Ecological decline: an overlooked emergency?

A blue tit landing. Image credit: Adam Hearne, Student at the University of Bristol.
The words ‘Ecological Emergency’ are appearing in an increasing number of environmental declarations, strategies and parliamentary bills. This blog will discuss the need to recognise ecological decline as an emergency in its own right, as well as being an element of the climate emergency. This will be part of an ‘Ecological Emergency’ Cabot Campaign which will run alongside the United Nations Convention on Biological Diversity (COP15), which is happening this week.

Last year, The Cabot Institute for the Environment’s home city Bristol became the first major city to declare an ecological emergency. This declaration came only two years after Bristol became the first European city to declare a climate emergency. Many UK councils and organizations have since declared joint “Climate and Ecological” emergencies, and the Climate and Ecological Emergency Bill has been put forward to replace the ‘outdated’ 2008 Climate Change Act. These declarations show that while climate and ecology are intrinsically linked, there is increasing recognition of ecological decline as an emergency in its own right as well as being a consequence of and contributor to the climate emergency. Climate mitigation is fundamental to safeguarding ecosystems, however, ecological decline could continue alongside decarbonisation and even be exacerbated by the means to get to net-zero, if the ecological emergency is overlooked in sustainability strategies and policy.

The UN Convention on Biodiversity (COP15) is taking place this week and a Cabot Campaign on the ‘Ecological Emergency’ will run alongside it. The campaign will include a series of blogs and posts across our website and social media. Using statements from Cabot researchers in relevant fields, this blog will discuss the ecological emergency and the need for targeted action.

 

Bristol suspension bridge. Image credit: Meg Barstow, Postgraduate Student at the University of Bristol.
 
What is the ecological emergency?

Biodiversity is being lost on a scale not seen since the last mass extinctionDr Chris Clements Caboteer and leader of the experimental conservation group explains. While Dr Andrew Flack, an environmental and animal historian, described the ecological emergency as “among the most profound crises of our time, diminishing not only planetary diversity but also the very experience of being human on our beautiful, rich planet“.

More quantitively, the statistics which drove Bristol’s pioneering ‘Ecological Emergency’ declaration include:

  • 60% of the worlds wild animals have been lost since 1970
  • One in seven UK wildlife species are at risk of extinction
  • More locally in Bristol and the surrounding areas, swift and starling populations have dropped by more than 96% since 1994
  • 41% of insects are threatened with extinction, posing a huge threat to our global food supply due to 75% of our crops being reliant on pollination by insects
  • Three-quarters of land and two-thirds of marine environment have been significantly altered by human actions
 
A honey bee on a flower. Image credit: Callum Mclellan, Student at the University of Bristol.

In their statements, many of our academics highlighted that, as well as the beauty of the natural world and our responsibility to preserve it, our reliance on ecosystems makes their survival essential to our own. Ecosystems provide us with food, oxygen, nutrient cycling, carbon absorption, air and water purification, and protection from erosion, floods and droughts. Many of these services are already under increased pressure due to climate change, which ecological decline is intertwined with. Destruction of ecosystems and exploitation of wildlife can also cause the emergence of infectious disease, as has been demonstrated by the occurrence of the current COVID-19 pandemic. Biodiversity loss and climate action failure both earned their own place in the top five threats to humanity in the next five years, according to the 2020 Global Risks Report from the World Economic Forum. Though these interdependent crises will drastically affect everyone, their consequences will not be felt equally among communities and are sadly already intensifying inequality and poverty.

Intertwined emergencies

 “The climate emergency is certainly exacerbating the ecological emergency” Professor Jane Memmott, a leading restoration ecologist, explained. Under current trends, climate change is projected to drive many ecosystems to collapse. Simultaneously, large-scale destruction of ecological carbon sinks, such as forests, wetlands and mangroves, is contributing to climate change. There are several feedback loops at play: destruction of carbon sinks is increasing atmospheric CO2, which drives climate change and in turn further ecological degradation, which then further debilitates natures ability to store carbon. This forms a vicious cycle, with profound consequences for the planet.

The interdependent emergencies share similar causes, consequences and solutions, however, Dr Tommaso Jucker, whose research is on forests and their responses to rapid global change, explains “it is not only climate change that threatens biodiversity, and the effects of biodiversity loss on people will not just be a subset of those brought on by climate change”. As well as climate change, threats to ecosystems include species over-exploitation, habitat destruction, pesticides and pollution of land, air and water. These could all continue simultaneously to our efforts to decarbonise, and even be exacerbated by the means to get to net-zero, if the ecological emergency is overlooked in sustainability strategies.
 
A forest. Image credit: Dr. Stephen Montgomery, Senior Research Fellow at the University of Bristol

A coordinated approach to climate and ecology

The climate emergency is becoming mainstream conversation and it is now widely accepted that huge changes in policy, infrastructure and behaviour are needed. However, while the climate emergency is gaining recognition, the ecological emergency is comparatively overlooked. If we are to avoid ecological collapse, a co-ordinated approach to the crises is essential; focusing purely on technological advancement and decarbonisation runs the risk of allowing and even exacerbating further ecosystem destruction.

Natural climate solutions, such as strategic management of forests, grasslands and wetlands, can offer around a third of the climate mitigation required by 2030 to keep warming below 2 °C. These environments are not only carbon sinks, but biodiversity havens, making them effective solutions for ecological decline as well as climate change. Protecting ecosystems is also often significantly more cost-effective than human-made climate interventions. However, due to our often unnatural lifestyles and a fast-growing population, nature alone will not be enough to mitigate human impact on the environment.  

A peacock butterfly. Image credit: Sam J. England, PhD Student at the University of Bristol.

The need for targeted action 

As well as the intrinsic links and coordinated solutions to the climate and ecological emergencies, there is a lot that can be done to specifically alleviate the ecological emergency. This is exemplified by Bristol’s ‘One City Ecological Emergency Strategy‘ which predominantly focuses on land management, pesticide use, water quality and consumption of products that undermine global ecosystems. This is in addition to climate mitigation, already covered in the Climate Emergency Action Plan.

Last year’s UN Summit for Biological Diversity saw leaders from all regions of the world take the ‘Leader’s Pledge for Nature’, which commits to reversing alarming global biodiversity loss trends by 2030. To achieve this ambitious but necessary goal, both climate action and targeted conservation and restoration strategies will be needed on both a local and global level. For these crises to be mitigated, some uncomfortable truths surrounding lifestyles many have become accustomed to will have to be faced.

The word ‘emergency’ from a scientific perspective 

Despite widespread agreement on the obvious threats posed by biodiversity loss and the need for action, the word ‘emergency’ can be controversial, especially amongst the scientific community. Professor Richard Wallexplained “As a research scientist, my view is that the sound-bite ‘ecological emergency’ is not sufficiently nuanced to be useful in scientific discourse and is best left to journalists and campaigners; it has no scale or quantification and what constitutes an ‘emergency’ is highly subjective.”

Public awareness surrounding our changing climate and declining ecosystems are important, however, if action doesn’t follow declarations, then they run the risk of being no more than empty PR stunt and can increase public immunity to the word as well as the impacts of the crisis itself. COP15, which is happening this week, will be pivotal in deciding the future of our own species, as well as all the other species that share our planet.

—————————-

This blog was written by Hilary McCarthy, a University of Bristol PhD Student and part of the Cabot Communicators group.

Thank you to University of Bristol students and staff for wildlife photography submissions used in this blog and across the campaign: Adam Hearne (UoB student and wildlife photographer, www.adamhearnewildlife.co.uk, Instagram: @adamhearnewildlife) Meg Barstow (UoB student, wildlife photographer, Instagram: @cardboard.rocket)
Dr Stephen Montgomery (Senior Research Fellow, Neurobiology and Behaviour, School of Biological Sciences) Sam J. England (PhD student researching aerial electroreception in insects and wildlife photographer, Instagram @sam.j.england, https://www.samjengland.com)

 

Looking back over a decade of Urban Pollinating in Bristol

Bees on Teasel
Two bumble bees on Teasel. Credit: crabchick

As the UK prepares to host the UN Climate Change Conference COP26 (31 October – 12 November) and the UN Convention on Biological Diversity COP15 takes place online (11-15 October), I have been looking back over a decade of urban pollinating in Bristol.

One of the four COP26 goals is ‘adapt to protect communities and natural habitats’ which includes Nature Based Solutions (NBS). These are answers to global environmental challenges which are created or inspired by natural processes based on or utilising the functions of nature. For this purpose, the Urban Pollinator Project established first here in Bristol, demonstrates perfectly how natural resolutions can benefit our ecosystems on a local, national, and global scale.

Urban Pollinators 

Before 2011 an extraordinarily little amount was known about the ecology of urban pollinators in the UK. Despite pollinators maintaining a vital role in protecting our biodiversity and upholding crucial ecosystems, their role in our ever-expanding cityscapes had yet to be examined.

Only a few plants are able to self-pollinate, and as a result they are reliant on insects, birds, bees, wasps, wind, and water to keep the cogs of pollination turning. Yet, since the 1930s 97% of wildflower meadows, home to many the many species of pollinators, have been lost. As a result of this drastic loss of habitat, a recent report found that a quarter of known bee species have not been sighted  since the 1990s. Certainly, an increase in urbanisation and expansion of cities and towns into wilder areas has contributed to such a dramatic decline. And so, the question was posed – how can we make pollinating insects more resilient and adapt to our increasingly urban landscapes?

In 2011 Dr Katherine Baldock, a researcher at the University of Bristol, set out to answer these questions. Leading teams from the University of Reading, Leeds, Edinburgh, and Bristol they embarked on a four-year nationwide initiative researching insect pollinators in urban habitats in the first study of its kind – The Urban Pollinator Project.

Findings 

In Bristol, university researchers from the project examined the introduction of wildflower meadows alongside the M32 in July and August 2011. Over half of the species on Bristol’s Biodiversity Action Plan Priority Species List are in fact pollinators, and so not only was the Urban pollinators research unique, but vital to the future of our city’s ecology.

The findings from the study were able to report no significant difference between an abundance of pollinators and rare species in these urban wildflower meadows when compared with farms, wild areas, and nature reserves. They were also able to locate “hot spots” of pollinator diversity in cities and most importantly they were able to provide practical advice to the government, wildlife organisations, city councils and local individuals as to how to increase and improve pollinator biodiversity in urban habitats. (report)

In 2014, researchers from the Urban Pollinators Project went on to work alongside the Department for Environment, Food and Rural Affairs (Defra) using their findings to provide practical advice to the UK as part of the National Pollinator strategy, using Bristol as an example of where urban pollinating strategies had already been implemented.

Local impact 

Locally, the team of urban pollinators have left a big impression on the Bristol community. The research conducted by the urban pollinators has gone on to have a significant impact on local wildlife trusts, businesses, individuals, and policies, influencing and advising on many successful conservation initiatives across the city.

At the University of Bristol, students in 2012 and 2013 planted wildflower meadows across the campus, creating a 30 square metre pollinating zone which in addition to its ecological benefits, looked great too. Many other organisations followed suit and urban wildlife zones cropped up across Bristol localities making room for pollinating insects and raising awareness for their protection throughout different communities.

In 2014, the Get Bristol Buzzing initiative was formed in yet another first of its kind. In a partnership between Avon Wildlife Trust, Bee Bristol, Bristol City Council, Bristol Friends of the Earth, Buglife, South Gloucestershire Council and the University of West England they all united, dedicated and determined to protect and increase pollinating habitat across Bristol. Similarly, they committed themselves to raising awareness for the importance of insect pollinators and spread the word around local communities, organisations, and businesses. (report)

In 2015 the University of Bristol led “The Greater Bristol Pollinator strategy” which in 2017 was able to report an increase in pollinators in the Greater Bristol area.

Global impact

The decline in pollinating insects is occurring globally, and at a rapid rate. To help to protect global biodiversity the blueprint established in Bristol could certainly provide a nature-based solution in the face of future global environmental challenges.

Today the impact of pollinators is no longer just being investigated in urban environments across the UK. Current project-lead and original member of the Urban Pollinators Project Professor Jane Memmott has recently been examining the role of pollinators in protecting food chains in Nepal. Her dedication to improving ecological networks and pollinating systems has most recently led her to a pioneering discovery that pollinating animals can improve nutrients in food in developing countries.

The project today

This year, continuing their excellent work, Professor Jane Memmott and the Urban Pollinator Project discovered that urban gardens are vital for protecting pollinating insects. Published in the Journal of Ecology, this research found that city gardens account for an impressive 85% of nectar produced in Urban areas generating the most nectar per unit area of land. With 29% of land in cities made up of domestic gardens, it truly is vital that we seek to cultivate thriving urban environments to protect our pollinating ecosystems.

Thanks to these dedicated ecologists it has been a remarkable decade for the Bristol bees, hopefully the next decade will be even better.

So, what can you do to turn your garden into a pollinating haven?

(1) Plant for our pollinators:

Bees, wasps, butterflies, and other pollinating insects love nectar and pollen rich flowers and trees. Try filling your garden, allotment, porch, windowsill, or any available space with the flowers they love!

(2) Leave areas to go wild:

Save yourself from gardening and allow plants to grow freely, the wilder the area the more pollinators it will attract.

(3) Ditch pesticides:

Many pesticides can be harmful if not kill pollinating insects. Abandoning pesticides will increase the chances of making your area a pollinating zone!

(4) Mow your lawn less:

Research published in the Biological Conservation Journal found that by mowing your lawn once every two weeks instead of one increases the number of bees in that area by a huge 30%.

(5) Make a bee house:

Make a bee house of bamboo sticks to give your local bees somewhere to lay their eggs and protect themselves from harsh weather conditions.

—————————-
This blog is written by Lois Barton, Cabot Institute for the Environment Global Environmental Challenges Master’s student and temporary Comms Assistant. Lois’s research explores the role of the arts in ecological movements in Chile, specifically surrounding how visual culture increases visibility for environmental causes.

 

Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

The case for case studies: a natural hazards perspective

As I wander the streets of Easton, as I have done over the last 18 months, the landscape becomes more and more familiar. Same streets, same skies. Things seem flat and still.

Living in this mundane landscape, I find it hard to believe that we live on a turbulent, roiling planet. But the Earth is not flat or still! Natural events happen daily, and extreme climatic events continue to escalate – although all we see in England is a rainy July. Some people are more vulnerable to the Earth’s vicissitudes than others. Since 2021 began, volcanoes in the Democratic Republic of Congo, Italy, Guatemala, and Iceland have erupted, and hurricanes have already gathered pace in the Atlantic. Many of these events have caused disaster for people living in these areas, losing homes, livelihoods, and lives.

Disasters erode and destroy, they leave scars and memories. We are fascinated by them: we seek to understand and to explain. How can we best do that? The case study is one way. Because of its in-depth nature, a case study is well-suited to describe disasters caused by natural hazards (earthquakes, volcanoes, landslides, floods, droughts), allowing us to tell a rich and nuanced story of events. However, we have to be prudent. There are many more natural hazards than we have scope to investigate. A good subject for a case study offers the possibility of new insights that other, limited methods have missed. Many, many times an earthquake or flood does not cause disaster. In choosing a good subject for a case study, we are looking for that event which is particularly interesting to us, and which we hope can tell us new things.

I am currently working on three case studies of disasters in Guatemala. Why and how did the disasters happen?

Coming from an Earth Sciences background, I’m not sure where to begin. There are no obvious blueprints. Why is there so little guidance on how to do a case study in our field? I think there are two reasons. Earth Sciences has always generously included other physical and social sciences (physics, chemistry, mathematics, geography), while a disaster caused by natural hazards involves both physical and social factors. So while this supports disaster’s suitability to the case study method, both science and subject use multiple philosophies and methods. It’s harder to make a cookbook with mixed methods. Secondly, Earth Sciences looks at the mutual interaction between people and nature, who operate on different timescales. Tracing a disaster through a case study requires uniting these timescales in a single narrative. That union is a difficult task and often context-specific, so not generalizable to a single blueprint. (Strangely, in an interdisciplinary case study of a disaster it’s the physical scientists who seem to study events over shorter timescales, for example on the physical triggers of a volcanic eruption. A few years ago in my undergraduate I remember tracing the story of Earth’s evolution across billions of years; now we’re operating over days and hours!)

There have been many criticisms levelled at case study research: that you can’t generalize from a single case, that theoretical knowledge is more valuable than practical knowledge, that case studies tend to confirm the researcher’s biases [1]. I have also read that case studies are excellent for qualitative research (e.g., on groups or individuals), but less so for quantitative research (e.g. on events or phenomena) [2]. I think these points are rubbish.

“You can’t generalize from a single case”, goes the argument against case studies. But generalization is not the point of a case study. We want to go deeper, to know more intimately, to sense in full colour. “Particularization, not generalization” is the point [1], and  intimate knowledge is worthwhile in itself. However, I also think the argument is false. Because it is such a rich medium, the case study affords us a wealth of observations and thus interpretations that allow us to modify our existing beliefs. As an example, a case study of the Caribbean island of Montserrat during an eruptive crisis showed Montserratians entering the no-go zone, risking their lives from the volcano to care for their crops and cattle [3]. This strongly changed the existing reasoning that people would prioritize their life over their livelihood during a volcanic eruption. How could you deny that this finding is not applicable beyond the specific case study? True, it isn’t certain to happen elsewhere, but the finding reminds us to research with caution and to challenge our assumptions. A case study might not give us a totally new understanding of an event, but it might refine our understanding – and that’s how most science progresses, both social and natural. This ‘refinement’ is also a balm for people like me who might be approaching a new case study with trepidation, concerned we might be going over old ground. Sure we might, but here we might forge a new path, there dig up fresh insights.

On the grounds of theoretical versus practical knowledge – we learn by doing! We are practical animals!

Context-dependent knowledge and experience are at the very heart of expert activity.

(Flyvbjerg, 2006) 

Does a case study confirm what we already expect to find? I think the possibility of refining our existing understanding can encourage researchers to keep our eyes open to distortions and bias. I think this final criticism comes from a false separation between the physical and social sciences. Qualitative research is held up as a contrast to “objective” quantitative research in the physical sciences, focussed on hypothesis-testing and disinterested truth. But any PhD student will tell you that the scientific process doesn’t quite work that way. Hypotheses are revised, created, and abandoned with new data, similar to how grounded theory works. And you can find any number of anecdotes where two scientists with the same data and methods came to two different interpretations. There is always some subjective bias as a researcher because (a) you’re also a human, and (b) because the natural world is inherently uncertain. (I wonder if this is an appeal for those who study pure maths – it’s the only discipline I can think of that is really objective and value-free).  Maybe qualitative/quantitative has some difference in the degree of researcher subjectivity. This would be a fascinating subject to explicitly include in those interdisciplinary case studies that involve both types of researcher – how does each consider their inherent bias towards the subject?

After flattening those objections above, I really want to make three points as to why case studies are so great.

First, they have a narrative element that we find irresistible. As Margaret Atwood said,

You’re never going to kill storytelling because it’s built into the human plan. We come with it.

A case study is not just a story, but it does have a story woven into its structure. Narratives are always partial and partisan; our case studies will be too. That’s not to say they can’t be comprehensive, just that they cannot hope to be omniscient. I love this quotation:

A story has no beginning or end: arbitrarily one chooses that moment of experience from which to look back or from which to look ahead.

Graham Greene, The End Of The Affair 

It certainly applies to case studies, too. We may find the roots of a disaster in political machinations which began decades before, or that the journey of a mudslide was hastened by years of deforestation. Attempting to paint the whole picture is futile, but you have to start somewhere.

Second, a case study provides a beautiful chance to both understand and to explain – the aims of the qualitative and the quantitative researcher, respectively. Each may approach truth and theory differently: the first sees truth as value-laden and theory to be developed in the field; the second, as objective and to be known before work is begun. It’s precisely because it’s difficult to harmonize these worldviews that we should be doing it – and the disaster case study provides an excellent arena.

Finally, the process of building a case study creates a space for dialogue. Ideas grow through conversation and criticism, and the tangle of researchers trying to reconcile their different worldviews, and of researchers reconciling their priorities with other interested people, seems both the gristle and the fat of case study research. In the case of disasters, I think this is the most important point which case study research wins. Research can uncover the most wonderful things but if it is not important to the people who are at risk of disaster, we cannot hope to effect positive change. How can we understand, and then how can we make ourselves understood? For all the confusion and frustration that it holds, we need dialogue [4]. A really beautiful example of this is the dialogue between volcano-watchers and scientists at Tungurahua volcano in Ecuador: creating a shared language allowed for early response to volcanic hazards and a network of friendships [5].

I’ve grappled with what products we should make out of these case studies. What are we making, and who are we making it for? From the above point, a valuable product of a case study can be a new relationship between different groups of people. This is not really tangible, which is hard to deal with for the researchers (how do you publish a friendship?) But a case study can produce a relationship that benefits both parties and outlasts the study itself. I think I’ve experienced this personally, through my work at Fuego volcano. I have found the opportunity to share my research and also to be transformed in my workings with local people. This has lasted longer than my PhD, I am still in touch with some of these people.

I believe in the power of case study to its own end, to create dialogue, and to mutually transform researcher and subject. And, if a new relationship is a valuable product of the case study, it is made stronger still by continued work in that area. To do that, the relationships and the ties that bind need to be supported financially and socially across years and uncertainty, beyond the current grey skies and monotony. When we are out, we will be able to renew that dialogue in person and the fruits of our labour will blossom.

[1] Flyvbjerg, 2006

[2] Stake, 1995

[3] Haynes et al., 2005

[4] Barclay et al., 2015

[5] Armijos et al., 2017

——————————-

This blog is written by Cabot Institute for the Environment member Ailsa Naismith from the School of Earth Sciences at the University of Bristol. Ailsa studies volcanic hazards in Central America.

Ailsa Naismith

 

 

“Between the Insect Hordes and Ourselves”: Imaginaries of insect declines from the 1960s onwards

A still from Bee Movie (2007), directed by Simon J. Smith and Steven Hickner

‘According to all known laws of aviation, there is no way a bee should be able to fly. Its wings are too small to get its fat little body off the ground. The bee, of course, flies anyway because bees don’t care what humans think is impossible.’ You might recognise these words as the opening from the animated film Bee Movie (2007). The film is as known for its memes as its compulsive heteronormativity. If you are unaware: not only are there many happy nuclear bee families, the star of the film, Barry, is a male worker bee. On top of that, the human woman with whom Barry takes on the honey industry and fights for equal bee rights appears to develop some warm feelings for him. Needless to say, Bee Movie is fun but not a cinematographic masterpiece.

Jokes aside, the 2007 film is a good indicator of an influx of documentaries, memoirs, novels, and poetry collections starring the Western or European honeybee. Perhaps I’m being too critical here. This influx does excite me in a way, as it shows that insect life and decline has become part of a broader conversation. But, with this awareness of insect decline in our cultural imagination comes a sting in the tale. In this case, the sting is an almost obsessive focus on the European honeybee in an age of overall insect decline and what Elizabeth Kolbert (2014) popularised as the sixth extinction. There are thousands of known species of bees all over the world—not to mention other bugs—and yet a select group of people continue to talk, write, film, draw and campaign for the European honeybee. (Are you familiar with the concept of bee-washing?)

In response to these stories, I started thinking about the following: why is there so much creative work on the honeybee? Insects make up the most biodiverse and largest class of described (and estimated) species in the animal kingdom. And while many of these—not all—are indeed facing decline or even extinction, the European honeybee is not one of them.

What started out as a general interest, quickly evolved—metamorphosed!—into my doctoral project on insect decline. Inspired by Ursula Heise’s (2016) work on the cultural side of extinction, I started asking the following: what kind of narratives do people create when talking about insect decline, and how do they tie in with other and older insect stories, our broader cultural memory? Is there an explanation to be found for this honeybee hyperfocus when it comes to narratives of insect decline? Thinking about these questions, I kept returning to Donna Haraway, who wrote that ‘it matters what stories we tell to tell other stories with … It matters what stories make worlds, what worlds make stories.’ (12) Haraway’s keen (if not overcited) observation also applies to the case of insect decline. When looking at creative storytelling—of which there is a lot—we’re not just considering entertainment or aesthetics. Even with something as seemingly banal as Bee Movie, it does matter what stories we tell to tell the story of insect decline. So why do people contribute to this, for lack of a better word, honeybee extravaganza?

An assortment of contemporary honeybee stories
My project become more than a chance to get deep into the problem with honeybees and other charismatic microfauna. Thinking about tiny critters (instead of charismatic megafauna) created the opportunity to engage with and tease out some of the broader questions in the fields of critical animal and extinction studies. Between all the reading and writing and talking and plotting out of the work that needs to be done, theories and ideas and random shower thoughts keep falling into place, and I have a red thread or two running through the different chapters of my thesis. Watch this space.
For now, I do want to say that one of the more rewarding elements of my research so far has been the deep dive into care ethics. My understanding of the concept has both expanded and gained new focus, and my deep dive into care and conservation has opened my eyes to the possibility of care as a violent practice (Salazar Parreñas 2018). One of my current challenges is to see how care, understood as ‘a vital affective state, an ethical obligation and a practical labour’ (Puig de la Bellacasa), is reflected in the poetics of insect decline. What does a poetics of care look like when we let ourselves become subject to, as Haraway (2008) phrased it, the ‘unsettling obligation of curiosity, which requires knowing more at the end of the day than at the beginning’ (36). What happens when we allow ourselves to pay careful attention to the other-than-human life around us and start to care?
Assorted Coleoptera in the University of Texas Insect Collection

 

Another thread is that of the different (temporal and spatial) scales of extinction and the limits of our empathy for other-than-human animals. As Ursula Heise (2016) and Dolly Jørgensen (2019) so effectively argue in their monographs on the topic, extinctions come to matter once they reflect upon our own (human) pasts, presents, and futures and we can emotionally engage with them. And like these different pasts, presents, and futures, extinction isn’t singular. It is easy—and to a certain extent even useful—to put it all under the label of the sixth extinction. Still, I am increasingly convinced that such labels obscure the differences and intricacies people need to be aware of in the face of the sixth extinction—or rather, extinctions.
There are local extinctions, global extinctions, extinctions completely missed or forgotten (by human eyes), even desired extinctions. Communities respond to and engage with different species and local and global extinctions in different ways. Especially when something tricky like shifting baseline syndrome ensures that some communities aren’t aware of local extinctions or declines in the first place, while passionate campaigns for charismatic megafauna put certain species on the global agenda and in the public eye. I’m not saying this is always a bad thing (I’m just as passionate about the survival of the Malayan and Sumatran tiger as the next person).
I am, however, saying that it is worth researching how attention and care are directed and, ideally, can be redirected in times of need. And insects—in all their creeping and crawling diversity, with important ecosystem functions such as pollination, prey, and waste disposal—have turned out to be an excellent group to consider these questions.
Sources
  • Haraway, Donna J. Staying with the Trouble: Making Kin in the Chthulucene. Duke UP, 2016.
  • —. When Species Meet. U of Minneapolis P, 2008.
  • Heise, Ursula K. Imagining Extinctions: The Cultural Meanings of Endangered Species. U of Chicago P, 2016.
  • Jørgensen, Dolly. Recovering Lost Species in the Modern Age: Histories of Longing and Belonging. MIT Press, 2019.
  • Kolbert, Elizabeth. The Sixth Extinction: An Unnatural History. Bloomsbury, 2014.
  • Puig de la Bellacasa, María. Matters of Care: Speculative Ethics in More Than Human Worlds. U of Minnesota P, 2017. Salazar Parreñas, Juno. Decolonizing Extinction: The Work of Care in Orangutan Rehabilitation. Duke UP, 2018

—————————–

This blog is written by Cabot Institute member Eline D. Tabak, PhD researcher in English (University of Bristol) and Environmental Humanities (BSU). This blog outlines her SWW DTP-funded project. You can follow Eline on twitter @elinetabak and see more of her writing and work at www.elinedtabak.com. This blog was reposted with kind permission from the Centre for Environmental Humanities. View the original blog.

Eline D. Tabak

 

 

Mourning auks: Creative expressions of extinction in an era of ecological loss

Looking at your hearts, suspended in their jar, I try and imagine the two of you still alive. I know that if you were anything like your closest living kin, you would have bonded for life. You lived a long time, and it would have been a relationship that had gathered and deepened over years. By the time you came together this final time, the congregations that were so important to your kind were already a thing of the past. Perhaps you were aware of how empty your world had become. Although you were alone on that low rock, it could be that you were accompanied by the memory of the multitude that had once been. By this point it was already too late. There were too few of you to recover what had been lost. Even so, maybe you would have nodded to each other and tried to make the best of it. Maybe you would have started showing off, just as those before you had always done; turning your heads from side to side so the bright white around your eye would have caught the light. Maybe then, with an exuberance tinged with grief, you would have thrown your heads back and let out an ecstatic cry; the vivid yellow inside your mouths shining like a beacon, mimicking the sun.

Catastrophic anthropogenically-driven biodiversity loss is a defining problem of our time, with hundreds of extinctions observed every year, and many more occurring unnoticed. Reacting to the scale of this issue, extinction studies researchers have called for new interdisciplinary responses interrogating what extinction means, why it matters, and how it is narrated.

‘Mourning Auks’ is an innovative practice-led project examining how artful geographic methods and outcomes can contribute to these vital questions. Over the next four years I plan to explore what novel and affective modes of engaging with anthropogenically-driven species loss can be generated through creative articulations of the emotional dimensions of extinction, and how these can be communicated in public artistic and museum contexts.

In extinction studies, extinction is understood not as a singular, generic concept, but as something that exists through multiple specificities relatable to the diversity of lifeworlds being lost. This is generally explored via case studies, which employ critically-driven creative-academic storytelling to express the biological, cultural and temporal particularities of species, their unique phenomenal worlds, and the significance of extinction within multispecies entanglements. This narrative-based approach provides a form of witnessing that is attentive to others in the face of irreparable loss, that counters human exceptionalism, and creates new ethical and cultural modes that help to resist the destructive legacies of anthropogenically-driven extinction more broadly.

Unexplored potential exists for artistic methods to undertake and communicate these extinction-orientated case studies. Through a case study on the now extinct great auk, my practice-led project will explore and analyse ways of engaging broader audiences with this field. It aims to expand the affective reach of these essential attempts to re-articulate contemporary species loss, and its ethical and socio-cultural imperative.

Fig. 1 Alca Impennis by John Gould, from The Birds of Great Britain, Vol. 5 (1873). John Gould/Public Domain

The great auk was a flightless seabird that was once found in the cold coastal waters of the North Atlantic. These birds nested in huge social colonies on isolated islands, which they returned to every year. These remote skerries provided protection from terrestrial predators. However, they became increasingly vulnerable after technological advances in ocean-going vessels brought European sailors into close proximity to these breeding colonies, which they ruthlessly exploited for food on trans-Atlantic voyages.

My research will begin with analysis of the ‘Garefowl books’, a substantial, underexploited resource held in the Cambridge University Library collections. These manuscript diaries, kept by the Victorian ornithologist and egg collector John Wolley, record interviews with witnesses who were amongst the last to see the auks alive, and who took part in the final hunting parties to their breeding places. Close reading of this material will inform studio-based experimentation utilising artistic methods drawn from archival impulses in contemporary art (see the works of John Akomfrah and Tacita Dean, amongst many others). Following on from Brian Massumi’s 2014 book What Animals Teach us About Politics such ‘playful’ creative practices can be seen as animal in origin, and provide a continuum with animal life (see Merle Patchett’s Archiving). In this context, these textual encounters with the auk’s disappearance offer the means of both interrogating the socio-cultural practices that drove their extinction, and of generating sympathetic multispecies re-alignments.

I also plan to draw the narratives surrounding the auks’ disappearance into emotional geographic frames. These examine spatialisations of emotion in relation to landscape, including those relating to death, such as mourning and grief. Study here is mostly restricted to human contexts, and my project aims to develop this to explore the affective geographies of sites of extinction-driven absence.

Fig. 2 An eighteenth-century sketch of Geirfuglasker by Guðni Sigurðsson. Geirfuglasker, a now submerged volcanic island off the south coast of Iceland, was one of the great auk’s breeding colonies. National Museum of Iceland/Public Domain

In recent re-interpretations, avian philopatry has been re-conceptualised as other-than-human ‘storying-of-place’ (see Thom van Dooren’s excellent book Flight Ways). Hypothesising this for great auks gives their breeding sites potency as places, not just because they were invested with history and meaning for the auks, but because these became the traumatic sites of their extinction. In this context, I plan to undertake fieldwork at some of the auks’ historical breeding colonies, and at those of their closest living relatives. Here, imaginative curiosity towards these species’ remote, liminal, and aquatic geographies will inform a creative enlivening of the great auks’ historical lifeworld, providing the basis for further artistic experimentation centred on site-specific place-making exercises. These will attend to how landscapes are matters ‘of [other-than-human] biographies, attachments and exiles’ in which ‘absence, loss and haunting’ abound (Wylie, 2007: 10), and will survey the more-than-representational emotional aspects of extinction.

—————————-

This blog is written by Milo Newman, PhD candidate in human geography. This blog introduces his project on creativity and extinction. Milo’s research is funded through the AHRC South West and Wales Doctoral Training Partnership. You can follow Milo on twitter @_milonewman and see more of his work at www.milonewman.com. This blog has been reposted with kind permission from the Centre for Environmental Humanities. Read the original blog.

Milo Newman

 

 

In the Amazon, forest degradation is outpacing full deforestation

Deforestation in the Brazilian Amazon has increased abruptly in the past two years, after having been on a downward trajectory for more than a decade. With the country’s president Jair Bolsonaro notoriously enthusiastic about expanding into the rainforest, new deforestation data regularly makes global headlines.

But what fewer people realise is that even forests that have not been cleared, or fully “deforested”, are rarely untouched. Indeed, just 20% of the world’s tropical forests are classified as intact. The rest have been impacted by logging, mining, fires, or by the expansion of roads or other human activities. And all this can happen undetected by the satellites that monitor deforestation.

These forests are known as “degraded”, and they make up an increasingly large fraction of the world’s remaining forest landscapes. Degradation is a major environmental and societal challenge. Disturbances associated with logging, fire and habitat fragmentation are a significant source of CO₂ emissions and can flip forests from carbon sinks to sources, where the carbon emitted when trees burn or decompose outweighs the carbon taken from the atmosphere as they grow.

Forest degradation is also a major threat to biodiversity and has been shown to increase the risk of transmission of emerging infectious diseases. And yet despite all of this, we continue to lack appropriate tools to monitor forest degradation at the required scale.

A man chainsaws a tree trunk in Amazon rainforest
Degraded – but not deforested.
CIFOR / flickr, CC BY-NC-SA

The main reason forest degradation is difficult to monitor is that it’s hard to see from space. The launch of Nasa’s Landsat programme in the 1970s revealed – perhaps for the first time – the true extent of the impact that humans have had on the world’s forests. Today, satellites allow us to track deforestation fronts in real time anywhere in the world. But while it’s easy enough to spot where forests are being cleared and converted to farms or plantations, capturing forest degradation is not as simple. A degraded forest is still a forest, as by definition it retains at least part of its canopy. So, while old-growth and logged forests may look very different on the ground, seen from above they can be hard to tell apart in a sea of green.

Degradation detectives

New research published in the journal Science by a team of Brazilian and US researchers led by Eraldo Matricardi has taken an important step towards tackling this challenge. By combining more than 20 years of satellite data with extensive field observations, they trained a computer algorithm to map changes in forest degradation through time across the entire Brazilian Amazon. Their work reveals that 337,427 km² of forest were degraded across the Brazilian Amazon between 1992 and 2014, an area larger than neighbouring Ecuador. During this same period, degradation actually outpaced deforestation, which contributed to a loss of a further 308,311 km² of forest.

The researchers went a step further and used the data to tease apart the relative contribution of different drivers of forest degradation, including logging, fire and forest fragmentation. What these maps reveal is that while overall rates of degradation across the Brazilian Amazon have declined since the 1990s – in line with decreases in deforestation and associated habitat fragmentation – rates of selective logging and forest fires have almost doubled. In particular, in the past 15 years logging has expanded west into a new frontier that up until recently was considered too remote to be at risk.

Map of deforestation and degradation in the Brazilian Amazon, 1992-2014.
The Brazilian Amazon, shaded in grey, covers an area larger than the European Union.
Matricardi et al

By putting forest degradation on the map, Matricardi and colleagues have not only revealed the true extent of the problem, but have also generated the baseline data needed to guide action. Restoring degraded forests is central to several ambitious international efforts to curb climate change and biodiversity loss, such as the UN scheme to pay developing countries to keep their forests intact. If allowed to recover, degraded forests, particularly those in the tropics, have the potential to sequester and store large amounts of CO₂ from the atmosphere – even more so than their intact counterparts.

Simply allowing forests to naturally regenerate can be a very effective strategy, as biomass stocks often recover within decades. In other cases, active restoration may be a preferable option to speed up recovery. Another recent study, also published in the journal Science, showed how tree planting and cutting back lianas (large woody vines common in the tropics) can increase biomass recovery rates by as much as 50% in south-east Asian rainforests. But active restoration comes at a cost, which in many cases exceeds the prices that are paid to offset CO₂ emission on the voluntary carbon market. If we are to successfully implement ecosystem restoration on a global scale, governments, companies and even individuals need to think carefully about how they value nature.The Conversation

———————————-

This blog is written by Cabot Institute member Dr Tommaso Jucker, Research Fellow and Lecturer, School of Biological Sciences, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Tommaso Jucker

 

 

Forest 404: A chilling vision of a future without nature

Binge-watching of boxsets on BBC iPlayer or Netflix is a growing habit. And binge-listening isn’t far behind. Podcast series downloadable through BBC Sounds are all the rage (with a little help from footballer Peter Crouch). Enter Radio 4’s ‘Forest 404’ – hot off the press as a 27-piece boxset on the fourth day of the fourth month (4 April 2019). This is something I’ve been involved in recently: an experimental BBC sci-fi podcast that’s a brand-new listening experience because of its three-tiered structure of drama, factual talk and accompanying soundscape (9 x 3 = 27).

Try to imagine a world in which not only forests but every last trace of the natural world as we know it has been erased (almost……). This eco-thriller by Timothy X. Atack (credits include ‘Dr Who’) is set in the 24th century following a data crash in the early 21st century called The Cataclysm (404 is also the error message you get when a website is unavailable). The action follows lead protagonist Pan (University of Bristol Drama alumna and ‘Doctor Who’ star Pearl Mackie), a sound archivist who archives recordings surviving from the early 21st century. These include items such as a speech by President Obama’s on climate change, Neil Armstrong’s remarks after landing on the moon and Beyoncé’s ‘Crazy in love’. Pan is merrily deleting them all (useless and senseless). Until, one day, she stumbles upon a recording of birdsong in the Sumatran rainforest that inexplicably grabs her. In fact, she’s left intoxicated, almost falling in love with it. So begins Pan’s quest to understand its origin and purpose – not to mention her mission to reconstruct the meaning of an almost completely eradicated world of nature.

Over the past couple of years, I’ve been working on a project with the world-famous, Bristol-based BBC Natural History Unit (funded by the Arts and Humanities Research Council), exploring wildlife filmmaking over the past quarter-century. We wanted to include and support a creative dimension going far beyond the project’s more strictly academic and historical elements. Something poetic and performative that could take the study of nature at the BBC into new territory, and away from the visual. But the core theme remains the same: the value of the natural world and its representation in cultural form. This haunting drama focuses on that cultural value very closely by exploring an alien and alienating future world without nature – a world where the only memory of its former existence is preserved in Pan’s sound archive.

This is a deeply historical approach that re-unites me with a piece of research I published some time in the journal Environmental History (2005) what I called the strange stillness of the past – how sounds, both human and non-human generated, were overlooked by most historians. ‘Forest 404’ also ties in with another recent AHRC activity led by my colleague, Dr Victoria Bates. The project was called ‘A Sense of Place: Exploring Nature and Wellbeing through the Non-Visual Senses,’ and I participated as a volunteer. It was about immersing people in natural sensescapes using 360-degree sound and smell technologies. The idea is that we can potentially ‘take nature’ to people who can’t go to it for a first-hand experience.

With my partners at the BBC and Arts and Humanities Research Council, I see ‘Forest 404’ as part of an emerging research area known as the environmental humanities. The starting point of ‘enviro-hums’ is the conviction that a scientific perspective, no matter how important, cannot do full justice to the complexity of our many layered relationships with nature.

The humanities and arts have a big contribution to make in helping us to appreciate the value of what ecosystem services researchers call cultural services. This denotes the so-called non-material benefits we derive from the natural world – its aesthetic value (beauty), how it inspires imaginative literature, painting and music, its spiritual significance, and its role in forming cultural identities and giving us a sense of place. Last spring, Radio 3 broadcast a week-long celebration of all things forest and trees, following it up with another week in the autumn. ‘Into the Forest’ was all about how forests have supplied an almost unlimited source of inspiration for creative activity. ‘Forest 404’ confronts us with the brutal possibility of a world not just without forests and trees but even lacking a conception of nature. And it makes us think about how that absence impoverishes us culturally and spiritually as well as the more obvious ecological dangers we face.

Accompanying the podcast is an ambitious online survey devised by environmental psychologists at the University of Exeter and operated by The Open University. Data on how we respond to nature has previously concentrated on the visual. This focus on natural soundscapes will add a fresh dimension to what we already know about how contact with nature benefits our physical and mental wellbeing. Give the podcast a listen. Then please do the survey – over 7,000 people have already done so. It takes less than 10 minutes.

https://www.bbc.co.uk/programmes/p06tqsg3

————————
This blog is written by Cabot Institute member and environmental historian Professor Peter Coates.

Peter Coates

This blog has been republished with kind permission from the Bristol Centre for Environmental Humanities. View the original blog.

Prospective postgraduate students interested in Peter
Coates’ work have the opportunity to apply for his research project on the
Cabot Institute MScR in Global Environmental Challenges, ‘Fishscapes
and fish as biocultural heritage.’
This
one year research master’s project spanning both humanities and natural
sciences investigates the status of fish as a cultural as well as an ecological
species, occupying individual and collective memory.  For more information
about the Cabot
Institute MScR
please contact Joanne Norris at cabot-masters@bristol.ac.uk.

Bees and butterflies are under threat from urbanisation – here’s how city-dwellers can help

File 20190115 152977 13ovnf5.jpg?ixlib=rb 1.1
All a-flutter.
Shutterstock.

Pollinators such as bees, hoverflies and butterflies, are responsible for the reproduction of many flowering plants and help to produce more than three quarters of the world’s crop species. Globally, the value of the services provided by pollinators is estimated at between US$235 billion and US$577 billion.

It’s alarming, then, that pollinators are under threat from factors including more intense farming, climate change, disease and changing land use, such as urbanisation. Yet recent studies have suggested that urban areas could actually be beneficial, at least for some pollinators, as higher numbers of bee species have been recorded in UK towns and cities, compared with neighbouring farmland.

To find out which parts of towns and cities are better for bees and other pollinators, our research team carried out fieldwork in nine different types of land in four UK cities: Bristol, Reading, Leeds and Edinburgh.

An easy win

Urban areas are a complex mosaic of different land uses and habitats. We surveyed pollinators in allotments (also known as community gardens), cemeteries and churchyards, residential gardens, public parks, other green spaces (such as playing fields), nature reserves, road verges, pavements and man-made surfaces such as car parks or industrial estates.

Perfect for pollinators.
Shutterstock.

Our results suggest that allotments are good places for bees and other pollinating insects, and that creating more allotments will benefit the pollinators in towns and cities. Allotments are beneficial for human health and well-being, and also help boost local food production.

In the UK, there are waiting lists for allotments in many areas, so local authorities and urban planners need to recognise that creating more allotment sites is a winning move, which will benefit people, pollinators and sustainable food production.

Good tips for green thumbs

We also recorded high numbers of pollinating insects in gardens. Residential gardens made up between a quarter and a third of the total area of the four cities we sampled, so they’re really a crucial habitat for bees and other pollinators in cities. That’s why urban planners and developers need to create new housing developments with gardens.

But it’s not just the quantity of gardens that matters, it’s the quality, too. And there’s a lot that residents can do to ensure their gardens provide a good environment for pollinators.

Rather than paving, decking and neatly mown lawns, gardeners need to be planting flowers, shrubs and bushes that are good for pollinators. Choose plants that have plenty of pollen and nectar that is accessible to pollinators, and aim to have flowers throughout the year to provide a constant supply of food. Our research suggests that borage and lavender are particularly attractive for pollinators.

Now that’s a happy bee.
Shutterstock.

Often plants and seeds in garden centres are labelled with pollinator logos to help gardeners choose suitable varieties – although a recent study found that that ornamental plants on sale can contain pesticides that are harmful to pollinators, so gardeners should check this with retailers before buying.
Weeds are important too; our results suggest that dandelions, buttercups and brambles are important flowers for pollinators. So create more space for pollinators by mowing less often to allow flowers to grow, and leaving weedy corners, since undisturbed areas make good nesting sites.

An urban refuge

Parks, road verges and other green spaces make up around a third of cities, however our study found that they contain far fewer pollinators than gardens. Our results suggest that increasing the numbers of flowers in these areas, potentially by mowing less often, could have a real benefit for pollinators (and save money). There are already several initiatives underway to encourage local authorities to mow less often.

Roundhay Park in Leeds: not a flower in sight.
Shutterstock.

Ensuring there are healthy populations of pollinators will benefit the native plants and ecosystems in urban areas, as well as anyone who is growing food in their garden or allotment. Towns and cities could act as important refuges for pollinators in the wider landscape, especially since agricultural areas can be limited in terms of the habitat they provide.

It’s crucial for local authorities, urban planners, gardeners and land managers to do their bit to improve the way towns and cities are managed for pollinators. National pollinator strategies already exist for several countries, and local pollinator strategies and action plans are helping to bring together the key stakeholders in cities. Wider adoption of this type of united approach will help to improve towns and cities for both the people and pollinators that live there.The Conversation

———————————-
This blog is written by Cabot Institute member Dr Katherine Baldock, NERC Knowledge Exchange Fellow, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Environments without Borders

The effects of climate change vary hugely across political borders, and have wide-ranging impacts on different communities and environments. Climate policy responses must recognise this global interconnectedness, and integrate international cooperation with effective
local action. This is why global treaties such as the Paris Agreement are so important in the fight against climate change, but individual nations must also do their bit to achieve the objectives set out in the agreement. In Environments without Borders  (part of Research Without
Borders), a panel debate hosted by Bristol Doctoral College and the Cabot Institute on Wednesday 10th May, we will discuss some of these issues, using examples from our research on particular challenges facing our global ocean and water environments.

 

Iceberg photo taken on a research trip to Antarctica, by
Eric Mackie

Rising Sea Levels

Many climate change impacts require a policy response that balances mitigation with adaptation. Mitigation, by reducing global greenhouse gas emissions to achieve a zero-carbon economy, can drastically reduce some of the worst effects of climate change. However, we are already committed to certain climate change impacts, and these will require humanity to adapt. Sea level rise is a prime example. Global sea level has already risen 20cm since 1900, and the rate of sea level rise is increasing. We know this trend will continue throughout the 21st century and beyond, but the question is, how much will sea level rise, and how fast?
Projections of global sea level rise by 2100 range from a further 30cm, assuming drastic mitigation action, to 1m or more in “business-as-usual” scenarios with increasing carbon emissions. Cutting carbon emissions can hugely reduce the number of people at risk of displacement by sea level rise globally, from up to 760 million in a scenario with 4°C of warming, down to 130 million if warming is limited to 2°C in line with the Paris Agreement. Mitigation is therefore essential if we want to avoid the worst effects, but adaptation is also necessary to ensure humanity is resilient to sea level rise that is already locked in.
A coastal scene taken on a research trip in the South
Pacific, by Alice Venn

Disappearing Islands

The South Pacific is home to some of the world’s states most vulnerable to climate change impacts. Sea-level rise threatens coastal erosion, the widespread displacement of people and the inundation of the lowest-lying islands in Tuvalu, Kiribati and the Marshall Islands, while oceanic warming and acidification threaten the livelihoods of many remote coastal communities. More intense tropical cyclones, Cyclone Pam in 2015 and Winston in 2016, have recently resulted in tragic losses of life and damages in excess of $449 million and $470 million respectively. The devastation facing Small Island Developing States in the region, when juxtaposed with their negligible contribution to global greenhouse gas emissions which is estimated at just 0.03%, serves to illustrate the need for the international community to urgently step up efforts to provide support. Enhanced financial assistance for adaptation is essential, however this must be accompanied by strengthened legal protection for communities, readily accessible compensation for loss and damage, capacity building and a strengthened role for civil society organisations giving voice to community needs and traditional knowledge in policy-making processes.
The Lion Fish is an example of an aggressive invasive fish
in the Caribbean Sea, and has had an impact over native species, ecosystems and
local economies.

Invasive Aliens

Biodiversity in water environments can be adversely affected by invasive fish species, which originate from different sources, including marine ballast, fisheries improvements, and aquaculture. Invasive fish species can cause environmental concerns such as changes in the nutrients cycle, transmission of diseases, competence for resources, displacement and extinction of native species. Success in the establishment of invasive species depends on propagule size, physiology of the proper species, and current biotic and abiotic factors in the invaded system. Invasive species represent a global issue, and when combined with climate change their effects can be sharpened. Some limiting abiotic factors are expected to change as the climate changes, favouring new invasions and the spread of established invasive species to new ranges. Milder winters in northern latitude lakes, worldwide flooding and salinisation of coastal freshwater systems will provide suitable thermal conditions, new pathways for escape and dispersion, and the increase in dominance by invasive fish species adapted to brackish water systems. Deficient planning for future responses in water management can also result in favourable conditions for dispersion of undesirable aquatic organisms. For example, this is the case with the Nile tilapia, an invasive species in tropical ecosystems of southern Mexico and Tanzania, where flooding causes its dispersion but alternative management policies could improve the situation. More information see the Invasive Species Specialists Group.


Sustainable Resource Management

Against the backdrop of climate change, which will exacerbate the impact of human activities on natural resources, today’s environmental challenges require above all a strong and consistent commitment by national governments to better implement ambitious environmental policies that they previously adopted. However, traditional decision making approaches often are not equipped to ensure that precious resources are protected, if not enhanced. Sustainable management of natural resources is without doubt complex and creates conflicts between users that compete for access. For instance, there still seems to be too great a divide between the environmental and the business sector and these policy domains are as yet not fully integrated. Nonetheless, there are good examples of governments (and sub-national governments) that were successful in getting all key policy sectors on board when implementing difficult and ambitious environmental policies. For instance, the Scottish Government’s approach in implementing the Water Framework Directive demonstrates that with a strong political commitment, coupled with very proactive efforts in balancing the decision making towards more inclusive and cooperative policy processes, and with an intense and systematic use of evidence to back up policy proposals, it is possible to build trust between sectors and to act upon the barriers to implementation.

It’s clear that each of these challenges requires imminent action, but what are the right approaches, actors, and requirements to make meaningful progress? Whether you’re a member of the public, a policy maker, or someone working in the field, we invite you to join us at the Environments without Borders event on Wednesday 10 May for a lively and provocative debate about the challenges we face and how, collectively, we can spur action for change.
Blog authors (and panel members): Laura De Vito is a postgraduate researcher in the School of Geographical Sciences. Carlos Gracida Juarez is a postgraduate researcher in the School of Biological Sciences. Alice Venn is a postgraduate researcher in the School
of Social Sciences and Law. Erik Mackie is a postgraduate researcher in the School of Geographical Sciences, working together with the British Antarctic Survey, and kept up a blog during his recent fieldwork in Antarctica. Blog originally posted on the Policy Bristol Blog.

Model uncertainties in multispecies ecological models

We live in an increasingly uncertain world.  Therefore, when we model environmental processes of interest, it is vital to account for the inherent uncertainties in our analyses and ensure that this information is communicated to relevant parties.  Whilst the use of complex statistical models to estimate quantities of interest is becoming increasingly common in environmental sciences, one aspect of uncertainty that is frequently overlooked is that of model uncertainty.  Much of the research I conduct considers this additional aspect of uncertainty quantification; that is not just uncertainty in the quantities of interest, but also in the models that we use to estimate them.

An example of this is in a paper recently published in Ecology and Evolution (Swallow et al., 2016), which looks at how different species of birds that we commonly see in our gardens respond to the same environmental factors (or covariates).  Some of the species have declined rapidly over the past 40 years, whilst others have remained stable or even increased in number.  Possible drivers of these changes that have been suggested include increases in predators, changes in climate and availability of natural food sources.  Statistically speaking, we try to understand and quantify changes in observed numbers of birds by relating them to changes in measured environmental quantities that the birds will be subjected to, such as numbers of predators, weather variables, habitat quality etc.  Most previous analyses have modelled each of the species observed at many different geographical locations (or monitoring sites) independently of each other, and estimated the quantities of interest completely separately, despite the fact that all these species share the same environment and are subject to the same external influences.  So how do we go about accounting for the fact that similar species may share similar population drivers?

This essentially constitutes a model uncertainty problem – that is, which parameters should be shared across which species in our statistical model and which parameters should be distinct?

If we were to consider two different species and use two different environmental factors to explain changes in those species, say habitat type and average monthly temperature, there are four possible models to consider.  That is,

Model
Habitat type
Temperature
No parameters
1
Shared
Shared
2
2
Distinct
Shared
3
3
Shared
Distinct
3
4
Distinct
Distinct
4

This can easily be extended to a higher number of species and covariates.

There is also inevitably going to be some aspects of variability shown by some of the species that we cannot account for through the quantities we have measured.  We account for this using site-specific random effects, which explain variability that is linked to a specific monitoring site, but which is not accounted for by the environmental covariates in the model.  Again, we would usually assume this is a single quantity representing the discrepancy between what we have accounted for using our measured covariates and what is ‘left over’.  Following on from work of previous authors (Lahoz-Monfort et al., 2011), we again split this unexplained variation into two – unexplained variation that is common to all species and unexplained variation that is specific to a single species.  The ratio of these two quantities can give us a good idea of what measurements we may be missing.  Is it additional environmental factors that are wide-ranging in their effects or is it something relating to the specific ecology of an individual species?

In the paper, we apply our method to a large dataset spanning nearly 40 years, collected as part of the British Trust for Ornithology’s Garden Bird Feeding Survey.  We selected two groups of similar species commonly found in UK gardens during the winter.  For ecological reasons, we would expect the species within the two groups to show similar traits, so they act as ideal study species for detecting synchrony in responses to environmental factors.  Whilst most the results were consistent with those from single-species models (e.g. Swallow et al., 2015), studying the species at an ecosystem level also highlighted some additional relationships that it would be impossible to study under more simplistic models.  The results highlight that there is unsurprisingly a large degree of synchrony across many of these species, and that they share many of the traits and drivers of population change.  The synchronies observed in the results corresponded to both significant positive or negative relationships with covariates, as well as those species that collectively show no strong relationship with a given environmental factor.  There is, however, more to the story and some of the species showed strong differences in how they respond to external factors.  Highlighting these differences may offer important information on how best to halt or reverse population declines.

The results from our analyses showed the importance of considering model uncertainty in statistical analyses of this type, and that by incorporating relevant uncertainties, we can improve our understanding of the environmental processes of interest.  Incorporating more data into the analysis will help in further constraining common or shared parameters and reduce uncertainties in them.  It also allows us to guide and improve future data collection procedures if we can gain a better understanding of what is currently missing from our model.

Blog written by Dr Ben Swallow, a Postdoctoral Research Associate, studying Ecological and environmental statistics in the School of Chemistry.






References

Lahoz-Monfort, J. J., Morgan, B. J. T., Harris, M. P., Wanless, S., & Freeman, S. N. (2011). A capture-recapture model for exploring multi-species synchrony in survival. Methods in Ecology and Evolution, 2(1), 116–124.

Swallow, B., Buckland, S. T., King, R. and Toms, M. P. (2015). Bayesian hierarchical modelling of continuous non-negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter. Biometrical Journal, 58(2), 357–371

Swallow, B., King, R., Buckland, S. T. and Toms, M. P. (2016). Identifying multispecies synchrony in response to environmental covariates. Ecology and Evolution, 6(23), 8515–8525

Figure 1. Blue tits show a highly synchronous response with great tits, and to a lesser degree coal tits, to their surrounding environment.

 

Figure 2. Male house sparrow feeding on fat balls.  Whilst they show some synchrony in their response to environmental factors, they appear to be subject to a differing ecology to the other two species they were compared with.