Pollination and International Development: How bees can help us fight poverty and feed the world

Animal pollinators are the industrious workers in the factory of life – transporting pollen from one flower to another to ensure successful fertilisation. 75% of our crop plants benefit from this free service which can increase the yield, quality and even shelf-life of their products. This translates to a US$235-577bn value to global agriculture each year. Many of our favourite foods – strawberries, coffee and cocoa – can end up shrivelled and tasteless without pollination. This ecosystem service is under increasing threat however, as pollinators face the potent cocktail of pressures we have laid upon them, declining in numbers across various parts of the world.

But what has all this got to do with international development? From what we can tell, communities in developing countries [1] are more reliant on pollinators than almost anyone, standing to lose important income, livelihoods, nutrition and cultural traditions if pollinators decline. And yet, although a number of researchers across the developing world have made substantial and important contributions to this field, limited resources and capacity have meant that only a small proportion of pollination research has focused on these regions. In fact, there isn’t even enough data to know what is happening to pollinators in the developing world, let alone how we can best conserve them and their values to human wellbeing.

Over two billion people in developing countries are reliant on smallholder farming and therefore indirectly reliant on pollinators, without necessarily knowing it.  Many valuable cash crops, for example coffee, cocoa and cashews, are highly pollinator dependent and almost exclusively grown in the developing world, providing income for millions of people. In fact the reliance on pollinator-dependent crops has increased faster in the developing world than anywhere else. Reliance on beekeeping for income and livelihoods has also increased and is becoming a common component of sustainable development projects worldwide.

Worryingly, declines in pollination will have deeper consequences than just the loss of crop yields and income. Because many of the most nutritionally important food groups such as fruits, nuts and vegetables are also the most pollinator-dependent, pollinator declines are likely to shift the balance of people’s diets away from these foods. As a result, many millions of people around the world, particularly in developing countries, are expected to become deficient in important micronutrients such as vitamin A, vitamin C, iron and folate, resulting in millions of years of healthy life lost.

So what is being done about all this? In recognition of the importance of pollinators to human welfare and the threats facing them, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) commissioned a global assessment of Pollinators, Pollination and Food Production, published in 2016. This triggered a great wave of political and media attention and has resulted in the incorporation of the report’s key findings into the Convention on Biological Diversity (CBD). Many governments are now in the process of developing national pollinator strategies, including the developing nations of Brazil, Argentina, Colombia, South Africa and India. On this wave of momentum, the CBD has also requested the UN Food and Agriculture Organisation (FAO) to update their International Pollinator Initiative (IPI) which aims to build greater understanding, management and conservation of pollinators around the world. This international attention won’t last forever though, so it is important that the current momentum is sustained and built upon as soon as possible, ensuring as many countries as possible – particularly in the developing world – are involved.

The UK has a valuable opportunity to contribute to these efforts. As a centre of excellence for pollination science, it is the second largest funder and producer of pollination research after the US. But only c.6% of the £95M we have contributed to pollination research in the last 10 years has any link or collaboration with a developing country (ÜberResearch 2018). As more of the UK’s Official Development Assistance budget is made available for research, there is a shift in emphasis towards research that directly contributes towards international development. New funding programmes are encouraging the UK research community to engage in collaborative projects with researchers in developing countries, building valuable research capacity. With the relevance of pollination and agro-ecology to addressing the UN’s Sustainable Development Goals, these topics may fit into this new funding landscape. However, to be effective and ethical, partners and institutions in developing countries must be involved in the design of, and stand to benefit from these collaborations. See here for a UKCDS report outlining the ways in which academics and funders can help ensure fair partnerships.

As populations in the developing world expand, along with per-capita food demands, these issues become all the more pressing. Food production will need to increase by 70% come 2050 and this cannot be achieved by simply expanding agricultural land or fertilizer input. To ensure people are well-fed, in a way that is sustainable and ethical, we will have to intensify our farming in new ways. Understanding and managing pollination may be an important part of this and is something that researchers, politicians, agriculturalists and development workers will need to engage with sooner rather than later.

[1] For simplicity, we use the term ‘developing countries’ to refer to all countries listed in the Organisation for Economic Co-operation and Development’s (OECD) Development Assistant Committee (DAC) list of Official Development Assistance (ODA) recipients. This includes countries from a range of economic classifications, from ‘Least Developed’ to ‘Upper Middle Income’ which includes the nations of China and Brazil. Whilst we group all these nations under the broad term of ‘developing country’, we acknowledge the great heterogeneity between them in terms of wealth, development and research capacity.


——————————
This blog has been kindly reposted from the UK CDS website.  It is written by Cabot Institute member Thomas Timberlake, a pollination ecology PhD researcher from the University of Bristol who undertook a three month project with the UKCDS looking at the relevance of pollination to international development.

Thomas Timberlake

To find out more about this project you can view the full report, or watch a recording of the UKCDS Pollination and International Development Webinar.

You can also listen to Tom speaking on Nature Xposed, a University of Bristol nature radio station, about the importance of pollinators in developing countries.

If you have any comments about this blog do tweet us @cabotinstitute @UKCDS.

Privacy paradoxes, digital divides and secure societies

More and more, we are living our lives in the online space. The development of wearable technology, automated vehicles, and the Internet of Things means that our societies are becoming increasingly digitized. Technological advances are helping monitor city life, target resources efficiently, and engage with citizens more effectively in so-called smart cities. But as with all technological developments, these substantial benefits are accompanied by multiple risks and challenges.

The Wannacry attack. The TalkTalk data breach. The Cambridge Analytica scandal. Phishing emails. Online scams. The list of digital threats reported by the media is seemingly endless. To tackle these growing threats, the National Cyber Security Centre (NCSC) was established in the UK in 2016 with the aim of making ‘the UK the safest place to live and do business online’. But with the increasing complexity of online life, connected appliances, and incessant data collection, how do people navigate these challenges in their day-to-day lives? As a psychologist, I am interested in how people consider and make decisions regarding these digital risks and how we can empower people to make more informed choices going forward.

The privacy paradox

People often claim that privacy is important to them. However, research shows that they are often willing to trade that privacy for short-term benefits. This incongruence between people’s self-reported attitudes and their behaviour has been termed the ‘privacy paradox’. The precise reasons for this are uncertain, but are likely to be a combination of lack of knowledge, competing goals and priorities, and the fact that maintaining privacy can be, well, difficult.

Security is often not an individual’s primary goal, instead being secondary to other tasks that they are trying to complete. For instance, accessing a particular app, sharing location data to find directions, or communicating on the move with friends and colleagues. Using these online services, however, often requires a trade-off with regards to privacy. This trade-off may be unclear, communicated through incomprehensible terms and conditions, or simply unavoidable for the user. Understanding what drives people to make these privacy trade-offs, and under what conditions, is a growing research area.

The digital divide

As in other areas of life, access to technology across society is not equal. Wearable technology and smart phones can be expensive. People may not be familiar with computers or have low levels of digital literacy. There are also substantial ethical implications about how such data may be used that are still being debated. For instance, how much will the information captured and analysed about citizens differ across socio-economic groups?

Research has also shown that people are differentially susceptible to cyber crime, with generational differences apparent (although, not always in the direction that you would expect). Trust in the institutions that handle digital data may vary across communities. Existing theories of societal differences, such as the Cultural Theory of Risk, are increasingly being applied to information security behaviour. Understanding how different groups within society perceive, consider, and are differentially exposed to, digital risks is vital if the potential benefits of such technologies are to be maximised in the future.

Secure societies – now and in the future

Regulation: The General Data Protection Regulation (GDPR) comes into force on the 25 May 2018. Like me, you may have been receiving multiple emails from companies informing you how they use your data, or asking your permission to keep it. This regulation is designed to help people manage their privacy and understand who has access to their data, and why. It also allows for substantial fines to be imposed if personal data is not managed adequately or if data breaches are not reported to authorities in a timely manner.

Secure by default: There is a growing recognition that products should have security built-in. Rather than relying on us, the human user, to understand and manage security settings on the various devices that we own, such devices should be ‘secure by default’. Previous considerations of humans as the ‘weakest link’ in cyber security are being replaced with an understanding that people have limited time, expertise and ability to manage security. The simplified password guidance provided by the NCSC provides a good example of this (7). Devices,  applications and policies should take the onus off the user as much as possible.

Education and communication: People need to be educated about online risks in an engaging, relevant and targeted way. Such risks can be perceived as abstract and distant from the individual, and can be difficult to understand at the technical level. I was recently paired with an artist as part of Creative Reactions 2018 (an art exhibition running in Hamilton House 11 – 22 May 2018) to portray my research in this area to members of the public in a different way. Understanding how best to communicate digital risks to diverse audiences who engage with the online world in a range of different contexts is crucial. In this regard, there is much to be learned from risk communication approaches used in climate change, public health, and energy sectors.

Overall, there is much to be optimistic about. A renewed focus on empowering people to understand digital risks and make informed decisions, supported by regulation, secure design and considerations of ethical issues. Only by understanding how people make decisions regarding online activities and emerging technologies, and providing them with the tools to manage their privacy and security effectively, can the opportunities provided by a digital society be fully realised in cities of the future.

——————————–
This blog has been written by Cabot Institute member Dr Emma Williams, a Vice-Chancellor’s Fellow in Digital Innovation and Well-being in the School of Experimental Psychology at the University of Bristol.

Cassava virus: Journey from the lab to the field – Learning the ropes

Weeks 2 – 3

It’s been a bit of blur the last two weeks, getting to grips with all the activities that go on at the National Crops Resources Research Institute (NaCRRI). I’ve spent time with Dr. Emmanuel Ogwok (Emmy), learning about the earlier days of Cassava brown streak disease (CBSD) research and how things have developed. Emmy took me on a tour to see the greenhouses where they are growing genetically modified cassava, which shows resistance to CBSD.

Dr. Emmanuel Ogwok demonstrates how to sample infected cassava from the field

Diagnosing the problem

Emmy also introduced to me how they diagnose CBSD infections. We headed out to the field and sampled cassava plants showing CBSD symptoms, processed the samples in the lab and bingo, identified the presence of the virus in all the samples by reverse transcription PCR. This is similar to the processes we follow in the UK. It was great to actually sample the infected cassava from the field myself; in the UK we normally use material which was collected years ago.

It was interesting to learn about challenges, such as getting hold of reagents which can take up to three months! The lab is responsible for testing new cassava varieties for their ability to resist CBSD infection and plays a vital role in improving cassava production.

Processing the infected cassava samples from the field

Communicating the problem

I’ve been working on communication materials to let members of the public know about NaCRRI work at the Source of the Nile agricultural trade show in July. The show will be an opportunity to present and discuss the improved cassava varieties developed by NaCRRI with policy makers, growers and members of the public.

Kampala fun

Outside of work, I’ve been having fun in Kampala; going to arts festivals, watching the football in Ugandan pubs and swimming in the Hotel Africana pool. Next week, I’m planning to visit field sites in northern Uganda, to meet some of the farmers affected by CBSD.

Dancer at La Ba Arts Festival (credit HB Visual)
———————————–
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie’s area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie’s blog Cassava Virus.

 

Katie Tomlinson

More from this blog series:  

Cassava virus: Journey from the lab to the field – Settling in to Ugandan life

Katherine Tomlinson from the School of Biological Sciences at the University of Bristol Cabot Institute, is spending three months in Uganda looking at the cassava brown streak virus. This virus dramatically reduces available food for local people and Katherine will be finding out how research on this plant is translating between the lab and the field.  Follow this blog series for regular updates.

I arrived late on Thursday night and spent the weekend getting acquainted with the hustle and bustle of Kampala life. I visited the impressive Gadafi mosque, cathedral, and food markets, which are full of just about every fruit and vegetable you could imagine.

On Friday, I met with my internship supervisor, Dr. Titus Alicai who is the leader of the Root Crops Research Programme at the National Crops Resources Research Institute (NaCRRI); he filled me on some of the exciting activities I’ll be taking part in, including visits to cassava field sites.

I was picked up and taken to NaCRRI in Namulonge on Sunday, stopping off at markets along the way to pick up my food supplies. I am lucky to have Everline looking after me; she’s helping me to settle into Ugandan life. NaCRRI is absolutely beautiful, it’s full of crops including cassava, sweet potato, mango, pineapple, banana, and there are even vervet monkeys running around.

National Crops Resources Research Institute, Uganda… where I’ll be spending the next three months!

At the start of the week , I was given a tour of the institute including the labs where they analyse cassava tubers for nutritional and chemical content; a vital part of the process in developing crops which not only offer maximum disease resistance, and yield but also taste good.

I then visited the molecular biology labs, where they analyse crop samples for the presence of Cassava brown streak disease viruses. This was very familiar with similar equipment to our lab at the University of Bristol. The lab manager discussed the challenges of obtaining all the expensive reagents required and how this affects their work. Other challenges include intermittent power supply, which means they need a stack of battery packs to back up the -80 freezers and PCR machines. I am looking forward to spending some time here, to learn more about the similarities and differences between molecular work in the UK and Uganda.

On Wednesday, I went to the field with some University internship students, who were scoring cassava plants for Cassava brown streak disease and Cassava mosaic disease symptoms. After their training these students will be able to advise farmers about the diseases in their local areas. It was also my chance to see symptoms in the field, where infected leaves showed a distinctive yellowing pattern.

Inspecting cassava plants for disease symptoms with University internship students

I spoke to one student who has a small farm and has experienced Cassava brown streak disease first hand. He mentioned that the disease is very common in his area, and here even tolerant cassava varieties become infected and their tubers ruined.

Characteristic Cassava brown streak disease symptoms on cassava leaves

Today I am meeting with the communications team, to find out about the projects I will be involved with, including an outreach programme with farmers surrounding the NaCRRI site to encourage them to use crop breeds developed by the institute, which offer higher disease resistance.

That’s it for now I’ll be writing another update next week so watch this space! In the meantime if you have any questions please get in touch via Twitter: @KatieTomlinson4.

———————————–
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie’s area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie’s blog Cassava Virus.
Katie Tomlinson

More from this blog series:  

Getting ready to go… cassava virus hunting!

Katherine Tomlinson from the School of Biological Sciences at the University of Bristol Cabot Institute, is spending three months in Uganda looking at the cassava brown streak virus. This virus dramatically reduces available food for local people and Katherine will be finding out how research on this plant is translating between the lab and the field.  Follow this blog series for regular updates.

It’s just three days until I set off on my trip to Uganda, where I’ll complete an internship with the National Crops Resources Research Institute in Namulonge. I’ll be working for three months with their Communications team to learn how research is translated between the lab and the field.  I am currently a BBSRC South West DTP PhD student at the University of Bristol, researching how cassava brown streak disease viruses spoil cassava tubers and dramatically reduce available food for local people.

Image above shows Katherine inspecting cassava plants for cassava brown streak disease symptoms in the School of Biological Sciences GroDome.

Cassava plants produce carbohydrate rich root tubers and are a staple food crop for approximately 200 million people in sub-Saharan Africa. After rice and maize, cassava is the third most important source of carbohydrates in the tropics. Unfortunately, cassava is prone to viral infections, including cassava brown streak disease (CBSD), which can render entire tubers inedible. CBSD outbreaks are currently impacting on the food security of millions of cassava farmers in east Africa; it appears to be spreading westward, threatening food security in many countries.
Spoiled cassava tubers due to cassava brown streak disease (photo credit: Dr. E. Kanju, IITA).
Working the lab, I regularly infect plants with CBSD viruses to study how they replicate, move and prevent plant defence responses. However, in the field there is a much more complex interplay of different viral strains, cassava varieties, white fly population dynamics and environmental conditions which all contribute towards the disease. It’s vitally important that information about all of these contributory factors is shared between scientists and farmers to help control the disease and inform future research.I’m looking forward to assisting with field trials where different cassava varieties are being tested for resistance and meeting the farmers who face the challenges of controlling the disease. I hope to learn how information is shared and distributed and get some research ideas for when I return. I’ll be blogging my experiences on my personal blog and for the Cabot Institute blog.

NaCRRI is in Namulonge, in the Wakiso district of Uganda (photo credit: Slomox, Wikimedia).

Preparation, preparation, preparation…

At the moment, there are a lot of ‘to do’s; making sure I’ve had all the necessary vaccinations, packed factor 50 sun cream, mosquito net, DET and a massive first aid kit! It seems a little over the top at the moment but should stand me in good stead for the adventure ahead…
———————————–
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie’s area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie’s blog Cassava Virus.

 

Katie Tomlinson

More from this blog series:  

How the great phosphorus shortage could leave us short of food

You know that greenhouse gases are changing the climate. You probably know drinking water is becoming increasingly scarce, and that we’re living through a mass extinction.

But when did you last worry about phosphorus?

It’s not as well-known as the other issues, but phosphorus depletion is no less significant. After all, we could live without cars or unusual species, but if phosphorus ran out we’d have to live without food.

Phosphorus is an essential nutrient for all forms of life. It is a key element in our DNA and all living organisms require daily phosphorus intake to produce energy. It cannot be replaced and there is no synthetic substitute: without phosphorus, there is no life.

Our dependence began in the mid-19th century, after farmers noticed spreading phosphorus-rich guano (bird excrement) on their fields led to impressive improvements in crop yields. Soon after, mines opened up in the US and China to extract phosphate ore – rocks which contain the useful mineral. This triggered the current use of mineral fertilisers and, without this industrial breakthrough, humanity could only produce half the food that it does today.

Testing crops in 1940s Tennessee.
Franklin D. Roosevelt Presidential Library and Museum

Fertiliser use has quadrupled over the past half century and will continue rising as the population expands. The growing wealth of developing countries allows people to afford more meat which has a “phosphorus footprint” 50 times higher than most vegetables. This, together with the increasing usage of biofuels, is estimated to double the demand for phosphorus fertilisers by 2050.

Today phosphorus is also used in pharmaceuticals, personal care products, flame retardants, catalysts for chemical industries, building materials, cleaners, detergents and food preservatives.

Phosphorus is not a renewable resource

Reserves are limited and not equally spread over the planet. The only large mines are located in Morocco, Russia, China and the US. Depending on which scientists you ask, the world’s phosphate rock reserves will last for another 35 to 400 years – though the more optimistic assessments rely on the discovery of new deposits.

It’s a big concern for the EU and other countries without their own reserves, and phosphorus depletion could lead to geopolitical tensions. Back in 2008, when fertiliser prices sharply increased by 600% and directly influenced food prices, there were violent riots in 40 different developing countries.
Phosphorus also harms the environment. Excessive fertiliser use means it leaches from agricultural lands into rivers and eventually the sea, leading to so-called dead zones where most fish can’t survive. Uninhibited algae growth caused by high levels of phosphorus in water has already created more than 400 coastal death zones worldwide. Related human poisoning costs US$2.2 billion dollars annually in the US alone.

With the increasing demand for phosphorus leading to massive social and environmental issues, it’s time we looked towards more sustainable and responsible use.

There is still hope

In the past, the phosphorus cycle was closed: crops were eaten by humans and livestock while their faeces were used as natural fertilisers to grow crops again.

These days, the cycle is broken. Each year 220m tonnes of phosphate rocks are mined, but only a negligible amount makes it back into the soil. Crops are transported to cities and the waste is not returned to the fields but to the sewage system, which mainly ends up in the sea. A cycle has become a linear process.

We could reinvent a modern phosphorus cycle simply by dramatically reducing our consumption. After all, less than a third of the phosphorus in fertilisers is actually taken up by plants; the rest accumulates in the soil or is washed away. To take one example, in the Netherlands there is enough phosphorus in the soil today to supply the country with fertiliser for the next 40 years.

Food wastage is also directly linked to phosphorus overuse. In the most developed countries, 60% of discarded food is edible. We could also make agriculture smarter, optimising the amount of phosphorus used by specially selecting low-fertiliser crops or by giving chickens and pigs a special enzyme that helps them digest phosphorus more efficiently and therefore avoid extensive use of phosphorus-heavy growth supplements.

 

Original phosphorus cycle (left); the broken cycle (centre); and an optimised cycle (right).
Author provided

It takes vast amounts of energy to transform phosphate ore into “elemental phosphorus”, the more reactive and pure form used in other, non-agricultural sectors. Inventing a quicker route from raw rocks to industrially-useful compounds is one of the big challenges facing the future generation. The EU, which only has minimal reserves, is investing in research aimed at saving energy – and phosphorus.

We could also close the phosphorus cycle by recycling it. Sewage, for instance, contains phosphorus yet it is considered waste and is mainly incinerated or released into the sea. The technology to extract this phosphorus and reuse it as fertiliser does exist, but it’s still at an early stage of development.

When considering acute future challenges, people do not often think about phosphorus. However, securing enough food for the world’s population is at least as important as the development of renewable energy and the reduction of greenhouse gases. To guarantee long-term food security, changes in the way we use phosphorus today are vital.
———————————-
This blog is written by Charly Faradji, Marie Curie Research Fellow, School of Chemistry, University of Bristol and Marissa de Boer, Researcher VU Amsterdam, Project Manager SusPhos, VU University Amsterdam

Charly Faradji

This article was originally published on The Conversation. Read the original article.