Your planet needs you!

We are under attack. Our assailants threaten to kill millions of people, destroy our homes and wipe out our crops. Who are these fiends?

Us.

The latest report from the Intergovernmental Panel on Climate Change (IPCC) focusses on how we can stop runaway climate change before it’s too late.  Despite our “best efforts”, anthropogenic greenhouse gas emissions have continued to increase at an alarming rate. The IPCC estimates that without any additional effort to reduce emissions, we’re looking at a rise in temperature of between 3.7 and 4.8°C by 2100, although variability in the effects of climate change mean the rise could be as high as 7.8°C. Anything over 2°C means we risk runaway climate change with catastrophic effects felt around the world.

A call to action

The UK energy secretary Ed Davey responded to yesterday’s IPCC press conference by stating,

“we need a worldwide, large-scale change to our energy system if we are to limit the effects of climate change”

and called for an international effort to reduce carbon emissions by 2015.

The question is, are politicians willing to put in the effort needed to reduce emissions by 40-70% in the next couple of decades? It’s hard to put a price on the cost of mitigation, but as Professor Ottmar Edenhofer, co-chair of the IPCC team, stated “Climate policy is not a free lunch”. His colleague Professor Jim Skea was more optimistic, saying that,

“it is actually affordable to do it and people are not going to have to sacrifice their aspirations about improved standards of living”.

That’s the kind of thing that politicians like to hear.

Change doesn’t happen unless something dramatic happens to force us to act. The increasing frequency of extreme weather events doesn’t seem to be working, so what would? As the IPCC brief states, “Emissions by any agent (e.g. Individual, community, company, country) affect other agents”. We need to invoke some Blitz mentality; we ARE facing a deadly enemy and we ALL need to do our part to stop it.

How to mitigate climate change

The IPCC used 10,000 scientific references to ensure that their models are properly founded in science and all the uncertainty that entails. The IPCC defined mitigation as “a human intervention to reduce the sources or enhance the sinks of greenhouse gases”, and look at a range of scenarios to find the most effective and efficient methods.

The report particularly favoured low carbon energy sources as a major way to reduce emissions, using natural gas as a transition fuel into renewable energies. Encouragingly, renewable energy comprised over half of all new electricity-generating developments globally, with wind, hydro- and solar power leading the way. The costs of renewable energies are falling, making them viable for large scale deployment in many areas, and Professor Skea enthused that

Renewables are going to be ubiquitous no matter which part of the world you look at”.

Cities will play a big part in reducing CO2 emissions too; a combination of better urban planning to incorporate public transport and compact walkable city centres will be vital. The report also recommended high speed rail networks between cities to reduce short haul air travel and its associated high emissions.

Replanting forests will be an important way to remove CO2 from the atmosphere. Plants take in CO2 for use in photosynthesis, but can also be used to remove pollutants from the air and soil, as well as preventing soil erosion and providing important habitats for other plants and animals.

It is important for all nations that mitigation does not mean a halt to economic development. Dr. Youba Sokona, IPCC team co-chair, said, “The core task of climate change mitigation is decoupling greenhouse gas emissions from the growth of economics and population”. This will be the main challenge for governments around the world, but the overwhelming message from the IPCC is that mitigation is affordable, whilst doing nothing is not.

Social justice

There has been an undercurrent of unease alongside the IPCC report; the sticky question of who, exactly, is going to pay for this mitigation? A few days before its release, pressure from unspecified developed nations led to the removal of a section in the IPCC report stating that developing countries should receive billions of dollars a year in aid to ensure that they grow their economies in a sustainable way.

The argument centres on whether developing nations should have the right to exploit fossil fuels to expand their economies, as developed countries were able to do. Dr. Chukwumerije Okereke, one of the lead authors of the report, said that this “is holding them down from developing”, believing that “this is reinforcing historical patterns of injustice and domination”. I would argue that with the impacts of climate change predicted to affect those in developing countries most drastically, perhaps we should adopt the mentality that we are all in this together and help each other to overcome the problem.

Act now

The take home message from the IPCC is that if we act now, we can probably prevent hitting the 2°C temperature increase that would have disastrous consequences for us all. The mitigation strategies suggested are affordable and certainly cheaper than dealing with the consequences of climate change. Will politicians and all the rest of us do our parts to drastically reduce carbon emissions? Only time will tell. A lot of hope rests on the 2015 United Nations Climate Change Conference, which is hoped to yield a global agreement on climate to avoid passing the 2°C safety threshold.

Cross your fingers and turn off your lights.

——————————————————–

This blog is written by Sarah JoseCabot Institute, Biological Sciences, University of Bristol

 

You can follow Sarah on Twitter @JoseSci 
Sarah Jose

Climate change in the media

This winter, devastating floods and extreme weather have battered the UK.  Similarly, we have been battered by an endless barrage of news, opinion and political grandstanding.  Encouragingly, a narrative is beginning to emerge that now is the time for disaster management not a complete dissection of our short- and long-term flood defense system (an opinion we have advocated ourselves). That is encouraging.

It is vital that the issue of climate change be a central part of that discussion. Climate change is one of the most profound challenges facing humanity – a challenge recognised by scientists, politicians, lawyers, businesses and even the military. However, it is a challenge associated with uncertain and complex consequences, with the most pernicious concerns not necessarily being climate change itself but how it exacerbates other issues, such as flooding but also food security, access to resources, the spread of disease and fostering conflict.  It cannot sit in isolation from the rest of the news, and it demands nuanced exploration by the media that facilitates the responsible formation of opinion and policy.

UK aid supplies are loaded onto HMS
Daring by UK military personnel in the
Philippines after Typhoon Haiyan.
Credit: Simon Davis/DFID/Flickr

Experts (including but certainly not limited to academics), the public and the media form a triangle around policy makers, ultimately influencing the decisions that our governments make.  Most government decision makers genuinely want to enact policies that will be beneficial, but they must make those decisions in a sometimes confusing storm of information and misinformation, opinions and ideology, and short-term political imperatives.  Therefore, experts, the public and the media should work together – although the members of the Cabot Institute provide advice directly to government, we must also help foster the political climate that allows the best, evidence-based decisions to be made.

Given the complexity of climate change issues, I have been pleased to see some parts of the media adopting a more sophisticated discussion of the topic. For example, fewer journalists have asked whether climate change ‘caused’ Typhoon Haiyan or the UK’s severe winter storms and more have asked how climate change might affect such events in the future and how that might impact food prices. More are discussing how the extreme winter will exacerbate the refugee crisis in Syria. These are subtle but important expansions of the media conversation that reveal an increasing understanding of probability and the multiplication of risk.

Credit: Jackl

However, media sins persist, many of them specific to climate change but arising more generally from the external factors that have transformed the entire industry over the past two decades: a need for ratings, a need to entertain, and (most damaging in the case of environmental issues) a rapid news cycle that is better at responding to current events than in depth analysis and long-term considerations.  This has been particularly illustrated by both the media and political reaction to the floods of this past winter.

Most frustrating is the persistence by some parts of the media in creating a debate on the scientific evidence for climate change – a debate that does not exist but presumably enhances the entertainment value of the discussion.  I’m not opposed to debate.  In fact, I am eager for more rigorous, fact-based debate on this and other issues.  This is where the academic community and media could come together and bring real value to our community. But it is deeply frustrating to become entrained in non-debates regarding the underlying physics of global warming and the greenhouse effect, when there are important discussions about how much warming will occur, what the consequences will be and the cost-benefit of different policy decisions.  To its credit, media coverage is increasingly moving in that direction and ongoing coverage much better reflects the balance of scientific opinion.

However, in the aftermath of big climate news events, such as the release of the Intergovernmental Panel on Climate Change (IPCC) report or a spate of unusually cold weather, this non-debate is resurrected.  At these times, it is frustrating that the media rarely acts as a moderator of baseless and factually incorrect claims – on both sides of the topic.  Lobbyists and pundits are allowed to repeatedly state that the IPCC report is ‘mumbo jumbo’  or that the science of climate change is a ‘conspiracy’.  It is not entirely the climate deniers who abuse evidence; some advocates for climate change action, with whom I am sympathetic, describe a ‘climate apocalypse’ or ‘climate breakdown’, fearsome concepts that upon scrutiny mean nothing scientifically.  Unfortunately, the policy of some organisations (I’m looking at you, USA Today) mandates that any editorial comment on climate change requires equal space for the opposite opinion; it is analogous to an editorial on the space programme being counterbalanced by an opinion from the Flat Earth Society. Some media agencies are adapting; Paul Thornton, the LA Times letters editor, refuses to run letters in the newspaper from some climate sceptics in order ‘to keep errors of fact off the letters page.’  There are important discussions to be had, but these will be forgotten if we become mired in debates over putative hoaxes, conspiracies or divine judgement of our hedonistic lifestyle.

One way forward is to bring more creativity to the conversation by bringing in new expert voices.  As with many other policy debates, the climate change discussion has become ossified into rather turgid and unhelpful patterns: scientists vs sceptics, environmentalists vs business.  These are poor representations of the actual issue.  Insurance companies are deeply concerned about climate change.  Our military believes that climate change could exacerbate future conflicts.  Religious leaders believe that preventing climate change that disproportionately harms the poorest of the planet is an ethical issue.  I would urge the media to ignore the uninformed but highly opinionated partisans who put themselves out there, and instead seek out the quiet but knowledgable voices of those who truly understand the challenges facing us and have firsthand understanding of the economic and social consequences.  Similarly, I would urge the academic community to focus not only on our expertise – expertise that while deep is often narrow –and explore collective expertise with some of our partners.  We should be doing our part to invigorate the conversation by bringing together different cohorts of knowledge.

The most pernicious challenge, however, and one exemplified by the media coverage of the devastating floods that we have experienced this winter, is the fickle nature of the news cycle.  Climate change is covered in a sporadic and ad hoc manner – in the aftermath of a severe storm or the release of a new finding.  Climate change should not be headline news once a year but rather a continuous part of the news cycle, reflecting its widespread impact on our environment and lives. Encouragingly, this is the trend; a quick survey of the BBC website reveals that articles reflecting on climate change are published every few days.  What is missing is a more long-term perspective – how will climate change make typhoons worse in twenty years, how could it exacerbate unrest in parts of the world already stressed by ethnic or religious tensions, will it cause greater instability in global food markets? This is the information the public needs in order to make informed personal and political decisions.

Tamsin Edwards

This change in dialogue also requires a change within the academic community.  We tend to think about engagement in the same way that we think about our other academic outputs – discrete publications containing discrete results and leading to discrete press releases.  With a few notable exceptions, such as our own Tamsin Edwards, we are less skilled in commenting on the wider issues.  This partly occurs in IPCC reports, but that alone is insufficient because it is infrequent and a synthesis of the literature, such that it is less engaged with current events or specific ongoing policy decisions.

In short, academics need to recognise our roles as well-informed experts and enter the public dialogue.  There is an ongoing and legitimate debate whether climate change scientists should comment on specific policy, but it is glaringly evident that we should be injecting climate change into the conversation where it is relevant, on topics as far-ranging as flooding, land use and planning, sustainable energy, global insecurity and agricultural strategies.  We do not have all of the answers.  Sometimes our most important contribution is raising unasked questions.  We do not have to work alone; we can build coalitions of knowledge.   But no matter how we do it, we must work with the media – all parts of the media – to share what we have learned.

This blog is by Prof Rich Pancost, Director of the Cabot Institute.

Prof Rich Pancost

What can satellites tell us about the link between volcanic inflation and eruption?

 

The bulge that formed on flank of
Mount St Helens prior to eruption
in May 1980. (Image: United States
Geological Survey).

Ground deformation at volcanoes

In order to assess and monitor the eruption potential of volcanoes worldwide, scientists use an array of observations including seismicity, gas emissions and deformation (motion or changes in the shape) of the ground. In the simplest case, a volcano will inflate before an eruption as the underlying magmatic system pressurises. This is perhaps most memorable in the bulge that formed on the flank of Mount St Helens prior to its eruption in May 1980. Observations of ground deformation not only tell us about escalating eruptive activity, but also shed light on the whole eruptive cycle, from the drainage of magma following an eruption, to the passage and storage of magma in the crust. However, many of the techniques used to monitor ground deformation are limited by their resolution in time (e.g. repeat surveys performed once each summer season) or their spatial resolution (e.g. in-situ equipment recording motion at a single or small network of points).

The role of satellites

Since the early 1990s, satellite data has revolutionised the way in which ground deformation is used as a tool for monitoring and understanding volcanoes. Rather than recording deformation at single points or at widely spaced time intervals, satellite imagery enables us to record ground deformation at millions of data-points, over 100s of km2, with repeat times up to every 12 days. This technology, known as InSAR (Interferometric Synthetic Aperture Radar), works by comparing consecutive satellite images to calculate how much the ground has moved using changes in the phase of the returned radar wave. This technique is particularly useful in hazardous or remote areas, which are inaccessible for ground-based surveys. It is also invaluable in developing countries, which host many of the world’s volcanoes as, in the absence of other equipment, satellite imagery may provide the only indicators of escalating unrest and ultimately, impending eruption.

The European Space Agency satellite
Sentinel-1 to be launched Thursday
3rd April. (Image: European Space
Agency).

We are currently just days away from the long-awaited launch of the European Space Agency Sentinel-1 satellite, and what has been described as a “new era in earth observation”. This satellite is part of the Copernicus programme: the most ambitious Earth observation programme to date. Sentinel-1 will collect data more rapidly and with better global coverage than its predecessor ENVISAT, imaging the entire earth every 6 days for a minimum of 7 years. It is therefore the ideal time to synthesise and reflect upon what we have learnt from the wealth of InSAR data collected by the past generation of InSAR satellites.

A global dataset

A new study, led by the University of Bristol and published in Nature Communications, collates the last 18 years of InSAR data, including observations at over 500 volcanoes, 198 of which have undergone systematic observations of ground deformation. In this study, the authors assess the significance of ground deformation as an indicator of a volcano’s long-term potential to erupt. The results show that many (46%) of deforming volcanoes also erupted, and almost all (94%) non-deforming volcanoes did not erupt. This demonstrates the importance of ground deformation as an indicator of unrest, and also shows that InSAR is an ideal tool to gauge the eruptive state of volcanoes on an individual, and global basis.

Animation demonstrating the use of InSAR to monitor volcanoes in East Africa. (Video: European Space Agency).

Many past systematic studies have targeted volcanoes with long histories of unrest. However, when observations of deformation are made at volcanoes that have not previously been studied, it is much more difficult to gauge the significance of ground deformation and whether or not it indicates an eruption is imminent. This is particularly true in the absence of additional monitoring equipment. This study demonstrates how, in these cases, we can use data from a global dataset to predict how the composition of the magma, the type of volcano, and the tectonic setting might influence the relationship between observed deformation and eruption. For example, the authors show that globally, deformation observed at volcanoes in subduction zone settings has a higher positive predictive value (i.e. is more likely to result in eruption) than deformation observed at volcanoes in extensional rift settings.  This approach of using global observations to inform local predictions, has the potential to be incorporated into hazard assessments

The future

With the launch of new satellites comes a new age of more systematic and regular data acquisitions, enabling more volcanoes to be monitored systematically. This will inevitably reveal new cases of ground deformation at previously unstudied volcanoes. In these cases, where historical records are short or non-existent, the integration of a global set of observations will be extremely helpful in unravelling the link between deformation and eruption.

New technology and improved data quality will allow the scientific community to improve the accuracy and rate at which satellite imagery is processed and used for hazard assessments. This will enable us to add to this global dataset, strengthening conclusions and widening the global effort to better understand the significance of volcanic unrest at individual volcanoes.

“Global link between deformation and volcanic eruption qualified by satellite imagery” (Biggs et al. 2014) is published today in Nature Communications.

Read the official University of Bristol press release A satellite view of volcanoes finds the link between ground deformation and eruption

Amy Parker, is a PhD student in the School of Earth Sciences at the Cabot Institute, University of Bristol. For more information email Amy.Parker@bristol.ac.uk or tweet @amylauraparker.

A brief introduction to how Bristol’s plant science might save the world

Global crop yields of wheat and corn are starting to decline, and the latest report from the Intergovernmental Panel on Climate Change (IPCC) suggests things are only going to get worse.

Last year I looked at previous research into what climate change might mean for global crop yields and found that overall crop yields would remain stable but regional declines could prove devastating for certain parts of the world. The definitive new report from the IPCC finds that actually a temperature rise of just 1°C will have negative impacts on the global yields of wheat, rice and maize, the three major crop plants. Food prices could increase by as much as 84% by 2050, with countries in the tropics being much more badly affected than northern Europe and North America.

All over the world, research is underway to find sustainable ways to feed the growing population. Scientists within the Cabot Institute’s Food Security research theme are working on a range of problems that should help us manage the threat that climate change presents.

Improving crop breeding

The average increase in yields of the world’s most important crops is slowing down, which means that supply is not keeping up with demand. Professor Keith Edwards and Dr. Gary Barker are leading UK research into wheat genomes, developing molecular markers linked to economically important traits. These markers are often Single Nucleotide Polymorphisms (SNPs), which are single letter differences in the DNA code. It’s possible to find SNPs linked to areas of the genome associated with disease resistance or increased yield, allowing breeders to rapidly check whether plants have the traits they are looking for.

Wheat is a vital crop for UK agriculture as well as global food security.

Water use in plants

Climate change means that many parts of the world will face extreme weather events like droughts. Clean, fresh water is already an increasingly valuable resource and is predicted to be a major source of global conflict in the future.

Plants produce microscopic pores known as stomata on their leaves and stems, which open to take in carbon dioxide for photosynthesis but close in drought conditions to prevent excess water loss from the plant. Professor Alistair Hetherington’s group looks at the environmental conditions that affect stomatal formation and function, which will help to determine how droughts or higher carbon dioxide levels might affect crop productivity in the future and how we might enhance their water use efficiency.

Professor Claire Grierson’s group are working on root development, another important factor in managing how plants use water. Plants produce elongated root hairs which extend out into the substrate, increasing the root surface area in order to absorb more water and nutrients. If we can understand how root hairs are produced, we may be able to breed plants with even more efficient roots, able to extract enough water from nearly-dry soil in periods of low rainfall.

Each root hair is a single elongated cell that hugely increases a plant’s ability to take up water.

Preventing disease

 

Mycosphaerella graminicola is a wheat
pathogen that greatly reduces yield,
posing the biggest risk to wheat production worldwide.

A particular concern of climate change is that diseases may spread to new areas or be more destructive than they used to be. Professor Gary Foster and Dr. Andy Bailey are leading research into a variety of fungal and viral plant pathogens, which are responsible for devastating crop yields around the world. They use new molecular techniques to determine exactly how diseases begin and what treatments are effective against them, information that will be vital as plant disease patterns change across the world.

Crop pollination

It is still unclear whether climate change is affecting bees, however some research suggests that flowers requiring pollination are getting out of sync with bees and other pollinators. This might not be a problem for wind-pollinated crops like maize and barley, or self-pollinators like wheat and rice, however most fruits and oil crops rely on pollinators to transfer pollen from plant to plant. Dr. Heather Whitney researches the interaction between plants and their pollinators, particularly focussing on how petal structure, glossiness and iridescence can attract foraging bees.

Plants in a warmer world

As the planet warms, the IPCC has shown that there will be an overall decrease in crop productivity. Climate change has had an overall negative impact on crops in the past 10 years, with extreme droughts and flooding leading to rapid price spikes, especially in wheat. Dr. Kerry Franklin is investigating the interaction between light and temperature responses in plants. High temperatures induce a similar reaction in plants to that of shade; plants elongate, bend their leaves upwards and flower early, which is likely to reduce their overall yield. We need to understand the benefits and costs of plant responses to temperature, and look  for alternative growing approaches to maintain and hopefully even increase crop yields in a warmer world.

What does the future hold?

The IPCC report shows that if nothing changes, we are rapidly heading towards a global catastrophe. Food production will drop, which combined with the increasing population means that billions of people could face starvation. The IPCC is keen to highlight that new ways of growing and distributing food may mitigate some of the consequences that we can no longer avoid, and a key part of that is understanding how plants (and their pathogens) will respond to changes in temperature, water availability and increases in CO2.
The research by some of the University of Bristol’s plant scientists, highlighted above, should provide important knowledge that plant breeders can utilise to develop and grow crops more suited to the daunting world that climate change will present.
This blog is written by Sarah JoseCabot Institute, Biological Sciences, University of Bristol

You can follow Sarah on Twitter @JoseSci 

Sarah Jose