Back to the Future ‘Hothouse’

Our current global warming target and the trajectory it places us on, towards a future ‘Hothouse Earth’, has been the subject of much recent discussion, stimulated by a paper by Will Steffen and colleagues.  In many respects, the key contribution of this paper and similar work is to extend the temporal framing of our climate discussions, beyond 2100 for several centuries or more.  Analogously, it is useful to extend our perspective backwards to similar time periods, to reflect on the last time Earth experienced such a Hothouse state and what it means.

The Steffen et al paper allows for a variety of framings, all related to the range of natural physical, biological and chemical feedbacks that will amplify or mitigate the human intervention in climate.  [Note: the authors frame their paper around the concept of a limited number of steady state scenarios/temperatures for the Earth.  They then argue that aiming for 2C, potentially an unstable state, could trigger feedbacks tipping the world towards the 4C warmer Hothouse.  I find that to be somewhat simplistic given the diversity of climate states that have existed, if even transiently, over the past 15 million years, but that is a discussion for another day.] From my perspective, the most useful framing – and one that remains true to the spirit of the paper is this: We have set a global warming limit of 2C by 2100, with an associated carbon budget. What feedback processes will that carbon budget and warming actually unleash over the coming century,  how much additional warming will they add, and when?

That is a challenging set of questions that comes with a host of caveats, most related to the profound uncertainty in the interlinked biogeochemical processes that underpin climate feedbacks. For example, as global warming thaws the permafrost, will it release methane (with a high global warming potential than carbon dioxide)? Will the thawed organic matter oxidise to carbon dioxide or will it be washed and buried in the ocean? And will the increased growth of plants under warmer conditions lead instead to the sequestration of carbon dioxide? The authors refer to previous studies that suggest a permafrost feedback yielding an additional 0.1C warming by the end of the century; but there is great uncertainty in both the magnitude of that impact and its timing.

And timing is the great question at the heart of this perspective piece.  I welcome it, because too often our perspective is fixed on the arbitrary date of 2100, knowing full well that the Earth will continue to warm and ice continue to melt long after that date.  In this sense, Steffen et al is not a contradiction to what has been reported from the IPCC but an expansion on it.

Classically, we discuss these issues in terms of fast and slow feedbacks, but in fact there is a continuum between near instantaneous feedbacks and those that act over hundreds, thousands or even millions of years.  A warmer atmosphere will almost immediately hold more water vapour, providing a rapid positive feedback on warming – and one that is included in all of those IPCC projections.  More slowly, soil carbon, including permafrost, will begin to oxidise, with microbial activity stimulated and accelerated under warmer conditions – a feedback that is only just now being included in Earth system models.  And longer term, all manner of processes will come into play – and eventually, they will include the negative feedbacks that have helped regulate Earth’s climate for the past 4 billion years.

There is enough uncertainty in these processes to express caution in some of the press’s more exuberant reporting of this topic.  But lessons from the past certainly underscore the concerns articulated by Steffen et al.  We think that the last time Earth had 410 ppm CO2, a level similar to what you are breathing right now, was the Pliocene about 3 million years ago.  This was a world that was 1 to 2C warmer than today (i.e. 2 to 3C warmer than the pre-industrial Earth) and with sea levels about 10 m higher.  This suggests that we are already locked into a world that far exceeds the ambitions and targets of the Paris Agreement.  This is not certain as we live on a different planet and one where the great ice sheets of Greenland and Antarctica might not only be victims of climate change but climate stabilisers through ice-sheet hysteresis. And even if a Pliocene future is fixed, it might take centuries for that warming and sea level change to be realised.

But that analogue does suggest caution, as advocated by the Hothouse Earth authors.

It also prompts us to ask what the Earth was like the last time its atmosphere held about 500 ppm CO2, similar to the level needed to achieve the Paris Agreement to limit end-of-century warming below 2C.  A useful analogue for those greenhouse gas levels is the Middle Miocene Climate Optimum, which occurred from 17 to 14.7 million years ago.

Figure showing changes in ocean temperature (based on oxygen isotopic compositions of benthic foraminifera) and pCO2 over the past 60 million years (from Palaeo-CO2).  Solid symbols are from the d11B isotope proxy and muted symbols are from the alkenone-based algal carbon isotope fractional proxy. Note the spike in pCO2 associated with the MMCO at about 15 million years ago.

As one would expect for a world with markedly higher carbon dioxide levels, the Miocene was hotter than the climate of today.  And consistent with many of Steffen et al.’s arguments, it was about 4C hotter rather than a mere 2C, likely due to the range of carbon cycle and ice-albedo feedbacks they describe.  But such warmth was not uniform – globally warmer temperatures of 4C manifest as far hotter temperatures in some parts of the world and only slightly warmer temperatures elsewhere. Pollen and microbial molecular fossils from the North Sea, for example, indicate that Northern Europe experienced sub-tropical climates.

But what were the impacts of this warmth?  What is a 4C warmer world like?  To understand that, we also need to understand the other ways in which the Miocene world differed from ours, not just due to carbon dioxide concentrations but also the ongoing movement of the continents and the continuing evolution of life.  In both respects, the Miocene was broadly similar to today.  The continents were in similar positions, and the geography of the Miocene is one we would recognise. But there were subtle differences, including the ongoing uplift of the Himalayas and the yet-to-be-closed gateway between North and South America, and these subtle differences could have had major impacts on Asian climate and the North Atlantic circulation, respectively.

Similarly, the major animal groups had evolved by this point, and mammals had firmly established their dominance in a world separated by 50 million years from the dinosaurs.  Remnant groups from earlier times (hell pigs!) still terrorised the landscape, but many of the groups were the same or closely related to those we would recognise today.  And although hominins would not appear until the end of the Miocene, the apes had become well established, represented by as many as a 100 species. In the oceans, the differences were perhaps more apparent, the seas thriving with the greatest diversity of cetaceans in the history of our planet and associated with them the gigantic macro-predators such as Charcharadon megalodon (The MegTM).

Smithsonian mural showing Miocene Fauna and landscape.

But it is the plants that exhibit the most pronounced differences between modern and Miocene life. Grasses had only recent proliferated across the planet at the time of the MMCO, and the C4 plants had yet to expand to their current dominance. And in this regard, the long-term evolution of Earth’s climate likely played a crucial role.  There are about 8100 species of C4 plants (although this comprises only 3% of the plant species known to us) and most of these are grasses with other notable species being maize and sugar cane. They are distinguished from the dominant C3 plants, which comprise almost all other species, by virtue of their carbon dioxide assimilation biochemistry (the Hatch-Slack mechanism) and their leaf cellular physiology (the Kranz leaf anatomy).  It is a collective package that is exceptionally well adapted to low carbon dioxide conditions, and their global expansion about 7 million years ago was almost certainly related to the long-term decline in carbon dioxide from the high levels of the Middle Miocene. Although C4 plants only represent a small proportion of modern plant species, the Miocene world, bereft of them, would have looked far different than today – lacking nearly half of our modern grass species and by extension clear analogues to the vast African savannahs.

Aside from these, the most profound differences between the Miocene world and that of today would have been the direct impacts of higher global temperatures.  There is strong evidence that the Greenland ice sheet was far reduced in size compared to that of today, and its extent and even whether or not it was a persistent ice sheet or an ephemeral one remains the subject of debate. Similarly, West Antarctica was likely devoid of permanent ice, and the East Antarctic Ice Sheet was probably smaller – perhaps far smaller – than it is today.  And collectively, these smaller ice sheets were associated with a sea level that was about 40 m higher than that of today.

The hot Miocene world would have been different in other ways, including the hydrological cycle.  Although less studied than for other ancient intervals, it is almost certain that elevated warmth – and markedly smaller equator-to-pole temperature differences – would have impacted the global distribution of water.  More water was evidently exported to the high latitudes, resulting in a warmer and vegetated Antarctica where the ice had retreated. It was also likely associated with far more extreme rainfall events, with the hot air able to hold greater quantities of water.  More work is needed, but it is tempting to imagine the impact of these hot temperatures and extreme rainfall events.  They would have eroded the soil and flushed nutrients to the sea, perhaps bringing about the spread of anoxic dead zones, similar to the Oceanic Anoxic Events of the Mesozoic or the dead zones of modern oceans caused by agricultural run-off. Indeed, the Miocene is characterised by the deposition of some very organic-rich rocks, including the North Pacific Monterey Formation, speaking to the occurrence of reduced oxygen levels in parts of these ancient oceans.

****************************************************

It is unclear if our ambitions to limit global warming to 2C by the end of this century really have put us on a trajectory for 4C. It is unclear if we are destined to return to the Miocene.

But if so, the Miocene world is one both similar to but markedly distinct from our own – a world of hotter temperatures, extremes of climate, fewer grasslands, Antarctic vegetation, Arctic forests and far higher sea levels. Crucially, it is not the world for which our current society, its roads, cities, power plants, dams, borders, farmlands and treaties, has been designed.

Moreover, the MMCO Earth is a world that slowly evolved from an even warmer one over millions of years*; and that then evolved over further millions of years to the one in which we now inhabit. It is not a world that formed in a hundred or even a thousand years.  And that leaves us three final lessons from the past.  First, we do not know how the life of this planet, from coral reefs to the great savannahs, will respond to such geologically rapid change.  Second, we do not know how we will respond to such rapid change; if we must adapt, we must learn how to do so creatively, flexibly and equitably.  And third, it is probably not too late to prevent such a future from materialising, but even if it is, we still must act to slow down that rate of change to which we must adapt.

And we still must act to ensure that our future world is only 4C hotter and analogous to the Miocene; if we fail to act, the world will be even hotter, and we will have to extend our geological search 10s of millions of years further into the past, back to the Eocene, to find an even hotter and extreme analogue for our future Hothouse World.

*The final jump into the MMCO appears to have been somewhat more sudden, but still spanned around two-hundred thousand years.  A fast event geologically but not on the timescales of human history.

——————————-
This blog is written by Cabot Institute member Professor Rich Pancost, Head of Earth Sciences at the University of Bristol. This blog has been reposted with kind permission from Rich’s original blog.

Rich Pancost

Ancient ‘dead seas’ offer a stark warning for our own near future

Bristol during the pleiocene as envisaged by Lucas Antics.

The oceans are experiencing a devastating combination of stresses. Rising CO2 levels are raising temperatures while acidifying surface waters.  More intense rainfall events, deforestation and intensive farming are causing soils and nutrients to be flushed to coastal seas. And increasingly, the oceans are being stripped of oxygen, with larger than expected dead zones being identified in an ever broadening range of settings. These dead zones appear to be primarily caused by the runoff of nutrients from our farmlands to the sea, but it is a process that could be exacerbated by climate change – as has happened in the past.

Recently, our group published a paper about the environmental conditions of the Zechstein Sea, which reached from Britain to Poland 270 million years ago. Our paper revealed that for tens of thousands of years, some parts – but only parts – of the Zechstein Sea were anoxic (devoid of oxygen). As such, it contributes to a vast body of research, spanning the past 40 years and representing the efforts of hundreds of scientists, which has collectively transformed our understanding of ancient oceans – and by extension future ones.

The types of processes that bring about anoxia are relatively well understood. Oxygen is consumed by animals and bacteria as they digest organic matter and convert it into energy. In areas where a great deal of organic matter has been produced and/or where the water circulation is stagnant such that the consumed oxygen cannot be rapidly replenished, concentrations can become very low. In severe cases, all oxygen can be consumed rendering the waters anoxic and inhospitable to animal life.  This happens today in isolated fjords and basins, like the Black Sea.  And it has happened throughout Earth history, allowing vast amounts of organic matter to escape degradation, yielding the fossil fuel deposits on which our economy is based, and changing the Earth’s climate by sequestering what had once been carbon dioxide in the atmosphere into organic carbon buried in sediments.

Red circles show the location and size of many dead zones. Black dots show Ocean dead zones of unknown size. Image source: Wikimedia Commons/NASA Earth Observatory

In some cases, this anoxia appears to have been widespread; for example, during several transient Cretaceous events, anoxia spanned much of what is now the Atlantic Ocean or maybe even almost all of the ancient oceans. These specific intervals were first identified and named oceanic anoxic events in landmark work by Seymour Schlanger and Hugh Jenkyns.  In the 1970s, during the earliest days of the international Deep Sea Drilling Program (now the International Ocean Discovery Program, arguably the longest-running internationally coordinated scientific endeavor), they were the first to show that organic matter-rich deep sea deposits were the same age as similar deposits in the mountains of Italy. Given the importance of these deposits for our economy and our understanding of Earth and life history, scientists have studied them persistently over the past four decades, mapping them across the planet and interrogating them with all of our geochemical and palaeontological resources.

In my own work, I have used the by-products of certain bacterial pigments to interrogate the extent of that anoxia.  The organisms are green sulfur bacteria (GSB), which require both sunlight and the chemical energy of hydrogen sulfide in order to conduct a rather exotic form of bacterial photosynthesis; crucially, hydrogen sulfide is only formed in the ocean from sulfate after the depletion of oxygen (because the latter yields much more energy when used to consume organic matter). Therefore, GSB can only live in a unique niche, where oxygen poor conditions have extended into the photic zone, the realm of light penetration at the very top of the oceans, typically only the upper 100 m.  However, GSB still must compete for light with algae that live in even shallower and oxygen-rich waters, requiring the biosynthesis of light harvesting pigments distinct from those of plants, the carotenoids isorenieratene, chlorobactene and okenone. For the organism, this is an elegant modification of a molecular template to a specific ecological need. For the geochemist, this is an astonishingly fortuitous and useful synthesis of adaptation and environment – the pigments and their degradation products can be found in ancient rocks, serving as molecular fossil evidence for the presence of these exotic and diagnostic organisms.

And these compounds are common in the black shales that formed during oceanic anoxic events.  And in particular, during the OAE that occurred 90 million years ago, OAE2, they are among the most abundant marker compounds in sediments found throughout the Atlantic Ocean and the Tethyan Ocean, what is now the Mediterranean Sea.  It appears that during some of these events anoxia extended from the seafloor almost all the way to the ocean’s surface.

********

Today, the deep sea is a dark and empty world. It is a world of animals and Bacteria and Archaea – and relatively few of those. Unlike almost every other ecosystem on our planet, it is bereft of light and therefore bereft of plants.  The animals of the deep sea are still almost entirely dependent on photosynthetic energy, but it is energy generated kilometres above in the thin photic zone. Beneath this, both animals and bacteria largely live off the scraps of organic matter energy that somehow escape the vibrant recycling of the surface world and sink to the twilight realm below. In this energy-starved world, the animals live solitary lives in emptiness, darkness and mystery. Exploring the deep sea via submersible is a humbling and quiet experience.  The seafloor rolls on and on and on, with only the occasional shell or amphipod or small fish providing any evidence for life.

“Krill swarm” by Jamie Hall – NOAA. Licensed under Public Domain via Wikimedia Commons

And yet life is there.  Vast communities of krill thrive on the slowly sinking marine snow, can appear.  Sperm whales dive deep into the ocean to consume the krill and emerge with the scars of fierce battles with giant squid.  And when one of those great creatures dies and its carcass plummets to the seafloor, within hours it is set upon by sharks and fish, ravenous and emerging from the darkness for the unexpected feast. Within days the carcass is stripped to the bones but even then new colonizing animals arrive and thrive. Relying on bacteria that slowly tap the more recalcitrant organic matter that is locked away in the whale’s bones, massive colonies of tube worms spring to life, spawn and eventually die.

But all of these animals, the fish, whales, tube worms and amphipods, depend on oxygen. And the oceans have been like this for almost all of Earth history, since the advent of multicellular life nearly a billion years ago.

This oxygen-replete ocean is an incredible contrast to the north Atlantic Ocean during at least some of these anoxic events. Then, plesiosaurs, ichthyosaurs and mosasaurs, feeding on magnificent ammonites, would have been confined to the sunlit realm, their maximum depth of descent marked by a layer of surprisingly pink and then green water, pigmented by the sulfide consuming bacteria.  And below it, not a realm of animals but a realm only of Bacteria and Archaea, single-celled organisms that can live in the absence of oxygen, a transient revival of the primeval marine ecosystems that existed for billions of years before more complex life evolved.

We have found evidence for these types of conditions during numerous events in Earth history, often associated with major extinctions, including the largest mass extinction in Earth history – the Permo-Triassic Boundary 252 million years ago.  Stripping the ocean of oxygen and perhaps even pumping toxic hydrogen sulfide gas into the atmosphere is unsurprisingly associated with devastating biological change.   It is alarming to realise that under the right conditions our own oceans could experience this same dramatic change.  Aside from its impact on marine life, it would be devastating for us, so dependent are we on the oceans for our food.

The conventional wisdom has been that such extreme anoxia in the future is unlikely, that Cretaceous anoxia was a consequence of a markedly different geography.  North America was closer to Europe and South America only completely rifted from Africa about 150 million years ago; the ancient Atlantic Ocean was smaller and more restricted, lending itself to these extreme conditions.

And yet questions remain.  What was their trigger?  Was it really a happenstance of geography?  Or was it due to environmental perturbations? And how extensive were they? The geological record preserves only snapshots, limiting the geographical window into ancient oceans, and this is a window that narrows as we push further back in time. In one of our recent papers, we could not simulate such severe anoxia in the Atlantic Ocean without also simulating anoxia throughout the world’s oceans, a truly global oceanic anoxic event.  However, that model can only constrain some aspects of ocean circulation and there are likely alternative mechanisms that confine anoxia to certain areas.

************

Over the past twenty years, these questions have intersected one another and been examined again and again via new models, new geochemical tools and new ideas.  And an emerging idea is that the geography of the Mesozoic oceans was not as important as we have thought.

That classical model is that ancient oceans, through a combination of the aforementioned restricted geography and overall high temperatures, were inherently prone to anoxia.  In an isolated Atlantic Ocean, oxygen replenishment of the deep waters would have been much slower.  This would have been exaggerated by the higher temperatures of the Cretaceous, such that oxygen solubility was lower (i.e. for a given amount of oxygen in the atmosphere, less dissolves into seawater) and ocean circulation was more sluggish. Consequently, these OAEs could have been somewhat analogous to the modern Black Sea.  The Black Sea is a restricted basin with a stratified water column, formed by low density fresh water derived from the surrounding rivers sitting stably above salty and dense marine deep water. The freshwater lid prevents mixing and prevents oxygen from penetrating into deeper waters. Concurrently, nutrients from the surrounding rivers keep algal production high, ensuring a constant supply of sinking organic matter, delicious food for microbes to consume using the last vestiges of oxygen.  The ancient oceans of OAEs were not exactly the same but perhaps similar processes were operating. Crucially, the configuration of ancient continents in which major basins were isolated from one another, suggests a parallel between the Black Sea and the ancient North Atlantic Ocean.

But over the past twenty years, that model has proved less and less satisfactory.  First, it does not provide a mechanism for the limited temporal occurrence of the OAEs.  If driven solely by the shape of our oceans and the location of our continents, why were the oceans not anoxic as the norm rather than only during these events? Second, putative OAEs, such as that at the Permo-Triassic Boundary occur at times when the oceans do not appear to have been restricted.  Third, coupled ocean-atmosphere models indicate that although ocean circulation was slower under these warmer conditions, it did not stop.

But also, as we have looked more and more closely at those small windows into the past, we have learned that during some of these events anoxia was more restricted to coastal settings.  And that brings us back to the Zechstein Sea. We mapped the extent of anoxia at an unprecedented scale in cores drilled by the Polish Geological Survey, and we discovered an increasing abundance of GSB molecular fossils in rocks extending from the carbonate platform and down the continental slope, suggesting that anoxia had extended out into the wider sea.  But when we reached the deep central part of the basin, the fossils were absent.  In fact, the sediments contained the fossils of benthic foraminifera, oxygen dependent organisms living at the seafloor, and the sediments had been bioturbated, churned by ancient animals. The green sulfur bacteria and the anoxia were confined to the edge of the basin, completely unlike the Black Sea.  This is not the first such observation and this is consistent with new arguments mandating not only a different schematic but also a different trigger.  And perhaps that trigger was from outside of the oceans.

If the trigger was not solely a restriction of oxygen supply then the alternative is that it was an excess of organic matter, the degradation of which consumed the limited oxygen. A likely source of that organic matter and one that is consistent with restriction of anoxia to ocean margins is a dramatic increase in nutrients that stimulated algal blooms – much like what is occurring today.  And that increase in nutrients, as elegantly summarized by Hugh Jenkyns, could have been caused by an increase in erosion and chemical weathering, driven by higher carbon dioxide concentrations, global warming and/or changes in the hydrological cycle, all of which we now know occurred prior to several OAEs. And again, similar to what is occurring today.

It is likely that today’s coastal dead zones are due not to climate change but to how we use our land and especially to our excess and indiscriminate use of fertilisers, most of which does not help crops grow or enhance our soil quality but is instead washed away to pollute our rivers and coastal seas. And yet that only underscores the lessons of the past.  They suggest that global warming might exacerbate the impacts of our poor land management, adding yet another pressure to an already stressed ecosystem.

Runoff of soil and fertiliser  during a rain storm. Image source: Wikimedia Commons

The Zechstein Sea study is not the key to this new paradigm (and that ‘paradigm’ is far from settled).  There is probably no single study that marked our change in understanding.  Instead, this new model has been gradually emerging over nearly 20 years, as long as I have been studying these events. New geochemical data, such as the distribution of nutrient elements, suggest that many of these anoxic episodes, whether local or global, were associated with algal blooms.  And other geochemical tools, such as the isotopic composition of trace metals, provide direct evidence for changes in the chemical weathering that liberated the bloom-fueling nutrients.

Science can move in monumental leaps forward but more typically it evolves in small steps. Sometimes, after years of small steps, your understanding has fundamentally changed. And sometimes that change means that your perception of the world, the world you love and on which you depend, has also changed.  You realize that it is more dynamic than you thought – as is its vulnerability to human behaviour.
——————————

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol
A shortened version of this blog can be found on The Conversation.

Prof Rich Pancost

This blog has also appeared in IFL Science and The Ecologist.