet-based diatribe of “any research from UEA is clearly made up” in various comment sections. So just how concerned should we be about the emissions of these four gases?

Chlorofluorcarbons (CFCs)

 
The reason we care about CFCs is because they deplete ozone high up in the atmosphere, potentially exposing humans to harmful UV rays. Oh, they also happen to be extremely potent greenhouse gases, with each molecule of a CFC being equivalent to 1000s of molecules of CO2, and they sit around in the atmosphere for 10s or 100s of years before being removed. Basically they’re pretty bad, and sure they might have been great refrigerants and aerosol propellants but at what cost?

The production of CFCs has now to all intents and purposes ceased, although that doesn’t mean that emissions have completely stopped; various banks of these gases exist in fridges for example. These might leak during use or when destroyed. So it’s not entirely surprising to read that this study has found that various CFCs are still being released.

Newly measured

 
In fact the reason this paper is important is more to do with the fact that these gases have never before been measured.  Many of the media articles seem to lead with the fact these are ‘new’ ozone-depleting gases, which is a little misleading. They’re not new; they’ve been around for decades, only nobody has been able to measure them in the atmosphere before. Why’s that you might ask? Well much of it is to do with just how small their concentrations are in the atmosphere.

The fact of the matter is that the concentrations of these gases (CFC-112, CFC-112a, CFC-113a, HCFC-133a) are tiny. All four have atmospheric mixing ratios of less than 1 part per trillion (ppt). In other words, if you could isolate a trillion molecules of air (1 x 1012) then not even one of them would be one of these ’new’ CFCs. By contrast CO2 in the atmosphere has a mixing ratio of hundreds of parts per million.

Compare these newly measured gases to the major CFCs (CFC-11, CFC-12, CFC-113) whose current atmospheric concentrations are hundreds if not thousands of times greater. Even though emissions of these major CFCs are now close to zero they will still be around in the atmosphere at these elevated concentrations for decades to come. This is shown in the plot below taken from the AGAGE network measurements of CFC-12. Although the concentration has reached a peak it will take at least one hundred years for levels to get back down to pre-1980 levels, with the current mixing ratio still over 500 ppt.

Plot taken from the AGAGE network measurements of CFC-12

So emissions of these newly measured gases would have to really pick up for a sustained period of time to add significantly to the ozone-depleting effect of what is already in the atmosphere. To say the measurement of these compounds has created some sort of ozone crisis is therefore a gross exaggeration. That’s not to say that this work was a waste of time; it’s vital that we know about these compounds and their atmospheric abundance so we can ensure their contribution to ozone depletion remains negligible.

Other factors influencing ozone recovery

 
There are other potentially more important causes for concern as well. Hydrochlorofluorocarbons (HCFCs) were introduced as replacements for CFCs but also contribute to ozone depletion, albeit in a less effective way. Although these are also being phased out many of these will have a greater impact on the recovery of the ozone ‘hole’ than these newly measured species. Just a few months ago the United Nations Environment Programme (UNEP) released a report saying another gas, Nitrous Oxide (N2O), is now considered to be the biggest threat to the ozone layer over the next 50 years. Not to mention that one of the impacts of a rise in global surface temperatures could be a slowing in ozone hole recovery. There’s a genuinely interesting (honest!) explanation for why that is which I will cover in another blog.

The point is that there are lots of factors which affect the Earth’s ozone layer. Studies like the one recently published in Nature Geoscience are vital for our understanding of what the recent and current atmospheric composition is like. It might not be a problem now, but surely the key to looking after our planet, and ourselves, is to prevent things from becoming problematic in future. If we can take steps to find out where these emissions are coming from and why some of them are increasing then measures could be put in place to limit their future influence on ozone recovery.

This blog is written by Mark Lunt, Atmospheric Chemistry Reseach Group, Cabot Institute, University of Bristol, .
Mark Lunt