Uncomfortable home truths: Why Britain urgently needs a low carbon heat strategy



A new report backed by MPs and launched by Minister for Climate Change Lord Duncan on 15 October 2019, calls for an urgent Green Heat Roadmap by 2020 to scale low carbon heating technologies and help Britain’s homeowners access the advice they need to take smarter greener choices on heating their homes.  The year-long study by UK think-tank Policy Connect warns that the UK will miss its 2050 net-zero climate target “unless radical changes in housing policy, energy policy and climate policy are prioritised”. Dr Colin Nolden was at the launch on behalf of the Cabot Institute for the Environment and blogs here on the most interesting highlights of the report and questions raised.

———————————-

Policy Connect had invited a range of industry, policy, academic and civil society representatives to the launch of their Uncomfortable Home Truths report. The keynote, no less than Lord Duncan of Springbank, Minister for Climate Change, and the high-level panel consisting of Maxine Frerk, Grid Edge Policy (Chair), Alan Brown MP, House of Commons (SNP), Dr Alan Whitehead MP, House of Commons (Labour), Dhara Vyas, Citizens Advice, Adam Turk, BAXI Heating (sponsor) and Mike Foster, EUA (Energy & Utilities Alliance), (sponsor), had been briefed to answer tough questions from the crowd given the UK’s poor track record in the area of heat and home decarbonisation.

The event started with an introduction by Jonathan Shaw, Chief Executive of Policy Connect, who introduced the panel and officially launched the report. Uncomfortable Home Truths is the third report of the Future Gas Series, the first two of which focused on low-carbon gas options. This last report of the series shifts the focus from particular technologies and vectors towards heating, households and consumers. Jonathan subsequently introduced the keynote speaker Lord Duncan of Springbank, Minister for Climate Change.

Lord Duncan supported the publication of this report as timely and relevant especially in relation to the heat policy roadmap that government intends to publish in 2020. He stressed the importance of a cultural shift which needs to take place to start addressing the issue of heat at household and consumer level. He was adamant that the government was aligning its policies and strategies with its zero-carbon target according to the Committee on Climate Change and guided by science and policy. In this context he bemoaned the drive by some country representatives to put into question the targets of the Paris Agreement on Climate Change which he had witnessed as the UK’s key representative at the run-up to COP25 in Chile. The 2020 roadmap will report on the decisions which will need to be taken in homes and in technology networks, ranging from heat pumps to hydrogen and low-carbon electricity to support their decarbonisation. It requires cross-party support while depending on more research and learning from successful examples in other European countries.

Although Lord Duncan suggested that ‘it’s easier to decarbonise a power plant than a terraced house’, he told the audience to take encouragement from the fuel shift from coal towards gas starting half a century ago. But in this context he once again stressed the cultural shift which needs to go hand-in-hand with government commitment and technological progression, using the example of TV-chefs shunning electric hobs as an indication of our cultural affinity for gas. As long as heating and cooking are framed around fossil fuels, there is little space in the cultural imagination to encourage a shift towards more sustainable energy sources.

“The example of TV-chefs shunning electric hobs is an indication of our cultural affinity for gas”. Image source.

Among the questions following the keynote, one quizzed Lord Duncan about the process and politics of outsourcing carbon emissions. Lord Duncan stressed his support of Border Carbon Adjustments compliant with EU and global carbon policy ‘in lock-step with our partners’ to ensure that carbon emissions are not simply exported, which appears to support the carbon club concept. Another question targeted the UK’s favourable regulatory environment that has been created around gas, which has resulted in the EU’s lowest gas prices, while electricity prices are highest in Europe, due, among other things, to Climate Change Levies, which do not apply to gas, increasing by 46% on 1 April 2019. Lord Duncan pointed towards the ongoing review of policies ahead of the publication of the 2020 heat roadmap which will hopefully take a more vector- and technology-neutral approach. A subsequent rebuttal by a Committee on Climate Change (CCC) representative stressed the CCCs recommendation to balance policy cost between gas and electricity as on average only 20,000 heat pumps are sold in the UK every year (compared to 7 times as many in Sweden) yet the Renewable Heat Incentive is about to be terminated without an adequate replacement to support the diffusion of low-carbon electric heating technologies.

Lord Duncan stressed the need to create a simple ‘road’ which does not fall with changes in policy and once again emphasized the need for a cross-party road to support the creation of a low-carbon heating pathway. A UKERC representative asked about the government approach to real-world data as opposed to modelling exercises and their support for collaborative research projects as both modelling and competitive approaches have failed, especially in relation to Carbon Capture and Storage. Lord Duncan responded that the UK is already collaborating with Denmark and Norway on CCS and that more money is being invested into scalable and replicable demonstrators.

Following an admission wrapped in metaphors that a change in government might be around the corner and that roadmaps need to outlast such changes, Lord Duncan departed to make way for Joanna Furtado, lead author of the Policy Connect report. She gave a very concise overview of the main findings and recommendations in the report:

  • The 80% 2050 carbon emission reduction target relative to 1990 already required over 20,000 households to switch to low-carbon heating every week between 2025 and 2050. The zero-carbon target requires even more rapid decarbonisation yet the most successful policy constellations to date have only succeeded in encouraging 2,000 households to switch to low-carbon heating every week.
  • This emphasizes the importance of households and citizens but many barriers to their engagement persist such as privacy issues, disruption associated with implementation, uncertainly, low priority, lack of awareness and confusion around best approaches, opportunities, regulations and support.
  • Despite the focus on households, large-scale rollout also requires the development of supply chains so at-scale demonstrations need to go hand-in-hand with protection and engagement of households by increasing the visibility of successful approaches. Community-led and local approaches have an important role to play but better monitoring is required to differentiate between more and less successful approaches.
  • Protection needs to be changed to facilitate the inclusion of innovative technologies which are rarely covered while installers need to be trained to build confidence in their installations.
  • Regional intermediaries, such as those in Scotland and Wales, need to be established to coordinate these efforts locally while at national level a central delivery body such as the one established for the 2020 Olympics in London needs to coordinate the actions of the regional intermediaries.
  • Ultimately, social aspects are critical to the delivery of low-carbon heat, ranging from the central delivery body through regional intermediaries down to households and citizens.

 

Image source.

Chaired by Maxine Frerk of Grid Edge Policy, the panel discussion kicked off with Alan Brown who stressed the urgency of the heating decarbonisation issue as encapsulated by Greta Thunberg and Extinction Rebellion and the need to operationalize the climate emergency into actions. He called for innovation in the gas grid in line with cautions Health and Safety Regulation alterations. Costs also need to be socialised to ensure that the low-carbon transition does not increase fuel poverty. His final point stressed the need reorganize government to make climate change and decarbonisation a number 1 priority.

Dr Alan Whitehead, who has been involved with the APPCCG from the beginning, emphasized how discussions around heat decarbonisation have progressed significantly in recent years and especially since the publication of the first report of this series. He suggested that the newest report writes the government roadmap for them. In relation to the wider context of decarbonising heat, Alan Whitehead encouraged a mainstreaming of heating literacy similar to the growing awareness of plastic. He also stressed how far the UK is lagging behind compared to other countries and this will be reflected in upcoming policies and roadmaps. As his final point Alan Whitehead cautioned that the low-intrusion option of gas-boiler upgrades from biomethane to hydrogen ignores the fact that greater change is necessary for the achievement of the zero-carbon target although he conceded that customer acceptance of gas engineer intervention appears to be high.

Dhara Vyas presented Citizens Advice perspective by stressing the importance of the citizen-consumer focus. Their research has revealed a lack of understanding among landlords and tenants of the rules and regulations that govern heat. She suggested that engagement with the public from the outset is essential to protect consumers as people are not sufficiently engaged with heating and energy in general. Even for experts it is very difficult to navigate all aspects of energy due to the high transaction costs associated with engagement to enable a transition on the scale required by government targets.

Finally, representatives of the two sponsors BAXI and the Energy & Utility Alliance made a rallying call for the transition of the gas grid towards hydrogen. Adam Turk emphasized the need to legislate and innovate appropriately to ensure that the 84% of households that are connected to the gas grid can receive upgrades to their boilers to make them hydrogen ready. Similarly, Mike Foster suggested that such an upgrade now takes less than 1 hour and that the gas industry already engages around 2 million consumers a year. Both suggested that the gas industry is well placed to put consumers at the heart of action. They were supported by several members of the audience who pointed towards the 150,000 trained gas service engineers and the ongoing distribution infrastructure upgrades towards plastic piping which facilitate a transition towards hydrogen. Other members of the audience, on the other hand, placed more emphasis on energy efficiency and the question of trust.

Sponsorship of the Institution of Gas Engineers & Managers, EUC (Energy & Utility Alliance) and BAXI Heating was evident in the title Future Gas Series and support for hydrogen and ‘minimal homeowner disruption’ boiler conversion to support this vector shift among members of the audience was evident. Nevertheless, several panel members, members of the audience and, above all, Lord Duncan of Springbank, stressed the need to consider a wider range of options to achieve the zero-carbon target. Electrification and heat pumps in particular were the most prominent among these options. Energy efficiency and reductions in energy demand, as is usual at such events, barely received a mention. I guess it’s difficult to cut a ribbon when there’s less of something as opposed to something new and shiny?

———————————————-
This blog is written by Dr Colin Nolden, Vice-Chancellor’s Fellow, University of Bristol Law School and Cabot Institute for the Environment.

Colin Nolden

Regulatory defection in electricity markets

Graphic by Sarah Harman. Taken from energy.gov.

Electricity systems are undergoing rapid transformation. An increasing share of previously passive consumers is defecting energy demand and supply from the public electricity network (grid) as active ‘prosumers’ while technological and business model innovation is enabling demand-side resources to provide reliable and cost competitive alternatives to supply capacity.

Yet, centralised supply-focused market structures dominated by legacy infrastructures, technologies and supply chains associated with path-dependencies and technological lock-ins continue to dominate. Regulation has been designed around these existing supply-focused markets and structures rather than networks of the future capable of integrating and facilitating smart, flexible systems. Current systems and their regulatory frameworks are struggling to engage and integrate a range of technological, economic and social innovations promising consumer-oriented solutions to environmental problems.

In the UK, the Office for Gas and Electricity Markets (Ofgem) regulates the electricity and gas markets to protect the interest of existing and future consumers. Ofgem acknowledges that ‘moving from a largely centralised, carbon-intensive model to one which will be increasingly carbon-constrained, smart, flexible and decentralised is creating challenges which can only be addressed by innovation’.

In practice, the rapid diffusion of emerging digital technologies such as smart grids, smart meters and the internet of things is disrupting market structures and business models. Progress in automated and machine learning is producing exponentially growing amounts of data which facilitates the deep learning required for more accurate time series predictions. At the same time, distributed ledger technologies such as blockchain provide combined digital accounting and measuring, reporting and verification infrastructures as well as a means of developing and executing smart contracts.

Regulators such as Ofgem are confronted with the need to ‘keep the lights on’ while balancing their primary focus of regulating centralised electricity supply and trading markets with engaging with disruptive innovations. This is reflected in Ofgem’s monolithic, centralised structure, despite its commitment to facilitating smart systems, flexibility and non-traditional business models.

The question is, how can the regulator square grid code written for large-scale generators and wholesale traders with an increasing understanding of and desire to facilitate smart, flexible systems?

Disruptive technologies and business model innovation

In practice, smart, flexible systems imply the bidirectional flow of information which relies on a combination of on storage, demand-side responses, interconnection and energy efficiency increasingly facilitated by emerging digital and distributed ledger technologies. It is evident that existing legal frameworks will need to change to accommodate emerging digital and distributed ledger technologies, but regulators need to proceed with caution and change is inevitably a slow process that needs to take a very wide range of statutory and non-statutory requirements into account. Up to that point, however, the regulators’ discretionary and exempting power can and should be applied (with caution).

In Europe, Ofgem is at the forefront alongside the Dutch regulator (Authority for Consumers and Markets – ACM) in providing ‘regulatory sandboxes’ for microgrids and peer-to-peer trading which facilitates buying and selling electricity locally. These sandboxes facilitate experimentation and innovation without companies incurring or being subject to established regulatory requirements.

Despite Ofgem’s commitment to providing space for experimentation and innovation, missing market rules and high entry barriers encourage innovators to seek alternatives through regulatory defection. Two reports by the Rocky Mountain Institute, one on load defection and one on grid defection sensitised research and policy communities to economic aspects of electricity market defection. Regulatory defection is another aspect of the same issue but it deals with the broader opportunity (and concern) of economic activity shifting beyond particular regulatory spaces and boundaries. Arguments have been put forward that the trend of government withdrawing from energy policy rewards regulatory defection in electricity markets.

Concrete examples of regulatory defection in the electricity market include engaging in behind the meter generation, private wire supply and microgrids. Behind the meter generation is facilitated by a rapid fall in electricity storage costs. Batteries are now available for home installation with promises of 60% savings on electricity bills if appropriately scaled to match on-roof solar PV generation. Behind the meter generation also includes anything else that can be done to limit engagement with the grid, including energy efficiency improvements and reducing demand.

Private wire supply and microgrids require the installation of dedicated physical electricity transmission infrastructure. Private wire enables generators to sell electricity to neighbouring premises without transmitting electricity through the grid. Microgrids take private wires a step further to include a private network across multiple sites and end consumers. These arrangements are complex and require considerable skills and capacity to engage with appropriate network design, infrastructure, installation costs, land and planning requirements and operation and maintenance.

Despite this complexity, regulatory defection is underway through behind the meter generation, private wire supply and microgrid development. For example, Easton Energy Group in Bristol is at the forefront of developing a community microgrid combining solar PV generation with battery storage and dedicated transmission infrastructure as part of their TWOs project.

Energy Service Company (ESCO) business models facilitate defection by shifting the emphasis on the delivery of energy services. Rather than delivering energy in the form of grid electricity or fuel, ESCOs deliver final energy services such as lighting, ventilation or refrigeration. By shifting profitability towards the efficient provision of these services at low energy and environmental costs, ESCOs shift economic activity beyond the scope of electricity market regulation.

Combined, behind the meter generation, private wire supply and microgrids on the one hand, and ESCO business models on the other, require a rethink of how electricity is regulated. Fairness and equity need to be prioritised to ensure that the costs of running the existing infrastructure (which will still be necessary no matter how rapidly distributed systems evolve) will not be borne by fewer and less fortunate consumers that lack the capacity to defect. Therefore, new regulatory approaches are required to ensure that clean energy will be available to all at affordable costs.

Embracing disruption

One way of engaging with change is by embracing the innovations that threaten to usurp the current system. The Chilean regulator, Commisión Nacional de Energía (CNE), considers Blockchain an essential element of fair and sustainable energy markets. Its web portal Energía Abierta, the 1st open data website in South America, uses Blockchain as a digital notary. It allows CNE to certify that information provided on the web portal has not been altered and modified while also leaving an immutable record of its existence.

To this end, CNE issues ‘certificates of trust’ to give greater credibility to the portal. The aim of the portal is to increase levels of trust among stakeholders and the general public that have access to and consume the portal’s data. Another aim is that by using blockchain, greater trust in the citizen-government relationship can be created through more open and transparent governance. Ultimately, CNE expects blockchain to increase traceability, accountability, transparency and trust.

Chile has taken the lead in using blockchain as part of its regulatory framework and other countries should learn from this experience, especially if blockchain is to fulfil its potential in reducing transaction costs and managing complexity. Combining distributed ledger technologies such as blockchain with emerging digital technologies such as smart grids, smart meters and the internet of things can provide a new platform for electricity market regulation with data embodied in electricity at its core rather than electricity by itself.

The problem with regulation, however, is that it is based on experience from the past. Regulating emerging technologies and facilitating beneficial outcomes while limiting potential negative ones requires a fine balance and technological agnosticism. In this context it is necessary to bear in mind that it is not Ofgem’s sole responsibility to alter regulation. The Department for Business, Energy and Industrial Strategy (BEIS), District Network Operators, the National Grid and combined industry code panels governed by the Competition and Markets Authority and determined by the Secretary of State also have a role to play.

Regulatory defection in electricity markets will continue progressing in the absence of new market structures. Maybe it is time to rethink electricity market regulation in this space along the lines of platform regulation?

—————————
This blog has been written by Cabot Institute member Dr Colin Nolden, Vice Chancellor’s Fellow researching in Sustainable City Business Models (University of Bristol Law School).

Colin Nolden

Measuring greenhouse gases during India’s monsoon

NERC’s BAe-146 research aircraft at the Facility for Airborne Atmospheric Measurements (FAAM). Image credit: FAAM
This summer, researchers across the UK and India are teaming up to study the Indian monsoon as part of a £8 million observational campaign using the NERC research aircraftBAe-146

India receives 80% of its annual rainfall in three months – between June and September. There are large year-to-year differences in the strength of the monsoon, which is heavily impacted by drivers such as aerosols and large-scale weather patterns, and this has significant impact on the livelihoods of over a billion people. For example, due to the strong El Nino last year, the 2015 monsoon experienced a 14% lower precipitation than average with some regions of India facing up to 50% shortfall.  Forecasting the timing and strength of the monsoon is critical for the region and particularly for India’s farmers, who must manage water resources to avoid failing crops.

 

Roadside mural of the BAe-146 in Bangalore, India. Original artist unknown.  Image credit: Guy Gratton

The observational campaign, which is part of NERC’s Drivers of Variability in the South Asian Monsoon programme, is led jointly by UK researchers: Professor Hugh Coe (University of Manchester), Dr Andy Turner (University of Reading) and Dr Adrian Matthews (University of East Anglia) and Indian scientists from the Indian Space Research Organization and Indian Institute of Science.

Bristol PhD student Dan Say installing sample containers on the BAe- 146. Image credit: Angelina Wenger

To complement this project to study physical and chemical drivers of the monsoon, I am measuring greenhouse gas from the aircraft with PhD student Dan Say (School of Chemistry, University of Bristol). Dan is gaining valuable field experience by operating several instruments aboard the BAe-146 through the intense heat and rain of the Indian monsoon.

Two of the greenhouse gases that we are studying, methane and nitrous oxide, are primarily produced during the monsoon season from India’s intensive agriculture. Methane is emitted from rice paddies, in which flooded soils create prime conditions for “anaerobic” methane production. Nitrous oxide is also emitted from these flooded soils due the large quantity of fertilizers that are applied, again through anaerobic pathways. 

 

Rice fields near Bangalore, India. Image credit: Guy Gratton.

Our previous understanding of the large-scale emissions of these greenhouse gases from India’s agricultural soils has been limited and we aim to further our knowledge of what controls their production. In addition to the methane concentrations measured on the aircraft, with collaborators at the Royal Holloway, University of London’s isotope facility, we are also measuring the main isotope of methane (the 13-carbon isotope), which will provide us with a valuable tool for differentiating between agricultural and other sources of methane in the region. By combining this information with other measurements from the aircraft (for example, of moisture and of other atmospheric pollutants), we aim to gain new insights on how we may reduce these emissions in the future.

In addition, many synthetic “man-made” greenhouse gases are being measured for the first time in South Asia, giving us the first look at emissions from this region of some of the most potent warming agents. These include the suite of halocarbons such as hydrofluorocarbons (HFCs) and their predecessors the hydrochlorofluorocarbons (HCFCs) and chlorofluorocarbons (CFCs). These gases will be measured on the University of Bristol School of Chemistry’s ‘Medusa’ gaschromatography-mass spectrometer (GC-MS) facility run by Professor Simon O’Doherty.

 

Sample canisters for collecting air that will be measured on the School of Chemistry’s ‘Medusa’ GC-MS facility. Image credit: Angelina Wenger

————————————-

This blog is written by University of Bristol Cabot Institute member Dr Anita Ganesan, a NERC Research Fellow, School of Geographical Sciences, who looks at greenhouse gas emissions estimation.
Anita Ganesan

Hydrogen and fuel cells: Innovative solutions for low carbon heat

On 29 February 2016, I attended a meeting in Westminster that was jointly organised by the UK Hydrogen and Fuel Cell Association (UKFCA) and Carbon Connect with the aim of discussing current challenges in the decarbonisation of heat generation in the UK. The panel included David Joffe (Committee on Climate Change), Dr. Marcus Newborough (ITM Power), Ian Chisholm (Doosan Babcock), Klaus Ullrich (Fuel Cell Energy Solutions), Phil Caldwell (Ceres Power) and was chaired by Dr Alan Whitehead MP and Shadow Energy Minister. The attendees included a number of key players in the field of hydrogen production, fuel cell and renewable energy industries, as well as organisations such as the Department for Energy and Climate Change (DECC).

To set the scene, I would like to quote some facts and figures from the 2015 Carbon Connect report on the Future of Heat (part II).

  1. The 2025 carbon reduction target is 404.4 MtCO2e (million metric tons of carbon dioxide equivalent), but the reduction levels as of 2014 have only been 288.9 MtCO2e. The current Government’s low carbon policy framework is woefully inadequate to bridge this gap.
  2. The government introduced the Renewable Heat Incentive in 2011, with the ambition of increasing the contribution of renewable energy source to 12% of the heat demand by 2020. Some of the initiatives include biomass, “energy from waste” and geothermal. However, clear policies and financial incentives are nowhere to be seen.
  3. What is the current situation of renewable heat and how good is the 12% target? The good news is that there is a slight increase in the renewable share from 2004. The really bad news is that the contribution as of 2013 is just 2.6%. The UK is further behind any other EU state with regards to its renewable heat target. Sweden has a whopping 67.2% contribution and Finland 50.9%.

Towards a decarbonised energy sector, two important networks should be considered, electrical and gas. Electrification of heat is very well suited for low carbon heat generation, however, the electricity demands at peak time could be extremely costly. The UK’s gas network is a major infrastructure which is vital for providing gas during peak heat demand. However, it needs to be re-purposed in order to carry low carbon gas such as bio-methane, hydrogen or synthetic natural gas.

It was clear from the debate that hydrogen can play an important role in decreasing carbon emissions even within the current gas network. The introduction of up to 10% of hydrogen into gas feed can still be compatible with current gas networks and modern appliances, while generating a significant carbon emission reduction. However, where is the hydrogen coming from? For heat production at the national scale, steam reforming is the only player. However, with the government pulling away from carbon capture and storage (CCS), this option cannot provide a significant reduction in carbon emissions.  Capital costs associated with electrolysers would not be able to deliver the amount of hydrogen required at peak demands. The frustration in this community with regards to the future of CCS was palpable during the networking session.

We need hydrogen, generated from renewable energy sources… but the question is how?

———————–
This blog is written by Cabot Institute member David J. Fermin, Professor of Electrochemistry in the University of Bristol’s School of Chemistry.  His research group are currently looking at the direct conversion of solar energy to chemical fuels, in particular hydrogen; the conversion of CO2 to fuels; and electrocatalysts for energy vectors (e.g. what you put in fuel cells and electrolysers).

David Fermin

David will be giving a free talk on the challenges of solar energy conversion and storage on Tuesday 12 April 2016 at 6.15 pm at the University of Bristol.  To find out more and to book your ticket, visit the University of Bristol’s Public and Ceremonial Events web page.

What happens when you cross a venture capitalist with a major national scientific research organisation?

CSIRO Corporate Headquarters, Campbell. Image credit: Bidgee – Own work, CC BY-SA 3.0

I’m not sure if there’s a punchline, instead just a rather alarming answer. A couple of days ago, over on the other side of the world, Larry Marshall, the chief executive of Australia’s government agency for scientific research, made a disturbing announcement. Australia’s national science agency, CSIRO (the Commonwealth Scientific and Industrial Research Organisation) is to face a further 350 job losses (over 5% of its workforce) over the next two years. Primarily these losses look to be from the Oceans and Atmosphere division, affecting ongoing work on monitoring and predicting the Earth’s climate.

The job losses themselves are a huge blow for Australian and global climate research, and give the impression that the current Australian regime are perhaps not totally committed to upholding their end of the Paris agreement. This doesn’t say much, given that the Australian commitments were widely derided for being pretty weak in the first place.

So why is CSIRO’s current work important? Taking just one example, CSIRO plays a key role in monitoring the current state of the atmosphere, positioned as it is in one of the few countries in the Southern Hemisphere with well-developed scientific infrastructure. The Cape Grim atmospheric monitoring station in Tasmania, has been recording levels of southern hemisphere greenhouse gases for the last 40 years. The station mostly receives air that has travelled over the southern ocean free from pollution sources, thus providing a key record of southern hemisphere background levels of various atmospheric constituents. It’s basically the southern hemisphere equivalent of the Mauna Loa station in Hawaii which is regularly used as the key yardstick for northern hemisphere background levels.

Long term records like this are kind of pretty important, not just for scientific investigation, but also as an aid to public outreach. Anyone could look at these graphs of Cape Grim data for the three most abundant greenhouse gases, and pick up the take home message: they’ve all been increasing since the 1970s.

The point is that the Cape Grim measurements have played a key role in our understanding of the changes in the atmosphere over last 40 years, and should continue to do so into the future. Except maybe they won’t. If reports are to be believed it’s exactly this type of infrastructure that is under threat. Reportedly 100 people are to be unceremoniously thrown out to pasture from the Oceans and Atmosphere division, leaving just 30 left. Such a remarkably high turnover will have an inevitable effect on the quality of continuing work, not to mention quantity.

Perhaps that is what the current government in Australia want though. Less data might create more uncertainty, giving them a justification to do even less about it. But, even that view has previously been countered by the Cabot Institute’s Richard Pancost and Stephan Lewandowsky who explained why more uncertainty is no excuse for doing nothing.

Alternatively, you could take the opinion that maybe it’s not the Australian government’s responsibility to directly fund this sort of research. But, these sort of long-term records require secure long-term funding, the like of which are not found in the competitive world of academia. It’s no good chopping and changing grants every 3 years, funding different universities for different stations. There would be no consistency in the record, and suddenly any increases you see might be more attributable to a change in location than a real-world signal.

Perhaps the most alarming aspect of this is the misleading justification for the cuts, by saying that the question of global climate change has been answered. Sure, there is a consensus that human activities are affecting our climate, but that’s like saying there’s a consensus that it will rain tomorrow. It leaves questions unanswered, such as where and when?

Actually, to make matters worse the CEO added that “after Paris” the question of global climate change had been answered. Hold on, since when was it a group of politicians who were to decide whether large-scale global environmental change was happening or not? And haven’t we known about this for a good deal longer than the last three months?

Ignoring these inaccurate attempts to justify the decision, a better explanation is found in Marshall’s stated goal to make CSIRO more focused on innovation and commercialisation. The problem is, that monitoring the current state of the oceans and atmosphere or predicting its long-term future just isn’t a great commercial venture. It’s the sort of research that takes in a fair bit of funding, but doesn’t seem to offer any immediate financial return. Telling Joe Banker the world will be 2 °C warmer in 100 years isn’t going to cause the stock market to rise or fall.

That seems to contrast with weather prediction, which seems to be a profitable business. A quick look at the UK Met Office financial statements reveals over £220m in revenue in the last financial year. Admittedly most of this is from government contracts (a case of moving money round departments), but over 10% is from commercial revenue, whether that be aviation, or maybe supermarkets wanting to know whether to stock barbecues at the weekend or not. Losing the BBC contract may have been a PR disaster, but financially it was clearly not the worst thing that could have happened.

The point is that weather prediction pays. It’s a short-term prediction that is easily evaluated, allowing people to judge the value for money it gives.

Is there some way we can put a similar value on climate monitoring and prediction? I suspect not, given it would run against scientific principles of openness and be much harder to judge its worth. I imagine Larry Marshall came to the same conclusion, but then that really calls into question whether he’s really pulling his weight at CSIRO. You can’t expect all responsibility to make CSIRO profitable to fall on employees who have no entrepreneurial experience.

If more recent reports are to be believed, this move has come as a shock to even the Australian Prime Minister, and so perhaps there is hope that the news of CSIRO’s climate science death are premature. Even so, funding issues are hardly peculiar to Australia, and the question of whether climate science can fit into modern commercial ideals will inevitably keep cropping up across the globe.

It remains to be seen what exactly will happen but severe cuts to CSIRO’s infrastructure and staff will affect not just Australian science, but have global implications as well. The name Cape Grim has always struck me as being slightly ominous, and aptly (or cruelly) its 40th anniversary celebrations were due to take place later this year. Somehow I can’t imagine there will be too many people in the mood for celebrating right now though.

————————————
This blog has been written by Cabot Institute member Mark Lunt, from the University of Bristol’s Atmospheric Chemistry Research Group.  Mark’s main area of research is in the estimation of greenhouse gas emissions from atmospheric measurements.

Could retaining old coal lead to a policy own goal?

A large painting and an imposing statue of the former Speaker of the House of Commons Betty Boothroyd overlooked a busy Boothroyd Room at Portcullis House in Westminster.  Members of parliament, journalists, academics, NGOs and Third Sector organisations gathered to hear the reporting and discussion of a new report from Imperial College on the future of coal power in the UK as part of a All Party Parliamentary Climate Change Group meeting on 20 November 2014.

This report was commissioned by the World Wildlife Fund to give an idea of whether the continued operation of the eleven existing coal-fired plants in the UK is compatible with the UK’s targets for cutting greenhouse gas emissions.

Coal-fired power stations in the UK still generate approximately 36% of the country’s electricity (WWF briefing data). I was personally amazed how large this figure is and underlines the relevance of this type of economic modelling to the future of the energy mix in the UK.

The panel was chaired by Lord Oxburgh and consisted of Dr Robert Gross (Director, Imperial College Centre for Energy Policy and Technology), Tim Yeo MP (Chair, Energy and Climate Change Committee), Baroness Bryony Worthington (Shadow Spokesperson, Energy and Climate Change) and Jessica Lennard (Head of Corporate Affairs, Ovo Energy).

 

After the report had been summarised by Robert Gross, each member of the panel had a chance to speak before the discussion was opened to the floor and this is where opinions and politics began to show their faces.

The first panel member to speak after the introduction of the report was Baroness Bryony Worthington, an enthusiastic environmental campaigner who was appointed to the Labour benches of the House of Lords in 2011. Her opposition to so-called “unabated” coal power (generation without measures to capture emitted carbon) was clear and unambiguous, describing coal power stations from the 1960s as unreliable, inefficient and polluting. Political and economic realities were also introduced when she noted that “old coal” will tend to squeeze out “new gas” due (at least in part) to the large infrastructure costs associated with building a new gas powered facility, in spite of its better environmental credentials. Baroness Worthington’s short response (panel members were only given 5 minutes to initially respond to the report) was enthusiastic and pulled no punches.

The next panel member to speak was Tim Yeo MP (a former Minister for the Environment and Countryside in John Major’s government in the 1990s). He openly stated that he shared Baroness Worthington’s concerns and that he supports “full decarbonisation”, although the details of this wish (commendable as they may be), were lacking. He criticised the “20th century energy mind-set” of many in political and industrial energy circles, i.e. those who simply want to build more generators. Although this jibe was clearly not aimed at any one body or person in particular, National Grid’s financial incentives to build more capacity were noted.

Jessica Lennard noted that their customers are not happy with the amount of coal currently in the energy mix that they are able to supply, which was clearly a worry for a company where customers are free to come and go as they please (noting that they are a supplier not a generator of energy).

As is increasingly the case nowadays, especially with such a potentially incendiary subject as future power generation, there were many members of the audience who were active on their twitter accounts during the meeting itself, myself included I should add. Those who were adding to the online debate, and keeping those who weren’t present in the loop included the head of modelling at the Committee on Climate Change, the public affairs team of the World Wildlife Fund and the UK chief scientist of Greenpeace, although none of the tweets that I noted at the time or since seemed particularly argumentative or controversial. I must admit I found this rather surprising. I was certainly expecting some fireworks, yet the meeting often seemed more like an academic conference than a committee meeting overlooking the Thames just a hundred metres or so from the Palace of Westminster itself.

By far the most animated person in the room (and on twitter before the meeting) was Baroness Worthington, noting that DECC’s “crossed fingers” were not enough on this issue.

I personally left the meeting feeling that there is much still to do on this front and Lord Oxburgh echoed what I feel was a general feeling in the room, closing the meeting with a plea for “policy certainty” and I think this is something that everyone in the room would welcome.

This last point is particularly pertinent with the upcoming ‘COP21’ meeting in Paris in December 2015 because it is at this meeting that the United Nations Framework Convention on Climate Change negotiators will aim to agree on global, legally binding climate targets. Tim Yeo was clearly mindful of this, noting that the UK should aim to cut emissions by 40% with respect to 1990 levels “going in to Paris”. With coal power still such an important player in the UK energy mix, the potential for this industry to make inroads into this target are substantial.

————————

This blog is written by Cabot Institute member, Dr Jonny Williams, an environmental physicist working in the School of Geographical Sciences at the University of Bristol.

Further reading

What the frack! – A guide to fracking and its legal implications

The recent UKELA South West region seminar hosted by the Cabot Institute provided an ideal opportunity for a rational discussion of both the technical aspects of fracking (courtesy of Professor Mike Kendall) and its legal implications in the UK (courtesy of James Taylor of Simmons and Simmons).

With CO2 emissions from gas combustion around 50% lower than that of coal the move to gas as a transition fuel evidently holds appeal. US shale gas production has been praised for its contribution to the fall in US CO2 levels which have reduced back to those seen in 1990. However as was highlighted during the talk, the current availability and low cost of coal presents a problem in incentivising this move. More importantly however, it presents a potentially significant problem for global emission levels. If the UK replaces its coal supply with gas and displaces this coal onto the global market, total emissions will increase with the existing coal and a new gas supply both being burnt.

The appeal of shale gas is not solely confined to its potential in reducing UK emissions however. Energy security is proving to be a driving factor with the Bowland shale basin alone (in Northern England) thought to contain at least 40-60 years worth of the UK’s gas supply. Although unlikely to lower gas prices in the UK, this could significantly reduce our dependency on foreign gas suppliers.

Gas well.  Image credit: Jerry Dincher

When considering the technique of fracking itself Prof. Kendall emphasised the importance of well design and integrity in ensuring water contamination risks are reduced. With wells connecting the shale gas layer, found at depths of around 2500km, to the surface this casing and its integrity are crucial. In addition monitoring of fractures to date has shown that they remain at levels far below those of aquifers and as such are unlikely to prove a problem in relation to water contamination, particularly as the technology exists to monitor the height and direction of these fractures. The treatment and disposal of wastewater was however highlighted as an area which will need to see innovation and clearer regulation as to how such fluids can be disposed of or re-used if a shale gas industry is to develop here in the UK.

James Taylor confirmed that whilst regulations governing conventional oil and gas extraction (that do not use hydraulic fracturing) are applicable to shale gas and fracking there are a number of problems at present. The absence of a single point of control was emphasised, with Department of Energy and Climate Change, Environment Agency, Health and Safety Executive and Local Councils all playing a regulatory role. Other issues with the current system were highlighted through the absence of a compulsory Environmental Impact Assessment for shale gas operations (sites usually falling short of the 1 hectare threshold) and through the absence of a compulsory groundwater or flaring permit (both being assessed on a site by site basis.)

In addition the heavy influence of economic factors in both the planning guidance applicable to onshore oil and gas as well as within the National Planning Policy Framework were highlighted. The increased impact of such considerations should s58 of the Draft Deregulation Bill come into effect with its duty to promote economic growth when exercising regulatory functions was also raised. With local councils’ set to retain 100% of business rates from shale gas sites in their area the impact of economics on decisions was further brought into question.

Image credit: Libdemvoice

With shale gas promising a potentially valuable transition fuel it was clear from the talks that there is a need to ensure that the technique of fracking is carefully conducted in order to reduce the risk of damage and that this needs to be done under a robust and clear regulatory system. The need for transparent and upfront regulators who consider the arguments and concerns relating to both sides of the shale gas debate was also emphasised. This is of particular importance in light of the current shale gas promotion in the UK. Regulatory reforms such as the proposed removal of subsurface trespass (bypassing issues of obtaining landowner consent) in the next Infrastructure Bill evidences the presumption that at present shale gas is good for the UK and should be facilitated.

One of the key themes that emerged from both talks was that although the debate on fracking is often defined in technical terms the key factors proving influential at present are those of geopolitics and public perceptions. Emphasis was placed on the need for early public engagement and the need to tackle the continued  polarization of what is an already controversial issue. It is clear that fracking and onshore oil and gas extraction is a complex topic, technically, politically and socially. Although complex, it is crucial that the issues associated with fracking are discussed. Talks such as this UKELA event are central to doing so and for allowing rational and informed debate on an important topic.

This blog post is by Joanne Hawkins.
A PhD Researcher looking at the challenge of hydraulic fracturing: energy resilience, the environment and effective regulation at the University of Bristol Law School.

 

Joanne Hawkins,
University of Bristol

Crisis in Ukraine: The energy implications

Energy security- a primarily theoretical concept in recent years that has been made startlingly real by the recent developments in Ukraine. But what could the possible repercussions of this crisis be on European energy policies and our fuel bills?

I had a chance to ask this question during a recent event at the House of Commons, hosted by the APPCCG and Sandbag. The answer surprised me.

According to Baroness Worthington, director of Sandbag and member of the House of Lords, two outcomes are broadly possible.

Figure 1: Map of Ukraine
The first scenario is of a stabilisation of the diplomatic situation and the emergence of a westward-leaning Ukraine. In this situation, it is likely that Ukraine might choose to exploit its own natural gas reserves, estimated to be in the region of 1.1 trillion cubic metres. Ukraine possesses the 26th largest natural gas reserve in the world, which is estimated to be more than half the size of the combined reserves of the EU.

If Ukraine `turns on the taps’, this would solve their immediate energy dependence on Russia and produce a revenue stream to support their economy. However, exploiting natural resources on the scale required would require significant investment, and Ukrainians would have to accept the change in land use and economic transformations that come with becoming a major energy exporter.

This optimistic outcome seems open to several criticisms. It’s unclear at this moment where investment would come from, and whether Russia would oppose competition in the European energy market. Moreover, can Ukraine ever completely replace Russia as an energy supplier? For instance, Russia’s natural gas reserves are around 40 times the size of Ukraine’s.

The second scenario is of a destabilised Ukraine, whose policies are influenced to a significant degree by Moscow. In this situation, European nations would need to purchase natural gas in the short-to-medium term from Russia and Ukraine, and tamely accept price rises and the uncertainty and energy insecurity that comes with dependence on a foreign nation for energy supplies.

This second possibility may also be criticised; Russia may not have further demands after the annexation of Crimea is completed. It may be the case that Russia wish to return to business as usual as quickly as possible, and may choose to offer energy supplies on favourable terms to Europe in order to encourage the resumption of trade and renewed trust.

In my view, both scenarios will result in one predominant outcome: the loss of trust. It seems unlikely that Russia can regain the trust of the West quickly; by it’s very nature, trust takes years to accrue and moments to lose. Energy security will become a much larger talking point in the next few years if relations with Russia continue to remain cool. Nations that previously were willing to base their energy supply on foreign gas purchases will choose instead to pay a price or environmental premium to source those supplies from more trusted sources.

The nations most likely to make changes to their energy mix as a result of this crisis are Germany and Poland. Germany’s choice to abandon nuclear fission after the Fukushima crisis leaves them slightly more vulnerable to a loss of fuel supplies from abroad, and they may choose to shift further towards renewables, or attempt the politically difficult U-turn of returning to nuclear power. Poland uses natural gas and coal to power much of its economy, a significant portion of which is purchased from Russia. Since the fall of the Soviet Union, Poland has been consistently suspicious of Russia, and may decide that now is the time to reduce or remove their dependence on Russian supplies.

Figure 2: DECC figure for natural gas supplies by source, 2010-2013
As for the fuel bills of UK consumers, it’s unlikely that we will see any immediate effects. If sanctions on Russia are imposed, this may raise gas prices worldwide, but the UK does not directly obtain its supplies from Russia. The most likely change to the UK’s energy mix will be one that was on the cards already- an expansion in the exploitation of shale gas. Using energy security as a primary argument, supporters of shale gas may now find it easier to convince others that fracking and onshore gas exploitation should continue or be accelerated.

Perhaps the Ukraine crisis will be the public relations coup the shale gas industry has been looking for.

This blog is written by Neeraj Oak, Cabot Institute.
Neeraj Oak