Are you a journalist looking for climate experts for COP28? We’ve got you covered

COP28 logo

We’ve got lots of media trained climate change experts. If you need an expert for an interview, here is a list of our experts you can approach. All media enquiries should be made via Victoria Tagg, our dedicated Media and PR Manager at the University of Bristol. 

Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489.

Climate change / climate emergency / climate science / climate-induced disasters

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter/X @EuniceLoClimate.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports.

Dr Katerina Michalides – expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter/X @_kmichaelides.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Follow on Twitter/X @ClimateDann.

Professor Dan Lunt – expert on past climate change, with a focus on understanding how and why climate has changed in the past and what we can learn about the future from the past. Dan is also a Lead Author on IPCC AR6. Follow on Twitter/X @ClimateSamwell.

Professor Jonathan Bamber – expert on the impact of melting land ice on sea level rise (SLR) and the response of the ocean to changes in freshwater forcing. Follow on Twitter/X @jlbamber

Professor Paul Bates CBE – expert in the science of flooding, risk and reducing threats to life and economic losses worldwide. Follow on Twitter/X @paul_d_bates

Dr Matt Palmer – expert in sea level and ocean heat content at the Met Office Hadley Centre and University of Bristol. Follow on Twitter/X @mpclimate.

Professor Guy Howard – expertise in building resilience and supporting adaptation in water systems, sanitation, health care facilities, and housing. Expert in wider infrastructure resilience assessment.

Net Zero / Energy / Renewables

Dr Caitlin Robinson – expert on energy poverty and energy justice and also in mapping ambient vulnerabilities in UK cities. Caitlin will be virtually attending COP28. Follow on Twitter/X @CaitHRobin.

Professor Philip Taylor – Expert in net zero, energy systems, energy storage, utilities, electric power distribution. Also Pro-Vice Chancellor at the University of Bristol. Follow on Twitter/X @rolyatlihp.

Dr Colin Nolden – expert in sustainable energy policyregulation and business models and interactions with secondary markets such as carbon markets and other sectors such as mobility. Colin will be in attendance in the Blue Zone at COP28 during week 2.

Professor Charl Faul – expert in novel functional materials for sustainable energy applications e.g. in CO2 capture and conversion and energy storage devices.  Follow on Twitter/X @Charl_FJ_Faul.

Climate finance / Loss and damage

Dr Rachel James – Expert in climate finance, damage, loss and decision making. Also has expertise in African climate systems and contemporary and future climate change. Follow on Twitter/X @_RachelJames.

Dr Katharina Richter – expert in decolonial environmental politics and equitable development in times of climate crises. Also an expert on degrowth and Buen Vivir, two alternatives to growth-based development from the Global North and South. Katarina will be virtually attending COP28. @DrKatRichter.

Climate justice

Dr Alix Dietzel – climate justice and climate policy expert. Focusing on the global and local scale and interested in how just the response to climate change is and how we can ensure a just transition. Alix will be in attendance in the Blue Zone at COP28 during week 1. Follow on Twitter/X @alixdietzel.

Dr Ed Atkins – expert on environmental and energy policy, politics and governance and how they must be equitable and inclusive. Also interested in local politics of climate change policies and energy generation and consumption. Follow on Twitter/X @edatkins_.

Dr Karen Tucker – expert on colonial politics of knowledge that shape encounters with indigenous knowledges, bodies and natures, and the decolonial practices that can reveal and remake them. Karen will be in attending the Blue Zone of COP28 in week 2.

Climate change and health

Dr Dan O’Hare – expert in climate anxiety and educational psychologist. Follow on Twitter/X @edpsydan.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Follow on Twitter/X @ClimateDann.

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter/X @EuniceLoClimate.

Professor Guy Howard – expert in influence of climate change on infectious water-related disease, including waterborne disease and vector-borne disease.

Professor Rachael Gooberman-Hill – expert in health research, including long-term health conditions and design of ways to support and improve health. @EBIBristol (this account is only monitored in office hours).

Youth, children, education and skills

Dr Dan O’Hare – expert in climate anxiety in children and educational psychologist. Follow on Twitter/X @edpsydan.

Dr Camilla Morelli – expert in how children and young people imagine the future, asking what are the key challenges they face towards the adulthoods they desire and implementing impact strategies to make these desires attainable. Follow on Twitter/X @DrCamiMorelli.

Dr Helen Thomas-Hughes – expert in engaging, empowering, and inspiring diverse student bodies as collaborative environmental change makers. Also Lead of the Cabot Institute’s MScR in Global Environmental Challenges. Follow on Twitter/X @Researchhelen.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports. Also part of the Waves of Change project with Dr Camilla Morelli, looking at the intersection of social, economic and climatic impacts on young people’s lives and futures around the world.

Climate activism / Extinction Rebellion

Dr Oscar Berglund – expert on climate change activism and particularly Extinction Rebellion (XR) and the use of civil disobedience. Follow on Twitter @berglund_oscar.

Land / Nature / Food

Dr Jo House – expert on land and climate interactions, including emissions of carbon dioxide from land use change (e.g. deforestation), climate mitigation potential from the land (e.g. afforestationbioenergy), and implications of science for policy. Previously Government Office for Science’s Head of Climate Advice. Follow on Twitter @Drjohouse.

Professor Steve Simpson – expert marine biology and fish ecology, with particular interests in the behaviour of coral reef fishes, bioacoustics, effects of climate change on marine ecosystems, conservation and management. Follow on Twitter/X @DrSteveSimpson.

Dr Taro Takahashi – expert on farminglivestock production systems as well as programme evaluation and general equilibrium modelling of pasture and livestock-based economies.

Dr Maria Paula Escobar-Tello – expert on tensions and intersections between livestock farming and the environment.

Air pollution / Greenhouse gases

Dr Aoife Grant – expert in greenhouse gases and methane. Set up a monitoring station at Glasgow for COP26 to record emissions.

Professor Matt Rigby – expert on sources and sinks of greenhouse gases and ozone depleting substances. Follow on Twitter @TheOtherMRigby.

Professor Guy Howard – expert in contribution of waste and wastewater systems to methane emissions in low- and middle-income countries

Plastic and the environment

Dr Charlotte Lloyd – expert on the fate of chemicals in the terrestrial environment, including plasticsbioplastics and agricultural wastes. Follow on Twitter @DrCharlLloyd.

Cabot Institute for the Environment at COP28

We will have three media trained academics in attendance at the Blue Zone at COP28. These are: Dr Alix Dietzel (week 1), Dr Colin Nolden (week 2) and Dr Karen Tucker (week 2). We will also have two academics attending virtually: Dr Caitlin Robinson and Dr Katharina Richter.

Read more about COP on our website at https://bristol.ac.uk/cabot/what-we-do/projects/cop/
——————————
This blog was written by Amanda Woodman-Hardy, Communications and Engagement Officer at the Cabot Institute for the Environment. Follow on Twitter @Enviro_Mand and @cabotinstitute.

Watch our Cabot Conversations – 10 conversations between 2 experts on a climate change issue, all whilst an artist listens in the background and interprets the conversation into a beautiful piece of art in real time. Find out more at bristol.ac.uk/cabot/conversations.

After COP27, is 1.5C still alive?

Try booking a train on Boxing Day in the UK and you’ll soon find out that none are running. Well, not entirely. One small railway line managed by indomitable Gauls still holds out: The Eurostar. And airports are still being served as plains are still flying. Obvs. If this is not just the present, but also our future, then Mia Mottley, Prime Minister of Barbados, is right: “We’re at 1.2 degrees now. If in 5 years we’re at 1.5, then we’re…. we’re…. I won’t use that word now.”

Apologies, I got carried away. Back to planes (flying), trains (not running) and automobiles (driving). These are symptomatic of the mess we’re in, but nothing compared to the mess we’re heading towards. And nothing compared to the mess others already find themselves in. If these current trends continues the number of refugees is set to increase from 21m in 2022 to 1bn in 2050 (Mia Mottley again). Many originate from Africa which is responsible for only 4% of global emissions (and 2% of historic emissions) and home to 600m without access to electricity.

While inanimate capital moves freely across borders, refugees are increasingly prevented from doing so. As their poverty and desperation grows in a warming world, their cost of borrowing increases as the World Bank uses per capita income as a proxy for borrowing conditions. Consequently, such countries (Least Developed Countries – LDCs) borrow at 12-14% while rich countries (the G7) borrow at 1-4%. According to Indian economist Joyashree Roy, these countries need 7% growth per year to escape their plight but if they are borrowing at +10% cost of capital, this growth will not be powered by renewables.

Neither will the focusing on the supply of renewables alone deliver Sustainable Development Goals (SDGs). Demand-side interventions are necessary to shift investment patterns and create new economic opportunities that are synergistic with SDGs. But all this depends on infrastructure access and empowerment to make the right choices, which in turn are determined by the flow of finance. To put on track for 1.5C, these flows need to quadruple to $4-6trn per year, according to Macky Sall, Senegalese President and current Chairperson of the African Union. IPCC Chair Hoesung Lee, goes one step further: access to capital is the key determinant of limiting global warming to 1.5C. Concessional access to finance was provided during COVID, as Mia Mottley pointed out, so why can it not be provided to prevent climate catastrophe?

Dr Colin Nolden (left) at COP27 with IPCC Chair Hoesung Lee and Dr Alix Dietzel

On the plus side, outgoing COP26 President Alok Sharma suggests that 90% of global emissions are covered by a net zero target. Almost 1/3rd of the global population who accumulate 55% of global GDP are covered by Emissions Trading Schemes, according to Stefano de Clara, Head of the International Carbon Action Partnership. Then again, the current average carbon price stands at $6/t. This needs to increase to $75/t by 2030 to limit warming to 2C, not to mention 1.5C, according to Dora Benedek from the International Monetary Fund.

Without such a massive increase in the cost of carbon, emissions are expected to be only 12% (6GtCO2eq) lower in 2030 compared to today. What about magic??, you might interject at this point. Current Carbon Capture and Storage (CCS) and Direct Air Capture (DAC) capacities amount to around 4 hours of global emissions and are projected to amount to around 16 hours in 2030, according to Sven Teske from the University of Technology Sydney. To keep 1.5C alive, we need to reduce emissions by 30-50% in by 2030 (Dora Benedek again). So yes to magic, but only within the bounds of Kate Raworth’s famous doughnut.

And it’s both sides of that tasty doughnut that we need to bear in mind. On the outside, quick wins are possible regarding methane emissions which are responsible for around 0.5C of the 1.2C we stand above pre-industrial levels. Around 0.1C of warming can be addressed by cutting gas flaring and coal related methane emissions at no cost, according to US Deputy Climate Envoy Richard Duke. Addressing such emissions deliver invaluable co-benefits on the inside. 15% of all deaths (7million a year) are due to polluted air, according to Jane Burston of the Clean Air Fund. Companies are having to pay a pollution premium to attract talent to polluted cities.

It’s both the out and the in-side of the doughnut we need to focus on for a just transition to happen. According to Heike Henn, of Germany’s Federal Ministry for Economic Affairs and Climate Action and whatnot, Article 6 is emerging as the mechanism to allocate those $100bn/a finance pledged in Paris which never materialised as well as the trillions needed to implement NDCs (Nationally Determined Contributions) and SDGs.

Not Article 6.2 though, which requires adjustments in GHG registries upon the transfer of a carbon credits (Internationally Transferrable Mitigation Outcome – ITMO) and is already seeing emerging economies lowering ambition in their NDCs. Article 6.4 is what I’m talking about. Although it will take years to be operationalised, its infrastructure is being developed as we speak. The Climate Action Data Trust, for example, can significantly lower transaction costs of carbon market transactions through automated Measurement, Reporting and Verification (MRV) and tokenisation to create digital carbon assets.

Now it’s down to ambitious countries to form alliances and agree on a sharing mechanism to convert the 1.5C target into demand for mitigation action distributed dynamically over time, and measure achievement and contribution using Article 6.4. “Getting to net zero is a heroic task”, according to Dirk Forrister of the International Emissions Trading Association, “and you won’t get there by going alone”.

Where does this leave 1.5C? “I find it hard to stay optimistic”, said Nichola Sturgeon on day 1 of COP27. I echo this sentiment. Yet we need to remind ourselves that the combined net zero targets, if implemented, can limit warming to 1.7C and increase, yes INCREASE, global GDP by 0.4% per year, according to Fatih Birol from the IEA. If we can’t sort this out, bins will be burning.

———————————

This blog was written by Cabot Institute for the Environment member Dr Colin Nolden, Bristol Law School, University of Bristol.

Colin Nolden

 

 

Why the aviation industry must look beyond carbon to get serious about climate change

 

Flying is responsible for around 5% of human-induced climate change.
Wichudapa/Shutterstock

Commercial aviation has become a cornerstone of our economy and society. It allows us to rapidly transport goods and people across the globe, facilitates over a third of all global trade by value, and supports 87.7 million jobs worldwide. However, the 80-tonne flying machines we see hurtling through our skies at near supersonic speeds also carry some serious environmental baggage.

My team’s recent review paper highlights some promising solutions the aviation industry could put in place now to reduce the harm flying does to our planet. Simply changing the routes we fly could hold the key to drastic reductions in climate impact.

Modern aeroplanes burn kerosene to generate the forward propulsion needed to overcome drag and produce lift. Kerosene is a fossil fuel with excellent energy density, providing lots of energy per kilogram burnt. But when it is burnt, harmful chemicals are released: mainly carbon dioxide (CO₂), nitrogen oxides (NOₓ), water vapour and particulate matter (tiny particles of soot, dirt and liquids).

Aviation is widely known for its carbon footprint, with the industry contributing 2.5% to the global CO₂ burden. While some may argue that this pales in comparison with other sectors, carbon is only responsible for a third of aviation’s full climate impact. Non-CO₂ emissions (mainly NOₓ and ice trails made from aircraft water vapour) make up the remaining two-thirds.

Taking all aircraft emissions into account, flying is responsible for around 5% of human-induced climate change. Given that 89% of the population has never flown, passenger demand is doubling every 20 years, and other sectors are decarbonising much faster, this number is predicted to skyrocket.

Aircraft contrails don’t last long but have a huge impact.
Daniel Ciucci/Unsplash

It’s not just carbon

Aircraft spend most of their time flying at cruise altitude (33,000 to 42,000 ft) where the air is thin, to minimise drag.

At these altitudes, aircraft NOₓ reacts with chemicals in the atmosphere to produce ozone and destroy methane, two very potent greenhouse gases. This aviation-induced ozone is not to be confused with the natural ozone layer, which occurs much higher up and protects the Earth from harmful UV rays. Unfortunately, aircraft NOₓ emissions cause more warming due to ozone production than they do cooling due to methane reduction. This leads to a net warming effect that makes up 16% of aviation’s total climate impact.

Also, when temperatures dip below -40℃ and the air is humid, aircraft water vapour condenses on particles in the exhaust and freezes. This forms an ice cloud known as a contrail. Contrails may be made of ice, but they warm the climate as they trap heat emitted from the Earth’s surface. Despite only lasting a few hours, contrails are responsible for 51% of the aviation industry’s climate warming. This means they warm the planet more than all aircraft carbon emissions that have accumulated since the dawn of powered flight.

Unlike carbon, non-CO₂ emissions cause warming through interactions with the surrounding air. Their climate impact changes depending on atmospheric conditions at the time and location of release.

Cutting non-CO₂ climate impact

Two of the most promising short-term options are climate-optimal routing and formation flight.

Left: Climate optimal routing. Right: Formation flight concept.

Climate-optimal routing involves re-routing aircraft to avoid regions of the atmosphere that are particularly climate-sensitive – for example, where particularly humid air causes long-lived and damaging contrails to form. Research shows that for a small increase in flight distance (usually no more than 1-2% of the journey), the net climate impact of a flight can be reduced by around 20%.

Flight operators can also reduce the impact of their aircraft by flying in formation, with one aircraft flying 1-2 km behind the other. The follower aircraft “surfs” the lead aircraft’s wake, leading to a 5% reduction in both CO₂ and other harmful emissions.

But flying in formation can reduce non-CO₂ warming too. When aircraft exhaust plumes overlap, the emissions within them accumulate. When NOₓ reaches a certain concentration, the rate of ozone production decreases and the warming effect slows.

And when contrails form, they grow by absorbing the surrounding water vapour. In formation flight, the aircraft’s contrails compete for water vapour, making them smaller. Summing all three reductions, formation flight could slash climate impact by up to 24%.

Decarbonising aviation will take time

The aviation industry has fixated on tackling carbon emissions. However, current plans for the industry to reach net zero by 2050 rely on an ambitious 3,000-4,000 times increase in sustainable aviation fuel (SAF) production, problematic carbon offsetting schemes, and the introduction of hydrogen- and electric-powered aircraft. All of these could take several decades to make a difference, so it’s crucial the industry cuts its environmental footprint in the meantime.

Climate-optimal routing and formation flight are two key examples of how we could make change happen faster, compared with a purely carbon-focused approach. But there is currently no political or financial incentive to change tack. It is time governments and the aviation industry start listening to the science, and take aircraft non-CO₂ emissions seriously.The Conversation

———————–

This blog is written by Cabot Institute for the Environment member Kieran Tait, PhD Candidate in Aerospace Engineering, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Kieran Tait

 

 

Mock COP26: Convincing, Cooperating and Collaborating

 

Glasgow COP26 presentation, preliminary discussion, and negotiation rounds 1 & 2

On 11th November at 10am around 60 A-level students from schools across Bristol gathered to participate in this year’s Mock COP26, hosted by Jack Nicholls, Emilia Melville, and Camille Straatman from the Cabot Institute for the Environment. After a resounding success from the first Mock COP, which took place online in March 2021, there was real excitement and anticipation building for the in-person event which would be held in the Great Hall of the Wills Memorial Building.

The morning kicked off with an engaging presentation by Jack, Emilia, and Camille, outlining the objectives of the upcoming COP26 in Glasgow. There had been much discussion surrounding the COP in the public sphere in the prior weeks, so it was interesting to see a summary of where things stand in the time since the Paris Agreement and what the potential outcomes of this COP may be.

The negotiations began with preliminary intra-group discussions, facilitated by a group of 12 postgraduate students. Each group defined their stance on each of the COP resolutions, ranging from option A, the most radical response, to C, the most conservative. It was evident from the off that these students were highly knowledgeable and passionate about the environmental, sociological, and economic impacts of each resolution, and as a result, each group wasted no time in prioritising the resolutions that would benefit their actor the most. Brazil factored in its current economic and development situation, as well as the Amazon’s critical role in the ecosystem balance, choosing to prioritise climate finance, natural protection and conservation and protecting climate refugees. For the International Indigenous Peoples Forum on Climate Change (IIFPCC), giving protected status to 50% of Earth’s natural areas by 2050 was defined as the most important resolution, whereas Shell chose to focus on phasing out coal, with the understanding that this would take the onus off the oil industry. Each group presented their ideal resolutions in a clear and concise manner.

The atmosphere really started to build in the hall when the first round of negotiations began. China faced Greenpeace in a heated discussion on coal usage while the IIFPCC negotiated with the USA on protecting indigenous populations. The United Nations High Commissioner for Refugees found alignment with Brazil on many of the resolutions, namely achieving net-zero emissions by 2050, natural protection and conservation to 30% of Earth’s natural areas and protecting climate refugees. In round two of negotiations, we saw Shell and the International Monetary Fund categorically disagree on the timeline for transition to Zero Emissions Vehicles, eventually compromising on a B resolution to have all new vehicle sales as zero-emission by 2040. Brazil was happy in supporting the IIPFCC in resolution 7a. (All countries must allow people fleeing from natural disasters, environmental degradation, and sea level rise to enter their countries and make their new homes there). Brazil and IIPFCC made an alliance to encourage USA toward resolution 7a, instead of their preferred 7b (Countries at risk of extinction from sea level rise should be provided with new land to settle and move their people to OR be provided with financial help to buy land in other nations). China and the Alliance of Small Island States (AOSIS) clash on coal usage, with AOSIS pushing back with a suggestion of image control, but ultimately China held strong on their decision.

Negotiation rounds 3 & 4, voting, and deputy mayor’s speech

The UK showed their tactical abilities and their knowledge in the negotiations with Greenpeace, but Greenpeace did not cede to their demands and manage to agree to a deal.  The IIPFCC was determined to protect indigenous land and communities, but their quest was heavily challenged by Shell. There was no common ground in the negotiation with this petrol giant, so the IIPFCC had to ensure an allyship with Brazil if they wanted to ensure the protection of the indigenous. On round four, Shell tried to sway some votes from China and Sweden, but while agreements were found with the former, the latter country was not going to let Shell influence their values. The tête-à-tête became lively as neither Shell nor Sweden were willing to compromise, resulting in a rather unsuccessful attempt of finding complicity.

After four intense rounds of negotiating, the voting began. Were all parties going to remain faithful to the agreements established during the negotiations? Or would some throw a curve ball, changing their minds at the last minute? The pondered tactics of the IIPFCC were successful, as they managed to lock Brazil’s and the USA’s support on their most valued resolutions. All parties pondered thoroughly on how to best use their votes, and it seemed that this meant that some agreements had been silently retracted, when some astonished reactions followed the raise of hands here and there.

The conference was finally over and many parties, including Brazil and Greenpeace, could celebrate the victory of the resolutions agreed upon. Yet, it was clear that a bittersweet aftertaste was left in the mouths of some parties, who did not manage to persuade enough. The heated debate had ended, and what was done was done, but one more surprise was awaiting our participants. Deputy Mayor Asher Craig had been sitting on the sidelines for a few instances already, assisting in the final yet most heated rounds of the conference. She was there, observing our pupils in awe as they got into character and avidly fought for their beliefs. The Deputy Mayor was impressed by the passion of these young minds and how much they are invested in the cause; she was proud to see that young generations care about the environment and our planet, as they came up with ideas for change that they would like to see more in the Bristol. The innovativeness and creativity of the students was remarkable in her eyes, as she proceeded to give an inspiring and uplifting speech on the efforts currently being made by the City Council to respond to the climate emergency. The mock COP26 was a more than a successful event, and as everyone waited for the results of the conference in Glasgow, we all wished that our simulation had been real.

Watch the students in action in this short video created by Particle Productions and funded by Bristol City Council.

————————————–

This blog is written by Sonia Pighini and Jennifer Malone, who are students on the Cabot Institute for the Environment Master’s by Research.

Jennifer Malone
Currently studying for a Master’s by Research in Global  Environmental Challenges from the Cabot Institute for the Environment, Jennifer’s research is centred on food system decarbonisation within the scope of UK food policy and community practice.
Sonia Pigini

Sonia is an international student in the MscR programme Global Environmental Challenges. Their research focuses on people-centred sustainable food system transitions in Bristol. They are particularly interested in exploring the potential for a more decentralised food system in the city, which empowers local producers, engages consumers and that keeps aspects such as justice and inclusion at its heart.

Image credit (image at top of blog): Jack Pitts

Are you a journalist looking for climate experts? We’ve got you covered

We’ve got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via Victoria Tagg, our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489.

Climate change / climate emergency / climate science / climate-induced disasters

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports. Dani will be at COP26.

Dr Katerina Michalides – expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_kmichaelides.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Dann will be at COP26. Follow on Twitter @ClimateDann.

Professor Dan Lunt – expert on past climate change, with a focus on understanding how and why climate has changed in the past and what we can learn about the future from the past. Dan is also a Lead Author on IPCC AR6. Dan will be at COP26. Follow on Twitter @ClimateSamwell.

Professor Jonathan Bamber – expert on the impact of melting land ice on sea level rise (SLR) and the response of the ocean to changes in freshwater forcing. Jonathan will be at COP26. Follow on Twitter @jlbamber

Professor Paul Bates CBE – expert in the science of flooding, risk and reducing threats to life and economic losses worldwide. Follow on Twitter @paul_d_bates

Professor Tony Payne – expert in the effects of climate change on earth systems and glaciers.

Dr Matt Palmer – expert in sea level and ocean heat content research at the Met Office Hadley Centre and University of Bristol. Follow on Twitter @mpclimate.

Net Zero / Energy / Renewables

Professor Valeska Ting – Engineer and expert in net zero, low carbon technologies, low carbon energy and flying. Also an accomplished STEM communicator, is an BAME Expert Voice for the BBC Academy. Follow on Twitter @ProfValeskaTing.

Professor Philip Taylor – Expert in net zero, energy systems, energy storage, utilities, electric power distribution. Also Pro-Vice Chancellor at the University of Bristol. Philip will be at COP26. Follow on Twitter @rolyatlihp.

Dr Colin Nolden – expert in sustainable energy policy, regulation and business models and interactions with secondary markets such as carbon markets and other sectors such as mobility. Colin will be at COP26.

Climate finance

Dr Rachel James – Expert in climate finance, damage, loss and decision making. Also has expertise in African climate systems and contemporary and future climate change. Follow on Twitter @_RachelJames

Climate justice

Dr Alix Dietzel – climate justice and climate policy expert. Focusing on the global and local scale and interested in how just the response to climate change is and how we can ensure a just transition. Alix will be at COP26. Follow on Twitter @alixdietzel

Dr Ed Atkins – expert on environmental and energy policy, politics and governance and how they must be equitable and inclusive. Also interested in local politics of climate change policies and energy generation and consumption. Follow on Twitter @edatkins_.

Climate activism / Extinction Rebellion

Dr Oscar Berglund – expert on climate change activism and particularly Extinction Rebellion (XR) and the use of civil disobedience. Follow on Twitter @berglund_oscar.

Air pollution / Greenhouse gases

Dr Aoife Grant – expert in greenhouse gases and methane. Has set up a monitoring station at Glasgow for COP26 to record emissions.

Professor Matt Rigby – expert on sources and sinks of greenhouse gases and ozone depleting substances. Follow on Twitter @TheOtherMRigby.

Land, nature and food

Dr Jo House – expert on land and climate interactions, including emissions of carbon dioxide from land use change (e.g. deforestation), climate mitigation potential from the land (e.g. afforestation, bioenergy), and implications of science for policy. Previously Government Office for Science’s Head of Climate Advice. Follow on Twitter @Drjohouse.
Dr Taro Takahashi – expert on farming, livestock production systems as well as progamme evaluation and general equilibrium modelling of pasture and livestock-based economies.

Climate change and infrastructure

Dr Maria Pregnolato – expert on effects of climate change and flooding on infrastructure. Follow on Twitter @MariaPregnolat1.

Plastic and the environment

Dr Charlotte Lloyd – expert on the fate of chemicals in the terrestrial environment, including plastics, bioplastics and agricultural wastes. Follow on Twitter @DrCharlLloyd.

What else the Cabot Institute for the Environment is up to for COP26

Find out what we’re doing for COP26 on our website at bristol.ac.uk/cabot/cop26.
Watch our Cabot Conversations – 10 conversations between 2 experts on a climate change issue, all whilst an artist listens in the background and interprets the conversation into a beautiful piece of art in real time. Find out more at bristol.ac.uk/cabot/conversations.
——————————
This blog was written by Amanda Woodman-Hardy, Communications and Engagement Officer at the Cabot Institute for the Environment. Follow on Twitter @Enviro_Mand and @cabotinstitute.
 

Time for policymakers to make policies (and to learn from those who are)

From a social scientist’s point of view, the recent IPCC report and the reception it has received are a bit odd. The report certainly reflects a huge amount of work, its message is vital, and it’s great so many people are hearing it. But not much in the report updates how we think about climate change. We’ve known for a while that people are changing the climate, and that how much more the climate changes will depend on the decisions we make.

What decisions? The Summary for Policymakers— the scientists’ memo to the people who will make the really important choices—doesn’t say. The words “fossil fuel”, “oil”, and “coal” never even appear. Nor “regulation”, “ban”, “subsidy”, or “tax”. The last five pages of the 42-page Summary are entitled “Limiting Future Climate Change”; but while “policymakers” appear, “policies” do not.

This is not the fault of the authors; Working Group I’s remit does not include policy recommendations. Even Working Group III (focused on mitigation) is not allowed to advocate for specific choices. Yet every IPCC contributor knows the most important question is which emission pathway we take, and that will depend on what policies we choose.

Which is why it’s so odd that big policy issues and announcements get comparatively little airtime (and research funding). For example, in June, the European Union codified in law the goal of reducing its greenhouse gas emissions 55% by 2030 (relative to 1990), and last month the European Commission presented a set of ambitious proposals for hitting that target. As a continent, Europe is already leading the world in emission reductions (albeit starting from a high level, with large cumulative historical emissions), and showing the rest of the world how to organize high-income societies in low-carbon ways. But the Commission’s proposals—called “Fit for 55”—have gone largely under the radar, not only outside of the EU but even within it.

The proposals are worth examining. At least according to the Commission, they will make the EU’s greenhouse gas emissions consistent with its commitments under the Paris Agreement. (Independent assessments generally agree that while a 55% reduction by 2030 won’t hit the Paris Agreement’s 1.5˚ target, it would be a proportionate contribution to the goal of limiting global heating to no more than 2˚.) And they will build on the EU’s prior reduction of its territorial emissions by 24% between 1990 and 2019.

A change of -24% over that period, and -18% for consumption emissions, is in one sense disappointing, given that climate scientists were warning about the need for action even before 1990. But this achievement, inadequate though it may be, far exceeds those of other high per-capita emitters, like the U.S. (+14%), Canada (+21%), or Australia (+54%).

The most notable reductions have been in the areas of electricity generation and heavy industry—sectors covered by the EU’s emissions trading system (ETS). Emissions from buildings have not declined as much, and those from transportation (land, air, and marine) have risen. Several of the Fit for 55 proposals therefore focus on these sectors. Maritime transport is to be incorporated into the ETS; free permits for aviation are to be eliminated; and a new, separate ETS for fuels used in buildings and land transport is to be established. Sales of new cars and trucks with internal combustion engines will end as of 2035, and increased taxes will apply to fuels for transport, heat, and electricity.

The Commission also proposes to cut emissions under the ETS by 4.2% each year (rather than 2.2% currently); expand the share of electricity sourced from renewables; and set a stricter (lower) target for the total amount of energy the EU will use by 2030—for the sake of greater energy efficiency.

All of this is going to be hugely contentious, and it will take a year or two at least for the Commission, the member-states, and the European Parliament to negotiate a final version. Corporate lobbying will shape the outcome, as will public opinion (paywall).

Two of the most interesting proposals are meant to head off opposition from industry and voters. A carbon border adjustment mechanism will put a price on greenhouse gases emitted by the production abroad of selected imports into the EU (provisionally cement, fertiliser, iron, steel, electricity, and aluminium). This will protect European producers from competitors subject to weaker rules. A social climate fund, paid for out of the new ETS, will compensate low-income consumers and small businesses for the increased costs of fossil fuels—thereby preventing any rise in fuel poverty.

No country is doing enough to mitigate emissions. But Fit for 55 represents the broadest, most detailed emissions reductions plan in the world—and, in some form, it will be implemented. Decision-makers everywhere should be studying, and making, policies like this.

—————————–

This guest blog is by friend of Cabot Insitute for the Environment and PLOS Climate Academic Editor Malcolm Fairbrother. Malcolm is a Professor of Sociology at Umeå University (Sweden), the Institute for Futures Studies (Stockholm), and University of Graz (Austria). Twitter: @malcolmfair. This blog has been reposted with kind permission from Malcolm Fairbrother. View the original blog.

Top image credit: Cold Dawn, Warm World by Mark McNestry, CC BY 2.0

 

Why I’m mapping the carbon stored in regrowing Amazonian forests

As we navigate our way out of the global medical pandemic, many are calling for a “green economic recovery”. This green recovery should be at the forefront of many discussions as world leaders, policy makers, scientists and organisations are preparing for the 26th Conference of the Parties (COP26) due to take place in November this year in Glasgow, UK. This conference will once again try to unite the world to help tackle the next and even larger global emergency, the Climate Emergency.

In recent years, the conversations around the Climate Emergency have increased dramatically with many individuals, groups, companies and governments aiming to tackle this emergency, in part, through replanting, restoring and reforesting large areas of land.

But what if we let forests regrow back naturally? How much carbon can they absorb from the atmosphere? 

As part of my PhD research at the University of Bristol, I have been looking at naturally regrowing forests in the Brazilian Amazon rainforest. These forests are known as “Secondary forests” and regrow on land that has previously been deforested and used for agricultural or other purposes and has since been abandoned, allowing the natural vegetation to return.

Figure 1: Secondary Forest in the Tapajos region of the Brazillian Amazon (credit Ricardo Dalagnol)

Secondary Forests in the Brazilian Amazon are expected to play a key role in achieving the goals of the Paris Agreement. They have a large climate mitigation potential, given their ability to absorb carbon up to 11 times faster than old-growth forests. However, the regrowth of these secondary forests is not uniform across the Amazon and is influenced by regional and local-scale environmental drivers and human disturbances like fires and repeated deforestations.

I worked with numerous scientists from Brazil and the UK to determine the impact of different drivers on the regrowth rates of the secondary forests, using a combination of satellite data. The key datasets we needed were:

What we did

We combined the satellite data maps and overlayed them to extract information on the carbon stored in relation to the forest age to model the regrowth rate with increasing age. We overlayed the information of key environmental drivers and human disturbances to see if and how these factors impact the regrowth rates.

What we found out

Overall, we found that the environmental conditions in Western Amazon enable secondary forests to regrow faster. Here the land received lots of rainfall and does not experience much drought. In the eastern parts of the Amazon, where the climate is drier and experiences more drought, the regrowth rates were up to 60% lower.

Figure 2: Schematic summary of the main results from the paper, highlighting the spatial patterns of regrowth dependent on both climate and human disturbances. The map in the middle shows the regions of secondary forest in the Brazillian Amazon and the four panels correspond to these regions.

In addition to this, we found that the regrowth rates were reduced even further by as much as 80% in eastern regions if the forests were subject to human activities like burning and repeated deforestations before the land was finally abandoned.

What it all means

Our results show the importance of protecting and expanding secondary forest areas to help us meet the Paris Agreement Targets. Our regrowth models can be used to help determine the contribution of current and future regrowing forests in the Brazilian Amazon in a spatial manner.

We found that in 2017, the secondary forests in the Brazilian Amazon stored about 294 Terragrams Carbon aboveground (that excludes carbon stored in roots and soils). However, this number is equivalent to about 0.25% of the carbon that is already stored in Amazon’s old-growth forests. Limiting carbon emissions through deforestation and degradation through burning of old-growth forests is therefore extremely important to help tackle the Climate Emergency.

We calculated that the annual carbon absorbed by the present secondary forest area in the Amazon is enough to contribute to about 5% of Brazil’s pledged contribution to the Paris Agreement by 2030. This number may seem small, but the area covered by the Amazonian secondary forests is currently equivalent to less than 2% of the whole of Brazil. If the area of secondary forest were to be expanded this would bring with it numerous co-benefits such as generating income to landowners and re-establishing ecosystem services.

In December 2020, many countries submitted updates to their so-called Nationally Determined Contributions (NDC), a country’s individual contributions to the Paris Agreement, this included Brazil. However, Brazil’s updated NDC no longer includes a clear position on reforestation, restoration and eliminating illegal deforestation.

At a time when we have all seen and felt the impacts of a true global emergency such as the COVID-19 pandemic, it becomes easier to imagine the potential impacts of climate change if left at the back of politician’s agendas. In the run up to COP26 it is now more important than ever to raise, not lower ambitions as we continue to tackle the global Climate Emergency.

You can read the full paper and download the data here: https://rdcu.be/cg4um.

——————————-

This blog is written by Cabot Institute member Viola Heinrich, School of Geographical Sciences, University of Bristol.

Viola Heinrich

The new carbon economy – transforming waste into a resource

As part of Green Great Britain Week, supported by BEIS, we are posting a series of blogs throughout the week highlighting what work is going on at the University of Bristol’s Cabot Institute for the Environment to help provide up to date climate science, technology and solutions for government and industry.  We will also be highlighting some of the big sustainability actions happening across the University and local community in order to do our part to mitigate the negative effects of global warming. Today our blog will look at ‘Technologies of the future: clean growth and innovation’.

On Monday 8 October 2018, the IPCC released a special report which calls upon world governments to enact policies which will limit global warming to 1.5°C compared with pre-industrial levels, failure to do so will drastically increase the probability of ecosystem collapses, extreme weather events and complete melting of Arctic sea ice. Success will require “rapid and far-reaching” actions in the way we live, move, produce and consume.

So, what comes to mind when you hear carbon dioxide – a greenhouse gas? A waste product? You’re not wrong to think that given the predicament that our planet faces, but this article is going to tell the other side of the story which you already know but is often forgotten.

For over a billion years, carbon dioxide has been trapped and transformed, almost miraculously, into an innumerable, rich and complex family of organic molecules and materials by photosynthetic organisms. Without this process, life as we know simply would not have evolved. Look around you, – I dare say that the story of carbon dioxide is weaved, one way or another into all the objects you see around you in this moment. Whether it’s the carbon atoms within the material itself – or that old fossilised sourced of carbon was used to smelt, melt or fabricate it.

The great growth and development of the last two centuries has been defined by humanity’s use of fossilised carbon which drove the first and second industrial revolutions. But now – the limitations of those very revolutions are staring us in the face and a new revolution is already underway, albeit it quietly.

An industrial revolution is said to occur when there is a step change in three forms of technology, Information, Transport and Energy. The step change that I will discuss here is the use of carbon dioxide coupled with renewable energy systems to deliver a circular carbon economy that aims to be sustainable, carbon neutral at worst and carbon negative at best. This burgeoning field comes under the name carbon capture and utilisation (CCU). CCU, represents a broad range of chemical processes that will most directly impact energy storage and generation and the production of chemical commodities including plastics and building aggregates such as limestone.

In our research we are developing catalysts made of metal nanoparticles to activate and react CO2 to form chemicals such as carbon monoxide (CO), formic acid, methanol and acetate. They be simple molecules – but they have significant industrial relevance, are made on vast scales, are energy intensive to produce, and all originate in some way from coal. The methods that we are investigating while being more technically challenging, consume just three inputs – CO2, water and an electrical current. We use a device called an electrolyser, it uses electricity to break chemical bonds and form new ones. The catalyst sits on the electrodes. At the anode, water is broken into positively charged hydrogen ions called protons and oxygen, while at the opposite electrode, the cathode, CO2 reacts with the protons, H+, to form new molecules. It sounds simple but encouraging CO2 to react is not easy, compared to most molecules, CO2 is a stubborn reactant. It needs the right environment and some energy such as heat, electricity or light to activate it to form products of higher energy content. The chemicals that can be produced by this process are industrially significant, they are used in chemical synthesis, as solvents, reactants and many other things. CO for example can be built up to form cleaner burning petroleum/diesel-like fuels, oils, lubricants and other products derived by the petrochemical industry.

Formic acid and methanol may be used to generate energy, they can be oxidised back to CO2 and H2O using a device called a fuel cell to deliver electricity efficiently without combustion. One day we could see electrically driven cars not powered by batteries or compressed hydrogen but by methanol which has a higher volumetric energy density than both batteries and hydrogen. Batteries are heavy, too short-lived and use high quantities of low abundance metals such as lithium and cobalt – meaning their supply chains could suffer critical issues in the future. While the compression of hydrogen is an energy intensive process which poses greater safety challenges.

However, there are still many hurdles to overcome. I recently went to the Joint European Summer School on Fuel Cell, Electrolyser and Battery Technologies. There I learned about the technical and economic challenges from an academic and industrial perspective. In an introductory lecture, Jens Oluf Jensen was asked “When will we run out of fossil fuels?”, his answer “Not soon enough!”. An obvious answer but there is something I wish to unpick. The task for scientists is not just to make technologies like CO2 capture, CO2 conversion and fuel cells practical – which I would argue is already the case for some renewable technological processes. The greatest challenge is to make them cost competitive with their oil-based equivalents. A gamechanger in this field will be the day that politicians enact policies which incorporate the cost to the environment in the price of energy and materials derived from fossil fuels, and even go so far as to subsidise the cost of energy and materials-based on their ability to avoid or trap carbon dioxide.

Even without such political input there is still hope as we’ve seen the cost of solar and wind drop dramatically, lower than some fossil fuel-based power sources and only with limited government support. Already there are companies springing up in the CCU sector. Companies like Climeworks and Carbon Engineering are demonstrating technology that can trap CO2 using a process known as Direct Air Capture (DAC). Carbon Engineering is going even further and developing a technology they call Air to Fuels™. They use CO2 from the air, hydrogen split from water and clean electricity to generate synthetic transportation fuels such as gasoline, diesel or jet fuel. You may question why we should need these fuels given the rise of battery powered vehicles but a better solution for fuelling heavy goods vehicles, cargo ships and long-haul flights is at the very least a decade way.

In 1975, Primo Levi wrote a story about a carbon dioxide molecule and he said in relation to photosynthesis “dear colleagues, when we learn to do likewise we will be sicut Deus [like God], and we will have also solved the problem of hunger in the world.”. The circular carbon economy may still be in its infancy, but the seeds have sprouted. Unlike the first and second industrial revolution, the 3rd industrial revolution will not be dependent on one single energy source but will be a highly interdependent network of technologies that support and complement each other in the aim of sustainability, just like nature itself.

——————————————
This blog is written by Cabot Institute member Gaël Gobaille-Shaw, University of Bristol School of Chemistry. He is currently designing new electrocatalysts for the conversion of CO2 to liquid fuels.
For updates on this work, follow @CatalysisCDT @Gael_Gobaille and @UoB_Electrochem on Twitter.  Follow #GreenGB for updates on the Green Great Britain Week.

Gael Gobaille-Shaw

Read other blogs in this Green Great Britain Week series:
1. Just the tip of the iceberg: Climate research at the Bristol Glaciology Centre
2. Monitoring greenhouse gas emissions: Now more important than ever?
3. Digital future of renewable energy
4. The new carbon economy – transforming waste into a resource
5. Systems thinking: 5 ways to be a more sustainable university
6. Local students + local communities = action on the local environment

 

COP21 daily report: The need for innovation (but do not call it innovation)

Cabot Institute Director Professor Rich Pancost will be attending COP21 in Paris as part of the Bristol city-wide team, including the Mayor of Bristol, representatives from Bristol City Council and the Bristol Green Capital Partnership. He and other Cabot Institute members will be writing blogs during COP21, reflecting on what is happening in Paris, especially in the Paris and Bristol co-hosted Cities and Regions Pavilion, and also on the conclusion to Bristol’s year as the European Green Capital.  Follow #UoBGreen and #COP21 for live updates from the University of Bristol.  All blogs in the series are linked to at the bottom of this blog.

—————————–


For the past two days, a delegation of us have been representing Bristol City Council and a group of Bristol businesses at the Sustainable Innovation Forum (SIF) at Paris.  Our group included Bristol Mayor George Ferguson, who spoke on Tuesday; Amy Robinson, of Low Carbon Southwest and the driver behind the Go Green business initiative; Bristol City Council representatives Stephen Hillton and Mhairi Ambler; and Ben Wielgus of KPMG and Chris Hayes of Skanska, both Bristol Green Capital sponsors.

This was the COP21 ‘Business event’ and aspects of this have been rather sharply targeted by Paris activists. There is a legitimate question of whether corporate sponsors are engaging in greenwashing, but this was not my perception from inside Le Stade de France.  There were some major fossil fuel dependent or environmentally impactful companies in attendance, but they seemed genuinely committed to reducing their environmental impact.  Their actions must be transparent and assessed, and like all of us, they must be challenged to go further. This is why it was fantastic that Mindy Lubber, President of Ceres, was speaking. Ceres is a true agent of change, bringing a huge variety of businesses into the conversation and working with them to continually raise ambitions.

The majority of these businesses, just like those that attended Bristol’s Business Summit in October, are clearly and objectively devoted to developing new technologies to address the world’s challenges,. Whether it be new solar tech that will underpin the PVC of 2050 or innovative new ways to deploy wind turbines cheaply and effectively in small African villages, it is no longer ‘business’ that is holding back climate action and in many cases they are leading it.

And we need them to do so.  We need them to develop new products and we need them to be supported by government and Universities.  We need them because we need new innovation, new technology and new infrastructure to meet our environmental challenges.

One of the major themes of the past two days has been leadership in innovation, an ambition to which the University of Bristol and the City of Bristol aspires – like any world-class university and city.  We have profound collective ambitions to be a Collaboratory for Change. These are exemplified by Bristol is Open, the Bristol Brain and the Bristol Billion, all endeavours of cooperation between the University of Bristol and Bristol City Council and all celebrated by George Ferguson in his speech to the SIF attendees yesterday.

This need for at least some fundamentally new technology is why the Cabot Institute has launched VENTURE. It is why the University has invested so much in the award-winning incubator at the Engine Shed. It is why we have devoted so much resource to building world-leading expertise in materials and composites, especially in partnership with others in the region.

We do not need these innovations for deployment now – deployment of already existing technology will yield major reductions in our carbon emissions – but we need to start developing them now, so that we can achieve more difficult emissions reductions in 20 years.  Our future leaders must have an electrical grid that can support a renewable energy network. Our homes must have been prepared for the end of gas.

And we will need new technology to fully decarbonise.

We effectively have no way to make steel without burning coal to melt iron – we either need new tech in recycling steel, need to move to a post-steel world, need to completely redesign steel plants, or some combination of all three.

We will need new forms of low-energy shipping. Localising manufacturing and recycling could create energy savings in the global supply chain.  But we will always have a global supply chain and eventually it must be decarbonised.

Similarly, we will need to decarbonise our farm equipment.  At heart, I am still an Ohio farm boy, and so I was distracted from my cities-focus to discuss this with Carlo Lambro, Brand President of New Holland.  Their company has made some impressive efficiency gains in farm equipment, especially with respect to NOx emissions, but he conceded that a carbon neutral tractor is still far away – they require too much power, operating at near 100% capacity (cars are more like 20-30%).  He described their new methane-powered tractor, which could be joined up to biogas emissions from farm waste, but also explained that it can only operate for 1.5 hours.  There have been improvements… but there is still a long way to go. I appreciated his engagement and his candor about the challenges we face (but that did not keep me from encouraging him to go faster and further!).

Finally, if we really intend to limit warming to below 2C, then we will likely need to capture and store (CCS) some of the carbon dioxide we are adding to the atmosphere. Moreover, some of the national negotiators are pushing for a laudable 1.5C limit, and this would certainly require CCS. In fact, the need for the widespread implementation of such technology by the middle of this century is explicitly embedded in the emissions scenarios of IPCC Working Group 3. That is why some of our best Earth Scientists are working on the latest CCS technology.

Unfortunately, CCS illustrates how challenging innovation can be – or more precisely, as articulated by Californian entrepreneur Tom Steyer, how challenging it can be to develop existing technology into useful products. The CCS technology exists but it is still nascent and economically unviable.  It must be developed.  Given this, the recent cancellation of UK CCS projects is disappointing and could prove devastating for the UK’s intellectual leadership in this area.  The consequences of this decision were discussed by Nicola Sturgeon in a panel on energy futures and she renewed Scotland’s firm commitment to it.

This issue exemplifies a wider topic of conversation at the SIF: social and technological innovation and development requires financing, but securing that financing requires safety.  Skittish investors do not seek innovation; they seek safe, secure and boring investment. And SIF wrapped up by talking about how to make that happen.

First, we must invest in the research that yields innovations. We must then invest in the development of those innovations to build public and investor confidence.  Crucial to both of those is public sector support. This includes Universities, although Universities will have to operate in somewhat new ways if we wish to contribute more to the development process. We are learning, however, which is why George Ferguson singled out the Engine Shed as the world’s leading higher education based incubator.

Second, and more directly relevant to the COP21 ambitions, businesses and their investors need their governments to provide confidence that they are committed to a new energy future.  It has been clear all week that businesses will no longer accept the blame for their governments’ climate inaction.

Instead, most businesses see the opportunity and are eager to seize it. As for the few businesses that cling to the past? Like all things that fail to evolve, the past is where they shall remain.  The new generation of entrepreneurs will see to that. Whether it be the new businesses with new ideas or the old businesses that are adapting, the new economy is not coming; it is already here.

—————————————–

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.  For more information about the University of Bristol at COP21, please visit bristol.ac.uk/green-capital

Prof Rich Pancost

 

This blog is part of a COP21 daily report series. View other blogs in the series below: