“Between the Insect Hordes and Ourselves”: Imaginaries of insect declines from the 1960s onwards

A still from Bee Movie (2007), directed by Simon J. Smith and Steven Hickner

‘According to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don’t care what humans think is impossible.’ You might recognise these words as the opening from the animated film Bee Movie (2007). The film is as known for its memes as its compulsive heteronormativity. If you are unaware: not only are there many happy nuclear bee families, the star of the film, Barry, is a male worker bee. On top of that, the human woman with whom Barry takes on the honey industry and fights for equal bee rights appears to develop some warm feelings for him. Needless to say, Bee Movie is fun but not a cinematographic masterpiece.

Jokes aside, the 2007 film is a good indicator of an influx of documentaries, memoirs, novels, and poetry collections starring the Western or European honeybee. Perhaps I’m being too critical here. This influx does excite me in a way, as it shows that insect life and decline has become part of a broader conversation. But, with this awareness of insect decline in our cultural imagination comes a sting in the tale. In this case, the sting is an almost obsessive focus on the European honeybee in an age of overall insect decline and what Elizabeth Kolbert (2014) popularised as the sixth extinction. There are thousands of known species of bees all over the world—not to mention other bugs—and yet a select group of people continue to talk, write, film, draw and campaign for the European honeybee. (Are you familiar with the concept of bee-washing?)

In response to these stories, I started thinking about the following: why is there so much creative work on the honeybee? Insects make up the most biodiverse and largest class of described (and estimated) species in the animal kingdom. And while many of these—not all—are indeed facing decline or even extinction, the European honeybee is not one of them.

What started out as a general interest, quickly evolved—metamorphosed!—into my doctoral project on insect decline. Inspired by Ursula Heise’s (2016) work on the cultural side of extinction, I started asking the following: what kind of narratives do people create when talking about insect decline, and how do they tie in with other and older insect stories, our broader cultural memory? Is there an explanation to be found for this honeybee hyperfocus when it comes to narratives of insect decline? Thinking about these questions, I kept returning to Donna Haraway, who wrote that ‘it matters what stories we tell to tell other stories with … It matters what stories make worlds, what worlds make stories.’ (12) Haraway’s keen (if not overcited) observation also applies to the case of insect decline. When looking at creative storytelling—of which there is a lot—we’re not just considering entertainment or aesthetics. Even with something as seemingly banal as Bee Movie, it does matter what stories we tell to tell the story of insect decline. So why do people contribute to this, for lack of a better word, honeybee extravaganza?

An assortment of contemporary honeybee stories
My project become more than a chance to get deep into the problem with honeybees and other charismatic microfauna. Thinking about tiny critters (instead of charismatic megafauna) created the opportunity to engage with and tease out some of the broader questions in the fields of critical animal and extinction studies. Between all the reading and writing and talking and plotting out of the work that needs to be done, theories and ideas and random shower thoughts keep falling into place, and I have a red thread or two running through the different chapters of my thesis. Watch this space.
For now, I do want to say that one of the more rewarding elements of my research so far has been the deep dive into care ethics. My understanding of the concept has both expanded and gained new focus, and my deep dive into care and conservation has opened my eyes to the possibility of care as a violent practice (Salazar Parreñas 2018). One of my current challenges is to see how care, understood as ‘a vital affective state, an ethical obligation and a practical labour’ (Puig de la Bellacasa), is reflected in the poetics of insect decline. What does a poetics of care look like when we let ourselves become subject to, as Haraway (2008) phrased it, the ‘unsettling obligation of curiosity, which requires knowing more at the end of the day than at the beginning’ (36). What happens when we allow ourselves to pay careful attention to the other-than-human life around us and start to care?
Assorted Coleoptera in the University of Texas Insect Collection

 

Another thread is that of the different (temporal and spatial) scales of extinction and the limits of our empathy for other-than-human animals. As Ursula Heise (2016) and Dolly Jørgensen (2019) so effectively argue in their monographs on the topic, extinctions come to matter once they reflect upon our own (human) pasts, presents, and futures and we can emotionally engage with them. And like these different pasts, presents, and futures, extinction isn’t singular. It is easy—and to a certain extent even useful—to put it all under the label of the sixth extinction. Still, I am increasingly convinced that such labels obscure the differences and intricacies people need to be aware of in the face of the sixth extinction—or rather, extinctions.
There are local extinctions, global extinctions, extinctions completely missed or forgotten (by human eyes), even desired extinctions. Communities respond to and engage with different species and local and global extinctions in different ways. Especially when something tricky like shifting baseline syndrome ensures that some communities aren’t aware of local extinctions or declines in the first place, while passionate campaigns for charismatic megafauna put certain species on the global agenda and in the public eye. I’m not saying this is always a bad thing (I’m just as passionate about the survival of the Malayan and Sumatran tiger as the next person).
I am, however, saying that it is worth researching how attention and care are directed and, ideally, can be redirected in times of need. And insects—in all their creeping and crawling diversity, with important ecosystem functions such as pollination, prey, and waste disposal—have turned out to be an excellent group to consider these questions.
Sources
  • Haraway, Donna J. Staying with the Trouble: Making Kin in the Chthulucene. Duke UP, 2016.
  • —. When Species Meet. U of Minneapolis P, 2008.
  • Heise, Ursula K. Imagining Extinctions: The Cultural Meanings of Endangered Species. U of Chicago P, 2016.
  • Jørgensen, Dolly. Recovering Lost Species in the Modern Age: Histories of Longing and Belonging. MIT Press, 2019.
  • Kolbert, Elizabeth. The Sixth Extinction: An Unnatural History. Bloomsbury, 2014.
  • Puig de la Bellacasa, María. Matters of Care: Speculative Ethics in More Than Human Worlds. U of Minnesota P, 2017. Salazar Parreñas, Juno. Decolonizing Extinction: The Work of Care in Orangutan Rehabilitation. Duke UP, 2018

—————————–

This blog is written by Cabot Institute member Eline D. Tabak, PhD researcher in English (University of Bristol) and Environmental Humanities (BSU). This blog outlines her SWW DTP-funded project. You can follow Eline on twitter @elinetabak and see more of her writing and work at www.elinedtabak.com. This blog was reposted with kind permission from the Centre for Environmental Humanities. View the original blog.

Eline D. Tabak

 

 

Mourning auks: Creative expressions of extinction in an era of ecological loss

Looking at your hearts, suspended in their jar, I try and imagine the two of you still alive. I know that if you were anything like your closest living kin, you would have bonded for life. You lived a long time, and it would have been a relationship that had gathered and deepened over years. By the time you came together this final time, the congregations that were so important to your kind were already a thing of the past. Perhaps you were aware of how empty your world had become. Although you were alone on that low rock, it could be that you were accompanied by the memory of the multitude that had once been. By this point it was already too late. There were too few of you to recover what had been lost. Even so, maybe you would have nodded to each other and tried to make the best of it. Maybe you would have started showing off, just as those before you had always done; turning your heads from side to side so the bright white around your eye would have caught the light. Maybe then, with an exuberance tinged with grief, you would have thrown your heads back and let out an ecstatic cry; the vivid yellow inside your mouths shining like a beacon, mimicking the sun.

Catastrophic anthropogenically-driven biodiversity loss is a defining problem of our time, with hundreds of extinctions observed every year, and many more occurring unnoticed. Reacting to the scale of this issue, extinction studies researchers have called for new interdisciplinary responses interrogating what extinction means, why it matters, and how it is narrated.

‘Mourning Auks’ is an innovative practice-led project examining how artful geographic methods and outcomes can contribute to these vital questions. Over the next four years I plan to explore what novel and affective modes of engaging with anthropogenically-driven species loss can be generated through creative articulations of the emotional dimensions of extinction, and how these can be communicated in public artistic and museum contexts.

In extinction studies, extinction is understood not as a singular, generic concept, but as something that exists through multiple specificities relatable to the diversity of lifeworlds being lost. This is generally explored via case studies, which employ critically-driven creative-academic storytelling to express the biological, cultural and temporal particularities of species, their unique phenomenal worlds, and the significance of extinction within multispecies entanglements. This narrative-based approach provides a form of witnessing that is attentive to others in the face of irreparable loss, that counters human exceptionalism, and creates new ethical and cultural modes that help to resist the destructive legacies of anthropogenically-driven extinction more broadly.

Unexplored potential exists for artistic methods to undertake and communicate these extinction-orientated case studies. Through a case study on the now extinct great auk, my practice-led project will explore and analyse ways of engaging broader audiences with this field. It aims to expand the affective reach of these essential attempts to re-articulate contemporary species loss, and its ethical and socio-cultural imperative.

Fig. 1 Alca Impennis by John Gould, from The Birds of Great Britain, Vol. 5 (1873). John Gould/Public Domain

The great auk was a flightless seabird that was once found in the cold coastal waters of the North Atlantic. These birds nested in huge social colonies on isolated islands, which they returned to every year. These remote skerries provided protection from terrestrial predators. However, they became increasingly vulnerable after technological advances in ocean-going vessels brought European sailors into close proximity to these breeding colonies, which they ruthlessly exploited for food on trans-Atlantic voyages.

My research will begin with analysis of the ‘Garefowl books’, a substantial, underexploited resource held in the Cambridge University Library collections. These manuscript diaries, kept by the Victorian ornithologist and egg collector John Wolley, record interviews with witnesses who were amongst the last to see the auks alive, and who took part in the final hunting parties to their breeding places. Close reading of this material will inform studio-based experimentation utilising artistic methods drawn from archival impulses in contemporary art (see the works of John Akomfrah and Tacita Dean, amongst many others). Following on from Brian Massumi’s 2014 book What Animals Teach us About Politics such ‘playful’ creative practices can be seen as animal in origin, and provide a continuum with animal life (see Merle Patchett’s Archiving). In this context, these textual encounters with the auk’s disappearance offer the means of both interrogating the socio-cultural practices that drove their extinction, and of generating sympathetic multispecies re-alignments.

I also plan to draw the narratives surrounding the auks’ disappearance into emotional geographic frames. These examine spatialisations of emotion in relation to landscape, including those relating to death, such as mourning and grief. Study here is mostly restricted to human contexts, and my project aims to develop this to explore the affective geographies of sites of extinction-driven absence.

Fig. 2 An eighteenth-century sketch of Geirfuglasker by Guðni Sigurðsson. Geirfuglasker, a now submerged volcanic island off the south coast of Iceland, was one of the great auk’s breeding colonies. National Museum of Iceland/Public Domain

In recent re-interpretations, avian philopatry has been re-conceptualised as other-than-human ‘storying-of-place’ (see Thom van Dooren’s excellent book Flight Ways). Hypothesising this for great auks gives their breeding sites potency as places, not just because they were invested with history and meaning for the auks, but because these became the traumatic sites of their extinction. In this context, I plan to undertake fieldwork at some of the auks’ historical breeding colonies, and at those of their closest living relatives. Here, imaginative curiosity towards these species’ remote, liminal, and aquatic geographies will inform a creative enlivening of the great auks’ historical lifeworld, providing the basis for further artistic experimentation centred on site-specific place-making exercises. These will attend to how landscapes are matters ‘of [other-than-human] biographies, attachments and exiles’ in which ‘absence, loss and haunting’ abound (Wylie, 2007: 10), and will survey the more-than-representational emotional aspects of extinction.

—————————-

This blog is written by Milo Newman, PhD candidate in human geography. This blog introduces his project on creativity and extinction. Milo’s research is funded through the AHRC South West and Wales Doctoral Training Partnership. You can follow Milo on twitter @_milonewman and see more of his work at www.milonewman.com. This blog has been reposted with kind permission from the Centre for Environmental Humanities. Read the original blog.

Milo Newman

 

 

In the Amazon, forest degradation is outpacing full deforestation

Deforestation in the Brazilian Amazon has increased abruptly in the past two years, after having been on a downward trajectory for more than a decade. With the country’s president Jair Bolsonaro notoriously enthusiastic about expanding into the rainforest, new deforestation data regularly makes global headlines.

But what fewer people realise is that even forests that have not been cleared, or fully “deforested”, are rarely untouched. Indeed, just 20% of the world’s tropical forests are classified as intact. The rest have been impacted by logging, mining, fires, or by the expansion of roads or other human activities. And all this can happen undetected by the satellites that monitor deforestation.

These forests are known as “degraded”, and they make up an increasingly large fraction of the world’s remaining forest landscapes. Degradation is a major environmental and societal challenge. Disturbances associated with logging, fire and habitat fragmentation are a significant source of CO₂ emissions and can flip forests from carbon sinks to sources, where the carbon emitted when trees burn or decompose outweighs the carbon taken from the atmosphere as they grow.

Forest degradation is also a major threat to biodiversity and has been shown to increase the risk of transmission of emerging infectious diseases. And yet despite all of this, we continue to lack appropriate tools to monitor forest degradation at the required scale.

A man chainsaws a tree trunk in Amazon rainforest
Degraded – but not deforested.
CIFOR / flickr, CC BY-NC-SA

The main reason forest degradation is difficult to monitor is that it’s hard to see from space. The launch of Nasa’s Landsat programme in the 1970s revealed – perhaps for the first time – the true extent of the impact that humans have had on the world’s forests. Today, satellites allow us to track deforestation fronts in real time anywhere in the world. But while it’s easy enough to spot where forests are being cleared and converted to farms or plantations, capturing forest degradation is not as simple. A degraded forest is still a forest, as by definition it retains at least part of its canopy. So, while old-growth and logged forests may look very different on the ground, seen from above they can be hard to tell apart in a sea of green.

Degradation detectives

New research published in the journal Science by a team of Brazilian and US researchers led by Eraldo Matricardi has taken an important step towards tackling this challenge. By combining more than 20 years of satellite data with extensive field observations, they trained a computer algorithm to map changes in forest degradation through time across the entire Brazilian Amazon. Their work reveals that 337,427 km² of forest were degraded across the Brazilian Amazon between 1992 and 2014, an area larger than neighbouring Ecuador. During this same period, degradation actually outpaced deforestation, which contributed to a loss of a further 308,311 km² of forest.

The researchers went a step further and used the data to tease apart the relative contribution of different drivers of forest degradation, including logging, fire and forest fragmentation. What these maps reveal is that while overall rates of degradation across the Brazilian Amazon have declined since the 1990s – in line with decreases in deforestation and associated habitat fragmentation – rates of selective logging and forest fires have almost doubled. In particular, in the past 15 years logging has expanded west into a new frontier that up until recently was considered too remote to be at risk.

Map of deforestation and degradation in the Brazilian Amazon, 1992-2014.
The Brazilian Amazon, shaded in grey, covers an area larger than the European Union.
Matricardi et al

By putting forest degradation on the map, Matricardi and colleagues have not only revealed the true extent of the problem, but have also generated the baseline data needed to guide action. Restoring degraded forests is central to several ambitious international efforts to curb climate change and biodiversity loss, such as the UN scheme to pay developing countries to keep their forests intact. If allowed to recover, degraded forests, particularly those in the tropics, have the potential to sequester and store large amounts of CO₂ from the atmosphere – even more so than their intact counterparts.

Simply allowing forests to naturally regenerate can be a very effective strategy, as biomass stocks often recover within decades. In other cases, active restoration may be a preferable option to speed up recovery. Another recent study, also published in the journal Science, showed how tree planting and cutting back lianas (large woody vines common in the tropics) can increase biomass recovery rates by as much as 50% in south-east Asian rainforests. But active restoration comes at a cost, which in many cases exceeds the prices that are paid to offset CO₂ emission on the voluntary carbon market. If we are to successfully implement ecosystem restoration on a global scale, governments, companies and even individuals need to think carefully about how they value nature.The Conversation

———————————-

This blog is written by Cabot Institute member Dr Tommaso Jucker, Research Fellow and Lecturer, School of Biological Sciences, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Tommaso Jucker

 

 

Forest 404: A chilling vision of a future without nature

Binge-watching of boxsets on BBC iPlayer or Netflix is a growing habit. And binge-listening isn’t far behind. Podcast series downloadable through BBC Sounds are all the rage (with a little help from footballer Peter Crouch). Enter Radio 4’s ‘Forest 404’ – hot off the press as a 27-piece boxset on the fourth day of the fourth month (4 April 2019). This is something I’ve been involved in recently: an experimental BBC sci-fi podcast that’s a brand-new listening experience because of its three-tiered structure of drama, factual talk and accompanying soundscape (9 x 3 = 27).

Try to imagine a world in which not only forests but every last trace of the natural world as we know it has been erased (almost……). This eco-thriller by Timothy X. Atack (credits include ‘Dr Who’) is set in the 24th century following a data crash in the early 21st century called The Cataclysm (404 is also the error message you get when a website is unavailable). The action follows lead protagonist Pan (University of Bristol Drama alumna and ‘Doctor Who’ star Pearl Mackie), a sound archivist who archives recordings surviving from the early 21st century. These include items such as a speech by President Obama’s on climate change, Neil Armstrong’s remarks after landing on the moon and Beyoncé’s ‘Crazy in love’. Pan is merrily deleting them all (useless and senseless). Until, one day, she stumbles upon a recording of birdsong in the Sumatran rainforest that inexplicably grabs her. In fact, she’s left intoxicated, almost falling in love with it. So begins Pan’s quest to understand its origin and purpose – not to mention her mission to reconstruct the meaning of an almost completely eradicated world of nature.

Over the past couple of years, I’ve been working on a project with the world-famous, Bristol-based BBC Natural History Unit (funded by the Arts and Humanities Research Council), exploring wildlife filmmaking over the past quarter-century. We wanted to include and support a creative dimension going far beyond the project’s more strictly academic and historical elements. Something poetic and performative that could take the study of nature at the BBC into new territory, and away from the visual. But the core theme remains the same: the value of the natural world and its representation in cultural form. This haunting drama focuses on that cultural value very closely by exploring an alien and alienating future world without nature – a world where the only memory of its former existence is preserved in Pan’s sound archive.

This is a deeply historical approach that re-unites me with a piece of research I published some time in the journal Environmental History (2005) what I called the strange stillness of the past – how sounds, both human and non-human generated, were overlooked by most historians. ‘Forest 404’ also ties in with another recent AHRC activity led by my colleague, Dr Victoria Bates. The project was called ‘A Sense of Place: Exploring Nature and Wellbeing through the Non-Visual Senses,’ and I participated as a volunteer. It was about immersing people in natural sensescapes using 360-degree sound and smell technologies. The idea is that we can potentially ‘take nature’ to people who can’t go to it for a first-hand experience.

With my partners at the BBC and Arts and Humanities Research Council, I see ‘Forest 404’ as part of an emerging research area known as the environmental humanities. The starting point of ‘enviro-hums’ is the conviction that a scientific perspective, no matter how important, cannot do full justice to the complexity of our many layered relationships with nature.

The humanities and arts have a big contribution to make in helping us to appreciate the value of what ecosystem services researchers call cultural services. This denotes the so-called non-material benefits we derive from the natural world – its aesthetic value (beauty), how it inspires imaginative literature, painting and music, its spiritual significance, and its role in forming cultural identities and giving us a sense of place. Last spring, Radio 3 broadcast a week-long celebration of all things forest and trees, following it up with another week in the autumn. ‘Into the Forest’ was all about how forests have supplied an almost unlimited source of inspiration for creative activity. ‘Forest 404’ confronts us with the brutal possibility of a world not just without forests and trees but even lacking a conception of nature. And it makes us think about how that absence impoverishes us culturally and spiritually as well as the more obvious ecological dangers we face.

Accompanying the podcast is an ambitious online survey devised by environmental psychologists at the University of Exeter and operated by The Open University. Data on how we respond to nature has previously concentrated on the visual. This focus on natural soundscapes will add a fresh dimension to what we already know about how contact with nature benefits our physical and mental wellbeing. Give the podcast a listen. Then please do the survey – over 7,000 people have already done so. It takes less than 10 minutes.

https://www.bbc.co.uk/programmes/p06tqsg3

————————
This blog is written by Cabot Institute member and environmental historian Professor Peter Coates.

Peter Coates

This blog has been republished with kind permission from the Bristol Centre for Environmental Humanities. View the original blog.

Prospective postgraduate students interested in Peter
Coates’ work have the opportunity to apply for his research project on the
Cabot Institute MScR in Global Environmental Challenges, ‘Fishscapes
and fish as biocultural heritage.’
This
one year research master’s project spanning both humanities and natural
sciences investigates the status of fish as a cultural as well as an ecological
species, occupying individual and collective memory.  For more information
about the Cabot
Institute MScR
please contact Joanne Norris at cabot-masters@bristol.ac.uk.

Bees and butterflies are under threat from urbanisation – here’s how city-dwellers can help

File 20190115 152977 13ovnf5.jpg?ixlib=rb 1.1
All a-flutter.
Shutterstock.

Pollinators such as bees, hoverflies and butterflies, are responsible for the reproduction of many flowering plants and help to produce more than three quarters of the world’s crop species. Globally, the value of the services provided by pollinators is estimated at between US$235 billion and US$577 billion.

It’s alarming, then, that pollinators are under threat from factors including more intense farming, climate change, disease and changing land use, such as urbanisation. Yet recent studies have suggested that urban areas could actually be beneficial, at least for some pollinators, as higher numbers of bee species have been recorded in UK towns and cities, compared with neighbouring farmland.

To find out which parts of towns and cities are better for bees and other pollinators, our research team carried out fieldwork in nine different types of land in four UK cities: Bristol, Reading, Leeds and Edinburgh.

An easy win

Urban areas are a complex mosaic of different land uses and habitats. We surveyed pollinators in allotments (also known as community gardens), cemeteries and churchyards, residential gardens, public parks, other green spaces (such as playing fields), nature reserves, road verges, pavements and man-made surfaces such as car parks or industrial estates.

Perfect for pollinators.
Shutterstock.

Our results suggest that allotments are good places for bees and other pollinating insects, and that creating more allotments will benefit the pollinators in towns and cities. Allotments are beneficial for human health and well-being, and also help boost local food production.

In the UK, there are waiting lists for allotments in many areas, so local authorities and urban planners need to recognise that creating more allotment sites is a winning move, which will benefit people, pollinators and sustainable food production.

Good tips for green thumbs

We also recorded high numbers of pollinating insects in gardens. Residential gardens made up between a quarter and a third of the total area of the four cities we sampled, so they’re really a crucial habitat for bees and other pollinators in cities. That’s why urban planners and developers need to create new housing developments with gardens.

But it’s not just the quantity of gardens that matters, it’s the quality, too. And there’s a lot that residents can do to ensure their gardens provide a good environment for pollinators.

Rather than paving, decking and neatly mown lawns, gardeners need to be planting flowers, shrubs and bushes that are good for pollinators. Choose plants that have plenty of pollen and nectar that is accessible to pollinators, and aim to have flowers throughout the year to provide a constant supply of food. Our research suggests that borage and lavender are particularly attractive for pollinators.

Now that’s a happy bee.
Shutterstock.

Often plants and seeds in garden centres are labelled with pollinator logos to help gardeners choose suitable varieties – although a recent study found that that ornamental plants on sale can contain pesticides that are harmful to pollinators, so gardeners should check this with retailers before buying.
Weeds are important too; our results suggest that dandelions, buttercups and brambles are important flowers for pollinators. So create more space for pollinators by mowing less often to allow flowers to grow, and leaving weedy corners, since undisturbed areas make good nesting sites.

An urban refuge

Parks, road verges and other green spaces make up around a third of cities, however our study found that they contain far fewer pollinators than gardens. Our results suggest that increasing the numbers of flowers in these areas, potentially by mowing less often, could have a real benefit for pollinators (and save money). There are already several initiatives underway to encourage local authorities to mow less often.

Roundhay Park in Leeds: not a flower in sight.
Shutterstock.

Ensuring there are healthy populations of pollinators will benefit the native plants and ecosystems in urban areas, as well as anyone who is growing food in their garden or allotment. Towns and cities could act as important refuges for pollinators in the wider landscape, especially since agricultural areas can be limited in terms of the habitat they provide.

It’s crucial for local authorities, urban planners, gardeners and land managers to do their bit to improve the way towns and cities are managed for pollinators. National pollinator strategies already exist for several countries, and local pollinator strategies and action plans are helping to bring together the key stakeholders in cities. Wider adoption of this type of united approach will help to improve towns and cities for both the people and pollinators that live there.The Conversation

———————————-
This blog is written by Cabot Institute member Dr Katherine Baldock, NERC Knowledge Exchange Fellow, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Environments without Borders

The effects of climate change vary hugely across political borders, and have wide-ranging impacts on different communities and environments. Climate policy responses must recognise this global interconnectedness, and integrate international cooperation with effective
local action. This is why global treaties such as the Paris Agreement are so important in the fight against climate change, but individual nations must also do their bit to achieve the objectives set out in the agreement. In Environments without Borders  (part of Research Without
Borders), a panel debate hosted by Bristol Doctoral College and the Cabot Institute on Wednesday 10th May, we will discuss some of these issues, using examples from our research on particular challenges facing our global ocean and water environments.

 

Iceberg photo taken on a research trip to Antarctica, by
Eric Mackie

Rising Sea Levels

Many climate change impacts require a policy response that balances mitigation with adaptation. Mitigation, by reducing global greenhouse gas emissions to achieve a zero-carbon economy, can drastically reduce some of the worst effects of climate change. However, we are already committed to certain climate change impacts, and these will require humanity to adapt. Sea level rise is a prime example. Global sea level has already risen 20cm since 1900, and the rate of sea level rise is increasing. We know this trend will continue throughout the 21st century and beyond, but the question is, how much will sea level rise, and how fast?
Projections of global sea level rise by 2100 range from a further 30cm, assuming drastic mitigation action, to 1m or more in “business-as-usual” scenarios with increasing carbon emissions. Cutting carbon emissions can hugely reduce the number of people at risk of displacement by sea level rise globally, from up to 760 million in a scenario with 4°C of warming, down to 130 million if warming is limited to 2°C in line with the Paris Agreement. Mitigation is therefore essential if we want to avoid the worst effects, but adaptation is also necessary to ensure humanity is resilient to sea level rise that is already locked in.
A coastal scene taken on a research trip in the South
Pacific, by Alice Venn

Disappearing Islands

The South Pacific is home to some of the world’s states most vulnerable to climate change impacts. Sea-level rise threatens coastal erosion, the widespread displacement of people and the inundation of the lowest-lying islands in Tuvalu, Kiribati and the Marshall Islands, while oceanic warming and acidification threaten the livelihoods of many remote coastal communities. More intense tropical cyclones, Cyclone Pam in 2015 and Winston in 2016, have recently resulted in tragic losses of life and damages in excess of $449 million and $470 million respectively. The devastation facing Small Island Developing States in the region, when juxtaposed with their negligible contribution to global greenhouse gas emissions which is estimated at just 0.03%, serves to illustrate the need for the international community to urgently step up efforts to provide support. Enhanced financial assistance for adaptation is essential, however this must be accompanied by strengthened legal protection for communities, readily accessible compensation for loss and damage, capacity building and a strengthened role for civil society organisations giving voice to community needs and traditional knowledge in policy-making processes.
The Lion Fish is an example of an aggressive invasive fish
in the Caribbean Sea, and has had an impact over native species, ecosystems and
local economies.

Invasive Aliens

Biodiversity in water environments can be adversely affected by invasive fish species, which originate from different sources, including marine ballast, fisheries improvements, and aquaculture. Invasive fish species can cause environmental concerns such as changes in the nutrients cycle, transmission of diseases, competence for resources, displacement and extinction of native species. Success in the establishment of invasive species depends on propagule size, physiology of the proper species, and current biotic and abiotic factors in the invaded system. Invasive species represent a global issue, and when combined with climate change their effects can be sharpened. Some limiting abiotic factors are expected to change as the climate changes, favouring new invasions and the spread of established invasive species to new ranges. Milder winters in northern latitude lakes, worldwide flooding and salinisation of coastal freshwater systems will provide suitable thermal conditions, new pathways for escape and dispersion, and the increase in dominance by invasive fish species adapted to brackish water systems. Deficient planning for future responses in water management can also result in favourable conditions for dispersion of undesirable aquatic organisms. For example, this is the case with the Nile tilapia, an invasive species in tropical ecosystems of southern Mexico and Tanzania, where flooding causes its dispersion but alternative management policies could improve the situation. More information see the Invasive Species Specialists Group.


Sustainable Resource Management

Against the backdrop of climate change, which will exacerbate the impact of human activities on natural resources, today’s environmental challenges require above all a strong and consistent commitment by national governments to better implement ambitious environmental policies that they previously adopted. However, traditional decision making approaches often are not equipped to ensure that precious resources are protected, if not enhanced. Sustainable management of natural resources is without doubt complex and creates conflicts between users that compete for access. For instance, there still seems to be too great a divide between the environmental and the business sector and these policy domains are as yet not fully integrated. Nonetheless, there are good examples of governments (and sub-national governments) that were successful in getting all key policy sectors on board when implementing difficult and ambitious environmental policies. For instance, the Scottish Government’s approach in implementing the Water Framework Directive demonstrates that with a strong political commitment, coupled with very proactive efforts in balancing the decision making towards more inclusive and cooperative policy processes, and with an intense and systematic use of evidence to back up policy proposals, it is possible to build trust between sectors and to act upon the barriers to implementation.

It’s clear that each of these challenges requires imminent action, but what are the right approaches, actors, and requirements to make meaningful progress? Whether you’re a member of the public, a policy maker, or someone working in the field, we invite you to join us at the Environments without Borders event on Wednesday 10 May for a lively and provocative debate about the challenges we face and how, collectively, we can spur action for change.
Blog authors (and panel members): Laura De Vito is a postgraduate researcher in the School of Geographical Sciences. Carlos Gracida Juarez is a postgraduate researcher in the School of Biological Sciences. Alice Venn is a postgraduate researcher in the School
of Social Sciences and Law. Erik Mackie is a postgraduate researcher in the School of Geographical Sciences, working together with the British Antarctic Survey, and kept up a blog during his recent fieldwork in Antarctica. Blog originally posted on the Policy Bristol Blog.

Model uncertainties in multispecies ecological models

We live in an increasingly uncertain world.  Therefore, when we model environmental processes of interest, it is vital to account for the inherent uncertainties in our analyses and ensure that this information is communicated to relevant parties.  Whilst the use of complex statistical models to estimate quantities of interest is becoming increasingly common in environmental sciences, one aspect of uncertainty that is frequently overlooked is that of model uncertainty.  Much of the research I conduct considers this additional aspect of uncertainty quantification; that is not just uncertainty in the quantities of interest, but also in the models that we use to estimate them.

An example of this is in a paper recently published in Ecology and Evolution (Swallow et al., 2016), which looks at how different species of birds that we commonly see in our gardens respond to the same environmental factors (or covariates).  Some of the species have declined rapidly over the past 40 years, whilst others have remained stable or even increased in number.  Possible drivers of these changes that have been suggested include increases in predators, changes in climate and availability of natural food sources.  Statistically speaking, we try to understand and quantify changes in observed numbers of birds by relating them to changes in measured environmental quantities that the birds will be subjected to, such as numbers of predators, weather variables, habitat quality etc.  Most previous analyses have modelled each of the species observed at many different geographical locations (or monitoring sites) independently of each other, and estimated the quantities of interest completely separately, despite the fact that all these species share the same environment and are subject to the same external influences.  So how do we go about accounting for the fact that similar species may share similar population drivers?

This essentially constitutes a model uncertainty problem – that is, which parameters should be shared across which species in our statistical model and which parameters should be distinct?

If we were to consider two different species and use two different environmental factors to explain changes in those species, say habitat type and average monthly temperature, there are four possible models to consider.  That is,

Model
Habitat type
Temperature
No parameters
1
Shared
Shared
2
2
Distinct
Shared
3
3
Shared
Distinct
3
4
Distinct
Distinct
4

This can easily be extended to a higher number of species and covariates.

There is also inevitably going to be some aspects of variability shown by some of the species that we cannot account for through the quantities we have measured.  We account for this using site-specific random effects, which explain variability that is linked to a specific monitoring site, but which is not accounted for by the environmental covariates in the model.  Again, we would usually assume this is a single quantity representing the discrepancy between what we have accounted for using our measured covariates and what is ‘left over’.  Following on from work of previous authors (Lahoz-Monfort et al., 2011), we again split this unexplained variation into two – unexplained variation that is common to all species and unexplained variation that is specific to a single species.  The ratio of these two quantities can give us a good idea of what measurements we may be missing.  Is it additional environmental factors that are wide-ranging in their effects or is it something relating to the specific ecology of an individual species?

In the paper, we apply our method to a large dataset spanning nearly 40 years, collected as part of the British Trust for Ornithology’s Garden Bird Feeding Survey.  We selected two groups of similar species commonly found in UK gardens during the winter.  For ecological reasons, we would expect the species within the two groups to show similar traits, so they act as ideal study species for detecting synchrony in responses to environmental factors.  Whilst most the results were consistent with those from single-species models (e.g. Swallow et al., 2015), studying the species at an ecosystem level also highlighted some additional relationships that it would be impossible to study under more simplistic models.  The results highlight that there is unsurprisingly a large degree of synchrony across many of these species, and that they share many of the traits and drivers of population change.  The synchronies observed in the results corresponded to both significant positive or negative relationships with covariates, as well as those species that collectively show no strong relationship with a given environmental factor.  There is, however, more to the story and some of the species showed strong differences in how they respond to external factors.  Highlighting these differences may offer important information on how best to halt or reverse population declines.

The results from our analyses showed the importance of considering model uncertainty in statistical analyses of this type, and that by incorporating relevant uncertainties, we can improve our understanding of the environmental processes of interest.  Incorporating more data into the analysis will help in further constraining common or shared parameters and reduce uncertainties in them.  It also allows us to guide and improve future data collection procedures if we can gain a better understanding of what is currently missing from our model.

Blog written by Dr Ben Swallow, a Postdoctoral Research Associate, studying Ecological and environmental statistics in the School of Chemistry.






References

Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Wanless, S., & Freeman, S. N. (2011). A capture-recapture model for exploring multi-species synchrony in survival. Methods in Ecology and Evolution, 2(1), 116–124.

Swallow, B., Buckland, S. T., King, R. and Toms, M. P. (2015). Bayesian hierarchical modelling of continuous non-negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter. Biometrical Journal, 58(2), 357–371

Swallow, B., King, R., Buckland, S. T. and Toms, M. P. (2016). Identifying multispecies synchrony in response to environmental covariates. Ecology and Evolution, 6(23), 8515–8525

Figure 1. Blue tits show a highly synchronous response with great tits, and to a lesser degree coal tits, to their surrounding environment.

 

Figure 2. Male house sparrow feeding on fat balls.  Whilst they show some synchrony in their response to environmental factors, they appear to be subject to a differing ecology to the other two species they were compared with.

A local view helps fight the effects of climate change on the ocean

In 2011, a marine heatwave hit the west coast of Australia leading to ten days of above average sea temperatures. The area was already known as an ocean warming “hotspot”, but this particular period was a tipping point, causing dramatic changes to the marine ecosystem. Underwater kelp forests along the coast reduced in density by 43%, with some disappearing entirely.

Kelp Forest. Image: Fastily, CCBYSA3.0

The loss of kelp resulted in an ecological shift, which led to the growth of different kinds of algae as temperate water species were replaced by subtropical and tropical species. Five years later, kelp forest recovery has still not been observed. A few days of extreme heat resulted in apparently irreversible change.

The frequency and intensity of extreme events, like marine heatwaves, are only expected to increase, and their consequences are hard to predict. But while some of these extreme events could be devastating, it isn’t all doom and gloom. Even though human-induced climate change is happening, local steps can be taken to help alleviate the impacts on our marine environments. And by focusing on a localised approach, we could make a positive difference on a global scale.

For example, in Australia, the government of Queensland spent AUS$7m on a 560 square kilometre cattle station in a bid to protect the Great Barrier Reef World Heritage Site. This cattle station had been producing as much as 40% of the sediment running into the Normanby River system and ultimately the Great Barrier Reef.

Great Barrier Reef. Image: Wise Hok Wai Lum, CCBYSA 4.0

The very existence of the Great Barrier Reef and its extraordinary biodiversity ultimately depends on the health of the corals. When they are covered by sediment, their ability to photosynthesise is dramatically reduced, resulting in less healthy coral. Unhealthy reefs are less able to deal with predators and other damaging events.

In buying the cattle station the government is able to stem the sediment runoff away from the Great Barrier Reef and provide a healthier environment in which the coral can thrive. This is just one example of scientists using local knowledge successfully to inform ministers to make decisions on the local scale that alleviate the problems faced by marine ecosystems of climate change, over fishing and pollution.

To apply such processes in more places in the world, organising climate information and action must move from a global to a regional scale. Overfishing and pollution can be much more effectively dealt with by focusing on local responses.

The Pacific Islands for example, rely heavily on the tuna fish industry. But they have faced major problems of over fishing and reducing stocks – from both small vessels and industrialised ships from other countries. Only a united front would enable control over stocks and a future for the industry.

So in 1982, a collective of islands focused on the conservation and management of tuna in the pacific set up the Naura agreement. Papua New Guinea, Solomon Islands, Tuvalu, Kiribati, Marshall Islands, Naura, the federated states of Micronesia and Palau, and more recently Tokelau, all signed up to the Vessel Day Scheme for Pacific tuna, which limits the amount of days available for fishing to maintain tuna populations. In the last five years the collective has received global recognition for its sustainable management methods – and an increase in revenue from US$60m to US$360m.

Over in the Caribbean, meanwhile, Antigua has some of the most degraded coral reefs in the region. Overfishing is thought to be a main reason for this as it has reduced the amount of herbivorous fish, resulting in the proliferation of seaweed – a main competitor of the corals.

A sea change

To improve the health of the reef, marine protected areas – and specifically a “no take zone” – were created in 2014 in conjunction with the local fishermen. Within a year, this change in local management led to significant increases in the biomass of target fish species. This allowed herbivore fishes to actively graze on the seaweed biomass, enabling respite and providing recovery time for the corals.

In Fiji, mangrove trees are being planted to combat coastal erosion caused by rising sea levels and increasing storm surges. While a direct benefit to Fiji’s inhabitants against potential harm from the ocean, this action also creates a habitat and a site of refuge for many juvenile marine species that will also be affected by future climate change.

Mangrove trees, Fiji. Image: J.-M. Lebigre, CCBYSA3.0

Lessons can be learned from all of these local strategies which could be replicated in similar environments facing similar problems. But developing these initiatives will depend on our understanding of key organisms and their interactions with each other. These are some of the areas suggested by professors Daniela Schmidt and Philip Boyd, in a commentary on what ocean scientists should consider when informing policymakers.

Small island nations will feel the impact of global changes on the ocean first, so they are leading the way in adaption and mitigation techniques in retaliation to changing climates. With the additional threat of America no longer being a part of the international agreements on global warming, tackling climate change on a local and regional scale may be our only hope.

Article written by Cabot Institute member Leanne Melbourne and originally hosted on The Conversation

‘Back in buzziness’

Awareness of the plight of bees and other insect pollinators, both across the UK and globally, has grown in recent years. One of the main contributing factors is habitat loss and the decline in flowers that provide nectar and pollen, which are vital resources for pollinators. This was highlighted by research conducted by Mathilde Baude and colleagues from the University of Bristol, which featured on the cover of the journal Nature this February (Baude et al., 2016).

Image courtesy of Nature.

Facilitated by generous support from the Alumni Foundation and a Grow For It Award grant, a group of students at the University of Bristol initiated a project to address this issue. Using recycled scaffolding planks from the Bristol Wood Recycling Project, they constructed two raised beds to be sown with a highly diverse mixture of native wildflowers.

Raised beds created at the University of Bristol behind the Biomedical Sciences building using recycled scaffolding planks and native wildflowers.

Get Bristol Buzzing assisted in selecting the seed mix, which is made up of annuals and perennials of thirty-seven species (including some rare species). When complete, the planters will create over 30 m2 of rich urban pollinator habitat.

In June 2016, student volunteers prepared one of the planters with topsoil and recycled construction material from the local area. The meadow, which occupies a previously open concrete space behind the Biomedical Sciences building, is in now in bloom and buzzing with bees.

Next year, a group of student volunteers will prepare the remaining bed, ready for the summer. There are also plans to organise other events and workshops to continue to raise awareness amongst students, while sharing information on practical ways in which individuals can contribute to creating more pollinator habitat. Student volunteers will also be responsible for the ongoing maintenance of the beds.

The diverse meadows not only create habitat for pollinators and other insects, but also provide food for seed-eating birds and shelter for small animals. As well as promoting biodiversity within the campus, the meadows are sure to contribute positively to the wellbeing of staff, students and members of the public who use this space.

——————————————-
This blog is written by Harry Wells, from the Bristol Hub, a student-led group offering practical volunteering, skilled placements, project incubation and events to help you shape a better world.

In defence of wasps: why squashing them comes with a sting in the tale

 

Image credit: Trounce

They are one of the most unwelcome signs of summer. Buzzing through beer gardens, attacking innocent picnics, wasps arrive ominously with a sting in their tails. Universally disliked, they are swatted, trapped and cursed. But would a wasp-free world really be a better place?

Despite their poor public image, wasps are incredibly important for the world’s economy and ecosystems. Without them, the planet would be pest-ridden to biblical proportions, with much reduced biodiversity. They are a natural asset of a world dominated by humans, providing us with free services that contribute to our economy, society and ecology.

Wasps, as we know, turn up everywhere. More than 110,000 species have been identified, and it is estimated there are still another 100,000 waiting to be discovered. One recent study described 186 new wasp species in one small corner of Costa Rican rainforest alone. In contrast there are only around 5,400 species of mammals, and 14,000 recorded species of ant.

This huge and diverse assemblage belongs to the order Hymenoptera and is divided into two groups, the Parasitica and the Aculeata. Almost 80,000 species of wasps belong to the Parasitica group, which lay their eggs in or on their prey or plants using elongated tubular organs called ovipositors. The remaining 33,000 species are Aculeates, most of which are predators, and the ones whose ovipositors have been modified through evolution to form a sting.

Both parasitic and predatory wasps have a massive impact on the abundance of arthropods, the largest phylum in the animal kingdom, which includes spiders, mites, insects, and centipedes. They are right at the top of the invertebrate food chain. Through the regulation of both carnivorous and plant-feeding arthropod populations, wasps protect lower invertebrate species and plants. This regulation of populations is arguably their most important role, both ecologically and economically.

Although the majority of wasps lead solitary lives, it is the 1,000 or so species of social wasps which make the biggest impression on insect populations. Social wasp queens share their nests with thousands of offspring workers, who raise upwards of 10,000 sibling larvae during the colony cycle. This means a single nest provides a whopping bang for buck in terms of ecosystem services, killing vast numbers of spiders, millipedes and crop-devouring insects.

Pest control. shutterstock

Many social wasps are generalist predators too, which means they control populations of a wide range of species, but rarely wipe any single species out. This makes them an extremely useful, minimising the need for toxic pesticides, but unlikely to threaten prey biodiversity. It is not yet possible to accurately quantify their huge economic value in this regard, but their diet of agricultural pests such as caterpillars, aphids and whiteflies makes a massive contribution to global food security.

Wasps also play a crucial role in ecosystems as specialist pollinators. The relationship between figs and fig wasps is arguably the most interdependent pollination symbiosis known to man. Without one another, neither the fig nor fig wasp can complete their life-cycle – a textbook example of co-evolution which is estimated to have been ongoing for at least 60m years. Figs are keystone species in tropical regions worldwide – their fruit supports the diets of at least 1,274 mammals and birds. The extinction of fig wasps would therefore be catastrophic in tropical ecosystems.

The birds and the bees … and the wasp

Almost 100 species of orchids are solely reliant on the action of wasps for pollination. The plants mimic the appearance and chemical profile of female wasps, tricking males into attempting to mate with them, so that as the male wasps attempt to copulate with the flower they are loaded with pollen which is then transferred to the next male-seducing orchid. Without the wasp, these orchids would be extinct.

Working wasp. Shutterstock

Wasps also function as generalist pollinators, inadvertently transferring pollen between flowers they visit for nectar collection. One type even provide their larvae with pollen instead of insect prey. These “pollen-wasps” are considered to perform the same ecological roles as bees, pollinating a diverse array of plants. Unfortunately, while bees are credited with contributing at least €100 billion a year to the global economy through their acts of pollination, the works of wasps in the same sector is often ignored.

Even the wasps’ sting could have a positive impact on the human population. Medical researchers are exploring the potential use of biologically active molecules found within wasp venom for cancer therapy. A chemical found in the venom of the tropical social wasp Polybia paulista, has been shown to selectively destroy various types of cancerous cells.

Since they protect our crops, make ecosystems thrive, sustain fruit and flowers, and might help us fight disease, perhaps we should appreciate the wonderful work of wasps before we next swipe at them with a rolled up newspaper. They may be a nuisance on a sunny afternoon – but a world without wasps would be an ecological and economic disaster.

————————————
This blog is written by Cabot Institute member, Seirian Sumner, a Senior Lecturer in Behavioural Biology, University of Bristol and Ryan Brock, MRes candidate, University of Bristol.  This article was originally published on The Conversation. Read the original article.