Climate change: effect on forests could last millennia, ancient ruins suggest

 

Jonathan Lenoir, Author provided

Jonathan Lenoir, Université de Picardie Jules Verne (UPJV) and Tommaso Jucker, University of Bristol

Forests are home to 80% of land-based biodiversity, but these arks of life are under threat. The rising average global temperature is forcing tiny plants like sidebells wintergreen on the forest floor (known as the understory) to shift upslope in search of cooler climes. Forest plants can’t keep up with the speed at which the climate is changing – they lag behind.

The pace at which forests adapt to changing conditions is so slow that species living in forest understories today are probably responding to more ancient changes in their environment. For instance, the Mormal Forest floor in northern France is, in several places, covered by a carpet of quaking sedge. This long grass-like plant betrays the former settlements of German soldiers who used it to make straw mattresses during the first world war.

Changes in how people managed the land, sometimes dating back to the Middle Ages or even earlier, leave a lasting fingerprint on the biodiversity of forest understories. Knowing how long the presence of a given species can carry on the memory of past human activities can tell scientists how long climate change is likely to have an influence.

A forest carpeted with tall grass.
The wind whispering through Mormal’s sedge evokes the region’s wartime past.
Jonathan Lenoir, Author provided

Ecologists are turning to technologies such as lidar to rewind the wheel of time. Lidar works on the same principles as radar and sonar, using millions of laser pulses to analyse echoes and generate detailed 3D reconstructions of the surrounding environment. This is what driverless cars use to sense and navigate the world. Since the late 1990s, lidar has enabled amazing discoveries, such as the imprints of Mayan civilisation preserved beneath the canopy of tropical forest.

In a new paper, I, along with experts in ecology, history, archaeology and remote sensing, used lidar to trace human activity in the Compiègne Forest in northern France back to Roman times – much later than historical maps could ever do.

Illuminating ghosts from the past

Compared to farm fields, which are ceaselessly disturbed, forest floors tend to be well-preserved environments. As a result, the ground below the forest canopy may still bear the imprints of ancient human occupation.

Archaeologists know this pretty well and they increasingly rely on lidar technology as a prospecting tool. It allows them to virtually remove all the trees from aerial images and hunt artefacts hidden below treetops and fossilised under forest floors.

Using airborne lidar data acquired in 2014 over the Compiègne Forest in northern France, a team of archaeologists and historians found well-preserved Roman settlements, farm fields and roads. Long considered a remnant of prehistoric forest, the Compiègne was, in fact, a busy agricultural landscape 1,800 years ago.

A black-and-white aerial photo of a landscape marked by depressions and boundaries.
Lidar can reveal the terrain hidden beneath forests.
Jonathan Lenoir, Author provided

A closer look at these ghostly images of the Compiègne Forest reveals several depressions within a fossilised network of Roman farm fields. Archaeologists excavated numerous depressions like this across many forests in north-eastern France and found that people from the late iron age and Roman era carved them.

These depressions were made to extract marls (lime-rich mud) to enrich farm fields in carbonate minerals for growing crops and to create local depressions where rainwater collects naturally for livestock to drink. Marling is still a widespread practice in crop production in northern France.

A hillside with a large, white crater in.
A pit for extracting marl in Northern France.
Jonathan Lenoir, Author provided

The long-lasting effects of human activity

These signs of Roman occupation in modern forests provide clues to why some plant species are present where we wouldn’t expect them to be.

On a summer day in 2007 in a corner of the Tronçais Forest in central France, a team of botanists found a little patch of nitrogen-loving species – blue bugle, woodland figwort and stinging nettle – nestled among more acid-loving plants.

Nothing special at first sight. Until archaeologists found that Roman farm buildings had once stood in that spot, with cattle manure probably enriching the soil in phosphorous and nitrogen.

A shrub with bright blue flowers.
Blue bugle heralds an ancient Roman farm.
Kateryna Pavliuk/Shutterstock

If a clutch of tiny plants can betray ancient farming practices dating back centuries or millennia, ongoing environmental changes, such as climate change, will have similarly long-lasting effects. Even if the Earth stopped heating, the biodiversity of its forests would continue changing in response to the warming signal, in a delayed manner, through the establishment of more and more warm-loving species for several centuries into the future.

Just as the Intergovernmental Panel on Climate Change has a mission to provide plausible scenarios on future climate change, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to provide plausible scenarios on the fate of biodiversity. Yet none of the biodiversity models so far incorporate this lag effect. This means that model predictions are more prone to errors in forecasting the fate of biodiversity under future climate change.

Knowing about the past of modern forests can help decode their present state and model their future biodiversity. Now lidar technology is there to help ecologists travel back in time and explore the forest past. Improving the accuracy of predictions from biodiversity models by incorporating lagging dynamics is a big challenge, but it is a necessary endeavour for more effective conservation strategies.

——————————-

This blog is written by Jonathan Lenoir, Senior Researcher in Ecology & Biostatistics (CNRS), Université de Picardie Jules Verne (UPJV) and Cabot Institute for the Environment member Dr Tommaso Jucker, Research Fellow and Lecturer, School of Biological Sciences, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Low-technology: why sustainability doesn’t have to depend on high-tech solutions

 

Encouraging recycling is part of the low-tech approach to life.
PxHere

It’s a popular idea that the path to sustainability lies in high-tech solutions. By making everyday items like cars electric, and installing smart systems to monitor and reduce energy use, it seems we’ll still be able to enjoy the comforts to which we’ve become accustomed while doing our bit for the planet – a state known as “green growth”.

But the risks of this approach are becoming ever clearer. Many modern technologies use materials like copper, cobalt, lithium and rare earth elements. These metals are in devices like cell phones, televisions and motors. Not only is their supply finite, but large amounts of energy are required for their extraction and processing – producing significant emissions.

Plus, many of these devices are inherently difficult to recycle. This is because to make them, complex mixes of materials are created, often in very small quantities. It’s very expensive to collect and separate them for recycling.

Among others, these limitations have led some to question the high-tech direction our society is taking – and to develop a burgeoning interest in low-tech solutions. These solutions prioritise simplicity and durability, local manufacture, as well as traditional or ancient techniques.

What’s more, low-tech solutions often focus on conviviality. This involves encouraging social connections, for example through communal music or dance, rather than fostering the hyper-individualism encouraged by resource-hungry digital devices.

“Low-tech” does not mean a return to medieval ways of living. But it does demand more discernment in our choice of technologies – and consideration of their disadvantages.

Origins of low-tech

Critics have proclaimed the downsides of excessive technology for centuries, from 19th century Luddites to 20th century writers like Jacques Ellul and Lewis Mumford. But it was the western energy crisis in the 1970s that really popularised these ideas.

A person rides a cargo bike on a city road
Low-tech emphasises efficiency and simplicity.
CityHarvestNY/Wikimedia

British economist E.F. Schumacher’s 1973 book Small is Beautiful presented a powerful critique of modern technology and its depletion of resources like fossil fuels. Instead, Schumacher advocated for simplicity: locally affordable, efficient technologies (which he termed “intermediate” technologies), like small hydroelectricity devices used by rural communities.

Schumacher’s mantle has been taken up by a growing movement calling itself “low-tech”. Belgian writer Kris de Dekker’s online Low-Tech Magazine has been cataloguing low-tech solutions, such as windmills that use friction to heat buildings, since 2007. In particular, the magazine explores obsolete technologies that could still contribute to a sustainable society: like fruit walls used in the 1600s to create local, warm microclimates for growing Mediterranean fruits.

In the US, architect and academic Julia Watson’s book Lo-TEK (where TEK stands for Traditional Ecological Knowledge) explores traditional technologies from using reeds as building materials to creating wetlands for wastewater treatment.

And in France, engineer Philippe Bihouix’s realisation of technology’s drain on resources led to his prize-winning book The Age of Low Tech. First published in 2014, it describes what life in a low-tech world might be like, including radically cutting consumption.

An infographic showing principles of low-tech
Principles of low-tech include efficiency, durability and accessibility.
Arthur Keller and Emilien Bournigal/Wikimedia

Bihouix presents seven “commandments” of the low-tech movement. Among others, these cover the need to balance a technology’s performance with its environmental impact, being cautious of automation (especially where employment is replaced by increased energy use), and reducing our demands on nature.

But the first principle of low-tech is its emphasis on sobriety: avoiding excessive or frivolous consumption, and being satisfied by less beautiful models with lower performance. As Bihouix writes:

A reduction in consumption could make it quickly possible to rediscover the many simple, poetic, philosophical joys of a revitalised natural world … while the reduction in stress and working time would make it possible to develop many cultural or leisure activities such as shows, theatre, music, gardening or yoga.

Ancient solutions

Crucially, we can apply low-tech principles to our daily lives now. For example, we can easily reduce energy demand from heating by using warm clothes and blankets. Food, if it’s packaged at all, can be bought and stored in reusable, recyclable packaging like glass.

Architecture offers multiple opportunities for low-tech approaches, especially if we learn from history. Using ancient windcatcher towers designed to allow external cool air to flow through rooms lets buildings be cooled using much less energy than air conditioning. And storing heat in stones, used by the Romans for underfloor heating, is being considered today as a means of dealing with the intermittency of renewable energy.

Windcatcher towers against blue sky
Windcatchers in Yazd, Iran, cool buildings using wind.
Ms96/Wikimedia

Design and manufacture for sustainability emphasises reducing waste, often through avoiding mixing and contaminating materials. Simple materials like plain carbon steels, joined using removable fasteners, are easy to recycle and locally repair. Buses, trains and farm machinery using these steels, for example, can be much more readily refurbished or recycled than modern cars full of microelectronics and manufactured from sophisticated alloys.

In some places, the principles of low tech are already influencing urban design and industrial policy. Examples include “15-minute cities” where shops and other amenities are easily accessible to residents, using cargo bikes instead of cars or vans for deliveries, and encouraging repairable products through right-to-repair legislation in the EU and US.

Meanwhile, in Japan, there’s emerging interest in the reuse and recycling practices of the Edo period. From 1603 to 1867, the country was effectively closed to the outside world, with very limited access to raw materials. Therefore, extensive reuse and repair – even of things such as broken pottery or utensils with holes that we’d now regard as waste – became a way of life. Specialist repairers would mend or recycle everything from paper lanterns and books to shoes, pans, umbrellas and candles.

By following examples like these, we can make discerning technological choices a central part of our search for sustainable ways of living.The Conversation

————————-

This blog is written by Cabot Institute for the Environment member Professor Chris McMahon, Senior Research Fellow in Engineering, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

#COP26 to #CabotNext10: Reflections from our 2021 Communications Assistants

Last year, we had the pleasure of working with six excellent Master’s and PhD students in the run up to the United Nations Climate Change Conference COP26. They impressed us with the creativity in their applications and we recruited them as Cabot Communications Assistants – an exciting opportunity that doesn’t come up very often within the Institute to gain experience in communications, and work with the Cabot team. Covering COP26 themes, the ecological emergency and #CabotNext10, which celebrated the 10 year anniversary of the Cabot Institute and looked ahead to the next 10 years, our comms assistants designed and implemented campaigns for a variety of different audiences, drawing upon their own research as well as that of experts across the University.

With COP27 coming up later this year, these issues are still very much on the minds of press, the public and environmental professionals across the world. Keep reading to learn more about the work that some of our Cabot Communications Assistants created in response to the key messages of COP26 and the UN biodiversity conference COP15 and their reflections on their experience.

Dora Young – Climate Emergency and Mock COP26

I am undertaking my Master’s by Research (MScR) with the Cabot Institute in the hopes of contributing to a more equitable knowledge politics around environmental justice issues in Bristol. I aim for my work within the City Futures theme to enhance the inclusivity of urban ecological management strategies (specifically, addressing the intersections of action to restore healthy pollinator populations, improve the quality and accessibility of green spaces, and ensure food security in the city’s most deprived areas).

Dora’s reflections

I was pleased to have produced a 14 or so week long Twitter campaign, with weekly tweets to highlight crucial climate research being done by Cabot members, ahead of COP26. I was also very happy to be able to write a blog about our fantastic experience facilitating the Mock COP26, which involved 60 school students from Bristol and was a thoroughly enjoyable and inspiring day.

Lucy Morris – Clean transport, clean energy and the Mock COP26

I’m currently studying for a Master’s by Research in Environmental Themes, Sciences and Wildlife Filmmaking. I’m interested in the spectrum of framing strategies employed in wildlife films and how these shape our relationship with the natural world and in particular, non-human animals. I believe that film and other digital media, with their enormous affective power, are immensely important in confronting anthropogenic environmental degradation and demonstrating the intrinsic value of all species and natural spaces.

Lucy’s reflections

I worked on two projects throughout my time as a comms assistant. The first was a Twitter campaign promoting the work of Cabot researchers on clean transport in the run up to COP26. I interviewed 4 experts and produced videos of some of these interviews advertising the blog that would summarise them . I created a week-long Twitter campaign counting down the days to the blog release with facts about transport, links to more information and tagged amplifiers. I wrote up a blog that was released on the last day of the campaign that was read by more than 220 people. In the process, I learnt many new skills, worked as part of a great team and my own interest in the topic of transport only grew. I also worked to produce a creative output to summarise the process and events of the mock COP26 for sixth form students run by Cabot and Praxis research. Working with Jack Nicholls, I conducted qualitative research of all the notes made at the mock climate negotiations, drawing out themes of the day and learning outcomes. I produced a brief for illustrator, Ellie Shipman, who created amazing illustrations of the day. I also produced my own sketch illustrations as part of this brief, which were used in the final product – a web page all about Bristol’s mock COP.

Hilary McCarthy – Ecological Emergency

I’m an interdisciplinary PhD student working in laboratories across Life Sciences and Chemistry, investigating photosynthetic enhancement in plants and algae. My research involves investigating the role of both naturally occurring photonic nanostructures and artificially synthesized nanoparticles, called carbon dots, in photosynthetic processes such as light harvesting. A changing environment and increasing threats to biodiversity and global food and fuel supply puts increasing pressure on better understanding photosynthesis and its mechanisms, adaptations and potential routes to enhancement.

Hilary’s reflections

During my internship with Cabot, I worked on a campaign titled the ‘Ecological Emergency’, which was scheduled to run in October alongside COP15, a global convention on biodiversity. As part of the campaign I produced, I spoke with a number of academics in relevant research fields about their perspective on ecological decline and its drivers and projections. The campaign involved amplifying the academics statements, through a combination of blogs and visual social media posts. The visual content overlaid academic statements on top of staff and student photography and videography, of relevant wildlife and nature.

Olivia Reddy – #CabotNext10

Currently, I’m a few months into my PhD in Civil Engineering here at Bristol. My focus is on the infrastructure and management of sanitation systems in Ethiopia and Uganda, specifically looking at their resilience to climate change and the greenhouse gases they emit. I’m interested in creating sustainable, achievable change, and exploring the different ways in which to do so.

Olivia’s reflections

I think it’s really important that the work that Cabot does is understood and valued by a wider audience. That’s why I have taken the approach I have with #CabotNext10, to delve into why this research is important and what it means. Similarly, it’s important to see who Cabot is, and why the staff do what they do – which is why I wanted to re/introduce the core Cabot team. Science communication is a huge part of research which often gets overlooked, and I wanted to make sure those working here got highlighted. Read the #CabotNext10 blogs.

Also check out blogs by Comms Assistant Lois Barton on Urban Pollinating and World Water Day.

—————————————-
This blog is written by Joanne Norris, Cabot Institute Postgraduate Research Coordinator, and Adele Hulin, Cabot Institute Communications and Engagement Officer.

 

Joanne Norris

 

Joanne coordinates our Master’s by Research in Global Environmental Challenges, an interdisciplinary programme that brings together students from all disciplines to work on independent research projects tackling key areas of environmental change.
Adele Hulin

 

Adele manages internal and external communications and engagement at the Cabot Institute including recruiting and managing our Cabot Communications Assistants.
Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

How ancient plants ‘learnt’ to use water when they moved on to land – new research

Focal point/Shutterstock

“Plants, whether they are enormous, or microscopic, are the basis of all life including ourselves.” This was David Attenborough’s introduction to The Green Planet, the latest BBC natural history series.

Over the last 500 million years, plants have become interwoven into every aspect of our lives. Plants support all other life on Earth today. They provide the oxygen people breathe, as well as cleaning the air and cooling the Earth’s temperature. But without water, plants would not survive. Originally found in aquatic environments, there are estimated to be around 500,000 land plant species that emerged from a single ancestor that floated through the water.

In our recent paper, published in New Phytologist, we investigate, at the genetic level, how plants have learnt to use and manipulate water – from the first tiny moss-like plants to live on land in the Cambrian period (around 500 million years ago) through to the giant trees forming complex forest ecosystems of today.

How plants evolved

By comparing more than 500 genomes (an organism’s DNA), our results show that different parts of plant anatomies involved in the transport of water – pores (stomata), vascular tissue, roots – were linked to different methods of gene evolution. This is important because it tells us how and why plants have evolved at distinct moments in their history.

Plants’ relationship with water has changed dramatically over the last 500 million years. Ancestors of land plants had a very limited ability to regulate water but descendants of land plants have adapted to live in drier environments. When plants first colonised land, they needed a new way to access nutrients and water without being immersed in it. The next challenge was to increase in size and stature. Eventually, plants evolved to live in arid environments such as deserts. The evolution of these genes was crucial for enabling plants to survive, but how did they help plants first adapt and then thrive on land?

Stomata, the minute pores in the surface of leaves and stems, open to allow the uptake of carbon dioxide and close to minimise water loss. Our study found that the genes involved in the development of stomata were in the first land plants. This indicates that the first land plants had the genetic tools to build stomata, a key adaptation for life on land.

The speed in which stomata respond varies between species. For example, the stomata of a daisy close more quickly than those of a fern. Our study suggests that the stomata of the first land plants did close but this ability speeded up over time thanks to gene duplication as species reproduced. Gene duplication leads to two copies of a gene, allowing one of these to carry out its original function and the other to evolve a new function. With these new genes, the stomata of plants that grow from seeds (rather reproducing via spores) were able to close and open faster, enabling them to be more adaptable to environmental conditions.

Images of a plant's stomata, open and closed.
Shutterstock

Old genes and new tricks

Vascular tissue is a plant’s plumbing system, enabling it to transport water internally and grow in size and stature. If you have ever seen the rings of a chopped tree, this is the remnants of the growth of vascular tissue.

We found that rather than evolving by new genes, vascular tissue emerged through a process of genetic tinkering. Here, old genes were repurposed to gain new functions. This shows that evolution does not always occur with new genes but that old genes can learn new tricks.

Before the move to land, plants were found in freshwater and marine habitats, such as the algal group Spirogyra. They floated and absorbed the water around them. The evolution of roots enabled plants to access water from deeper in the soil as well as providing anchorage. We found that a few key new genes emerged in the ancestor of plants that live on land and plants with seeds, corresponding to the development of root hairs and roots. This shows the importance of a complex rooting system, allowing ancient plants to access previously unavailable water.

A dam floor cracked by lack of water.
Hot weather and climate changes left this Bulgarian dam almost empty in 2021.
Minko Peev/Shutterstock

The development of these features at every major step in the history of plants highlights the importance of water as a driver of plant evolution. Our analyses shed new light on the genetic basis of the greening of the planet, highlighting the different methods of gene evolution in the diversification of the plant kingdom.

Planting for the future

As well as helping us make sense of the past, this work is important for the future. By understanding how plants have evolved, we can begin to understand the limiting factors for their growth. If researchers can identify the function of these key genes, they can begin to improve water use and drought resilience in crop species. This has particular importance for food security.

Plants may also hold the key to solving some of the most pressing questions facing humanity, such as reducing our reliance on chemical fertilisers, improving the sustainability of our food and reducing our greenhouse gas emissions.

By identifying the mechanisms controlling plant growth, researchers can begin to develop more resilient, efficient crop species. These crops would require less space, water and nutrients and would be more sustainable and reliable. With nature in decline, it is vital to find ways to live more harmoniously in our green planet.The Conversation

———————-

This blog has been written by Alexander Bowles, research associate, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Alexander Bowles

 

 

New flood maps show US damage rising 26% in next 30 years due to climate change alone, and the inequity is stark

 

Coastal cities like Port Arthur, Texas, are at increasing risk from flooding during storms.
Joe Raedle/Getty Images

Climate change is raising flood risks in neighborhoods across the U.S. much faster than many people realize. Over the next three decades, the cost of flood damage is on pace to rise 26% due to climate change alone, an analysis of our new flood risk maps shows.

That’s only part of the risk. Despite recent devastating floods, people are still building in high-risk areas. With population growth factored in, we found the increase in U.S. flood losses will be four times higher than the climate-only effect.

Our team develops cutting-edge flood risk maps that incorporate climate change. It’s the data that drives local risk estimates you’re likely to see on real estate websites.

In the new analysis, published Jan. 31, 2022, we estimated where flood risk is rising fastest and who is in harm’s way. The results show the high costs of flooding and lay bare the inequities of who has to endure America’s crippling flood problem. They also show the importance of altering development patterns now.

The role of climate change

Flooding is the most frequent and costliest natural disaster in the United States, and its costs are projected to rise as the climate warms. Decades of measurements, computer models and basic physics all point to increasing precipitation and sea level rise.

As the atmosphere warms, it holds about 7% more moisture for every degree Celsius that the temperature rises, meaning more moisture is available to fall as rain, potentially raising the risk of inland flooding. A warmer climate also leads to rising sea levels and higher storm surges as land ice melts and warming ocean water expands.

Yet, translating that understanding into the detailed impact of future flooding has been beyond the grasp of existing flood mapping approaches.

A map of Houston showing flooding extending much farther inland.
A map of Houston shows flood risk changing over the next 30 years. Blue areas are today’s 100-year flood-risk zones. The red areas reflect the same zones in 2050.
Wing et al., 2022

Previous efforts to link climate change to flood models offered only a broad view of the threat and didn’t zoom in close enough to provide reliable measures of local risk, although they could illustrate the general direction of change. Most local flood maps, such as those produced by the Federal Emergency Management Agency, have a different problem: They’re based on historical changes rather than incorporating the risks ahead, and the government is slow to update them.

Our maps account for flooding from rivers, rainfall and the oceans – both now and into the future – across the entire contiguous United States. They are produced at scales that show street-by-street impacts, and unlike FEMA maps, they cover floods of many different sizes, from nuisance flooding that may occur every few years to once-in-a-millennium disasters.

While hazard maps only show where floods might occur, our new risk analysis combines that with data on the U.S. building stock to understand the damage that occurs when floodwaters collide with homes and businesses. It’s the first validated analysis of climate-driven flood risk for the U.S.

The inequity of America’s flood problem

We estimated that the annual cost of flooding today is over US$32 billion nationwide, with an outsized burden on communities in Appalachia, the Gulf Coast and the Northwest.

When we looked at demographics, we found that today’s flood risk is predominantly concentrated in white, impoverished communities. Many of these are in low-lying areas directly on the coasts or Appalachian valleys at risk from heavy rainfall.

But the increase in risk as rising oceans reach farther inland during storms and high tides over the next 30 years falls disproportionately on communities with large African American populations on the Atlantic and Gulf coasts. Urban and rural areas from Texas to Florida to Virginia contain predominantly Black communities projected to see at least a 20% increase in flood risk over the next 30 years.

Historically, poorer communities haven’t seen as much investment in flood adaptation or infrastructure, leaving them more exposed. The new data, reflecting the cost of damage, contradicts a common misconception that flood risk exacerbated by sea level rise is concentrated in whiter, wealthier areas.

A woman carries a child past an area where flood water surrounds low-rise apartment buildings.
Hurricane Florence’s storm surge and extreme rainfall flooded towns on North Carolina’s Neuse River many miles inland from the ocean in 2018.
Chip Somodevilla/Getty Images

Our findings raise policy questions about disaster recovery. Prior research has found that these groups recover less quickly than more privileged residents and that disasters can further exacerbate existing inequities. Current federal disaster aid disproportionately helps wealthier residents. Without financial safety nets, disasters can be tipping points into financial stress or deeper poverty.

Population growth is a major driver of flood risk

Another important contributor to flood risk is the growing population.

As urban areas expand, people are building in riskier locations, including expanding into existing floodplains – areas that were already at risk of flooding, even in a stable climate. That’s making adapting to the rising climate risks even more difficult.

A satellite image of Kansas City showing flood risk overlaid along the rivers.
A Kansas City flood map shows developments in the 100-year flood zone.
Fathom

Hurricane Harvey made that risk painfully clear when its record rainfall sent two reservoirs spilling into neighborhoods, inundating homes that had been built in the reservoirs’ flood zones. That was in 2017, and communities in Houston are rebuilding in risky areas again.

We integrated into our model predictions how and where the increasing numbers of people will live in order to assess their future flood risk. The result: Future development patterns have a four times greater impact on 2050 flood risk than climate change alone.

On borrowed time

If these results seem alarming, consider that these are conservative estimates. We used a middle-of-the-road trajectory for atmospheric greenhouse gas concentrations, one in which global carbon emissions peak in the 2040s and then fall.

Importantly, much of this impact over the next three decades is already locked into the climate system. While cutting emissions now is crucial to slow the rate of sea level rise and reduce future flood risk, adaptation is required to protect against the losses we project to 2050.

[Over 140,000 readers rely on The Conversation’s newsletters to understand the world. Sign up today.]

If future development was directed outside of the riskiest areas, and new construction met higher standards for flood mitigation, some of these projected losses could be avoided. In previous research, we found that for a third of currently undeveloped U.S. floodplains it is cheaper to buy the land at today’s prices and preserve it for recreation and wildlife than develop it and pay for the inevitable flood damages later.

The results stress how critical land use and building codes are when it comes to adapting to climate change and managing future losses from increasing climate extremes. Protecting lives and property will mean moving existing populations out of harm’s way and stopping new construction in flood-risk areas.The Conversation

——————————-

This blog is written by Cabot Institute for the Environment members Dr Oliver Wing, Research Fellow, and Paul Bates, Professor of Hydrology, School of Geographical Sciences, University of Bristol; and Carolyn Kousky, Executive Director, Wharton Risk Center, University of Pennsylvania and Jeremy Porter, Professor of Quantitative Methods in the Social Sciences, City University of New York.

This article is republished from The Conversation under a Creative Commons license. Read the original article.