The Fog Bridge and the Coming Storm?

Fog Bridge. Image by Freya Sterling.

This year, as part of its contribution to Bristol 2015, European Green Capital, the In Between Time Festival commissioned the Fog Bridge  by internationally renowned artist Fujiko Nakaya. She shrouded Pero’s Bridge in fog, eliciting a combination of delight and introspection – as well as befuddling the occasional commuter.  The Fog Bridge stimulated debate, criticism, celebration and interest. The most interesting of those debates, that I hope are only starting, revolve around its impact. Like all great art, Fog Bridge should be and is a bit dangerous, in that it causes us to consider – if even for a while – some alternatives to our perspectives.  But who saw it and engaged with it?  Has it affected belief systems and values?  Has it changed behaviour and, if so, of whom?  And is that all a bit too much of a burden to put onto a single piece? 

Nonetheless, it certainly stimulated discussion and that was its primary aim. It was my good fortune to be asked to reflect on Fog Bridge and be involved with an event of this stature.  Some of those conversations contributed to the themes explored during the Festival: Enter the Storm, including a focus on living with uncertainty.  And part of that was my participation in the Festival’s Uncertainty Cafes (see more here).  I was asked to throw out ideas – some well informed and some more adventurous – and then partake in the fascinating conversations this artwork had stimulated.  In that spirit, I share the following unabridged transcript of what I spoke about at the Uncertainty Café on 13 Feb

Our world has always changed.  I have spent over 20 years studying the history of our planet’s climate and environment, and one of the most recurring themes is that on long enough timescales, change rather than stasis is the norm. But the coming changes to our climate, arising from our lifestyles and consumption, are distinct in their speed.  They are nearly unprecedented in Earth history and they are certainly unprecedented in human experience.  The Earth is warming, the oceans are acidifying, sea level is rising, droughts and floods are becoming more frequent – and we as a people are being challenged to adapt to these changes.  One of the most profound challenges is not the higher temperature of more frequent flood but the uncertainty associated with those.  Change, almost by definition, imposes uncertainty and we must discover how to live in this increasingly Uncertain World.

We live our lives informed by the power of experience: the collective experience of ourselves, our families, our communities and our wider society.  Our weather projections and crop harvesting, our water management and hazard planning are also based on experience: tens to hundreds of years of observation that inform our predictions of future floods, drought, hurricanes and heat waves. Now, however, we are changing our environment and our climate, such that the lessons of the past have less relevance to the planning of our future. As we change our climate, the great wealth of knowledge generated from human experience is losing value every day.

Fog Bridge.  Image by Freya Sterling.

This is how I am provoked by all of Fujiko Nakaya’s art and especially  her wonderful Fog Bridge.   Yes it makes me think about our changing weather. Yes, it serves as an enigmatic warning of the Coming Storm. But more, the image of fog, the obstruction of our vision, the demand for a more careful navigation over a bridge that is normally one of our most reliable paths, makes me think of an Uncertain World.

Fog Bridge. Image by Freya Sterling.

Uncertainty is a challenge.  Uncertainty makes it harder for us to live with our planet and with each other. But there is something gentle about the uncertainty evoked by the Fog Bridge that invites alternative perpectives. Is an environmental disaster the only possible outcome of the path on which we walk?

Fifty years ago, between 1962 and 1966, J. G. Ballard wrote a trio of seminal environmental disaster novels: The Drowned World, The Burning World and The Crystal World.  That is why one of the Cabot Institute’s themes this year is The Uncertain World. But there is a more nuanced lesson from Ballard when it comes to change: ‘I would sum up my fear about the future in one word: boring.’  In many ways, that statement, like the Fog Bridge, challenges the idea of uncertainty being solely negative. I think much of what is embedded in that statement is reflected in Ballard’s post-disaster novels – from Crash to High Rise to Cocaine Nights, all dealing with the tedium of late 20th century, bored lives, gated retirement villages on the Costa del Sol, manicured lawns, 99 channels with nothing on.

And what a tragedy that is for our species. Our most unique and exceptional characteristics are adaptability, imagination and creativity.  Most of our achievements and many of our sins are a direct consequence of our incredible ability to adapt and create.  We can live in the desert, in Antarctica, in space.

If we return to Ballard’s environmental disaster novels with this perspective, they take on new shapes.  The protagonists in those novels – and especially the Drowned World – are not destroyed. Nor do they overcome.  They are awakened and they are transformed.  And in the end, they embrace those transformations:

By day fantastic birds flew through petrified forests, and jewelled crocodiles glittered like heraldic salamanders on the banks of the crystalline river. By night the illuminated man raced among the trees, his arms like golden cartwheels, his head like a spectral crown.”   – The Crystal World, J.G. Ballard

Catastrophic change can be beautiful and it can startle us out of complacency, it can challenge us, it can demand of us that we embrace the entirety of human potential.

But there are limits to this train of thought.

Taking that perspective towards global environmental disaster is the rather unique luxury of the upper middle class, privileged western European.  Those who might die in floods or famines or whose way of life is not changed but obliterated by rising sea levels will have a different perspective.  Let us never forget that those bringing about climate change and those likely to suffer most from it are not the same.  That is true globally and it is true in Bristol: if the price of food doubles, I will grumble; others will be unable to feed their families.

And in that is a deep and unsettling irony.  Those of us who perhaps would benefit most from embracing the challenges we face are profoundly reluctant to accept any change, whether that be to our sources of energy or food, to our way of lives or to our growth-based economy. And our inability to envision societal change is imposing potentially catastrophic environmental and climatic change on others – those who are most poor and most vulnerable.

That is why the Green Capital conversations must focus on issues of inclusion, empowerment and social justice. We must avoid unfair, unequal, unethical change. But if we can do that, then maybe change can be a catalyst for something fresh and exciting.  Fujiko’s Fog Bridge is beautiful. Fog is beautiful.  A storm is beautiful.  This does not have to be a Disaster Story.  We can change how we live, thereby mitigating the most dangerous aspects of climate change.  And when we fall short and change does come… we can fight it a bit…. But we can also embrace it.

And what might that look like?

We must be radically resilient. If radical uncertainty is on the way then our response must be radically flexible. Our buildings and roads must be able to change.  Our railroads and our health service. Our laws. Our jobs.  Our economy.  Our businesses.  Ourselves.

Our response must be fair and equitable. Those who can barely afford the rent or who work two jobs to put food on the table have less capacity to be flexible. Some of us will have to bear more of the burden of change than others.  Ultimately, I believe we will have to achieve a more fair and balanced society: It is difficult to imagine how grand challenges of resource and planetary sustainability can be achieved if billions are held back by poverty. [NB. This paragraph was the most difficult to express in only a few words during the Uncertainty Café and I want to expand on this here. I believe that everyone in society has great assets of imagination and creativity.  All communities and all individuals can make a positive difference and should be encouraged to do so – and supported in doing so. And in the future, as throughout history, some of the most exciting ideas will come from some of the poorest on our planet.  But overall, I think that poverty steals time and lost time means lost ideas. And that is a tragedy at a time when we need a proliferation of new ideas, and especially those that run counter to ‘conventional wisdom’.]

And we need political inclusion.  If difficult choices are to be made – if our sacred cows are to be sacrificed or compromises are to be made – then we must rebuild a universally owned political system.  We will not weather any storm by hectoring and lecturing nor if mired in apathy and cynicism. I sincerely hope a new platform for more inclusive decision making is a major outcome of Bristol 2015.  It is certainly the ambition of the Green Capital Partnership.

If we share these risks and the costs, then perhaps we can collaborate with our changing planet to achieve something exciting and new – lifestyles that embrace rather than stifle the very best of our creative, dynamic and resilient nature. Maybe we walk across the Bridge a bit more slowly, maybe we don’t cross it at all, maybe we just stop and stare. I don’t know.   Nor do I know if we will make such dramatic changes. But I know that we can.

—————————————–

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.

Prof Rich Pancost

The challenges of global environmental change: Why we (Bristol) should ‘bridge the gap’

Our planet and the people who live upon it face profound challenges in the coming century. As our population, economies and aspirations grow we consume increasing amounts of precious and finite resource.  The side effects and waste products of this consumption also have profoundly negative impacts on our environment and climate, which  in a vicious circle will make it even harder to support our food, energy and water needs.


In order to live on this planet, we must bridge the gap between wasteful lifestyles based on limited resources to efficient lifestyles based on renewable ones. Nowhere is that more apparent than in our consumption of fossil fuels. Much of our prosperity over the past two centuries has derived from the exploitation of these geological gifts, but those gifts have and are causing climate change with potentially devastating consequences. These are likely to include more extreme weather, loss of marine ecosystems and droughts; in turn, these could cause famine, refugee crises and conflict. 


These climatic and environmental impacts will be felt locally in the European Green Capital as well as globally.  We live in an interconnected world, such that drought in North America will raise the price of our food. The floods of last winter could have been a warning of life in a hotter and wetter world.  Many of us in the South West live only a few metres above current sea level.  


In my own work with Cabot Institute colleagues, I have investigated not just how Earth’s climate might change but how it has changed in the past.  This shows that our climate forecasts are generally right when it comes to the temperature response to greenhouse gases, although perhaps they underestimate how much the poles will warm.  More concerning, Earth history reveals how complex our planet is; with dramatic biological and physical responses to past global warming events. During one such event 55 million years ago, rapid warming transformed our planet’s vegetation and water cycle: rivers in Spain that had carried fine grained silts suddenly carried boulders. And that ‘rapid’ warming event occurred over thousands to tens of thousands of years not two hundred a reminder of the unprecedented character of our current climate change experiment.

Flooding in Whiteladies Road, Bristol. Credit: Jim Freer



Consequently, despite our best understanding of some factors, climate change will make our world a more uncertain place, whether that be uncertainty in future rainfall, the frequency of hurricanes or the timing of sea level rise. This uncertainty is particularly problematic because it makes it so much harder for industry or nations to plan and thrive.  How do we ensure a robust and continuous food supply if we are unsure if the planet’s bread baskets will become wetter or dryer?  Or if we are unsure how our fisheries will respond to warmer, more acidic, more silt-choked oceans?


Underlying this uncertainty is a deep ethical question about who will bear the risk and the inequality issues hidden within our choices.  Most of us recognise that we are consuming the resources and polluting the environment of our children.  But the inequity is deeper than that it is not all of our children who will suffer but the children of the poorest and the most vulnerable.  Those whose homes are vulnerable to floods, who lack the resources to move or the political capacity to emigrate, who can barely afford nutritious food now, whose water supplies are already stretched and contaminated. 


Bristol in 2015 will not bridge the gap by despairing at these challenges, but we can lead in acknowledging them. We can lead in showing how to avoid the worst uncertainty and taking responsibility for the consequences of where our efforts fall short.  Most importantly, we can lead towards not just radical resiliency but inclusive resiliency. 

—————————————–

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.

Prof Rich Pancost

Why climate ‘uncertainty’ is no excuse for doing nothing

By Richard Pancost, University of Bristol and Stephan Lewandowsky, University of Bristol

Former environment minister Owen Paterson has called for the UK to scrap its climate change targets. In a speech to the Global Warming Policy Foundation, he cited “considerable uncertainty” over the impact of carbon emissions on global warming, a line that was displayed prominently in coverage by the Telegraph and the Daily Mail.

Paterson is far from alone: climate change debate has been suffused with appeals to “uncertainty” to delay policy action. Who hasn’t heard politicians or media personalities use uncertainty associated with some aspects of climate change to claim that the science is “not settled”?

Over in the US, this sort of thinking pops up quite often in the opinion pages of The Wall Street Journal. Its most recent article, by Professor Judith Curry, concludes that the ostensibly slowed rate of recent warming gives us “more time to find ways to decarbonise the economy affordably.”

At first glance, avoiding interference with the global economy may seem advisable when there is uncertainty about the future rate of warming or the severity of its consequences.

So let’s do nothing.
WSJ

But delaying action because the facts are presumed to be unreliable reflects a misunderstanding of the science of uncertainty. Simply because a crucial parameter such as the climate system’s sensitivity to greenhouse gas emissions is expressed as a range – for example, that under some emissions scenarios we will experience 2.6°C to 4.8ºC of global warming or 0.3 to 1.7 m of sea level rise by 2100 – does not mean that the underlying science is poorly understood. We are very confident that temperatures and sea levels will rise by a considerable amount.

Perhaps more importantly, just because some aspects of climate change are difficult to predict (will your county experience more intense floods in a warmer world, or will the floods occur down the road?) does not negate our wider understanding of the climate. We can’t yet predict the floods of the future but we do know that precipitation will be more intense because more water will be stored in the atmosphere on a warmer planet.

This idea of uncertainty might be embedded deeply within science but is no one’s friend and it should be minimised to the greatest extent possible. It is an impetus to mitigative action rather than a reason for complacency.

Uncertainty means greater risk

There are three key aspects of scientific uncertainty surrounding climate change projections that exacerbate rather than ameliorate the risks to our future.

First, uncertainty has an asymmetrical effect on many climatic quantities. For example, a quantity known as Earth system sensitivity, which tells us how much the planet warms for each doubling of atmospheric carbon dioxide concentration, has been estimated to be between 1.5°C to 4.5ºC. However, it is highly unlikely, given the well-established understanding of how carbon dioxide absorbs long-wave radiation, that this value can be below 1ºC. There is a possibility, however, that sensitivity could be higher than 4.5ºC. For fundamental mathematical reasons, the uncertainty favours greater, rather than smaller, climate impacts than a simple range suggests.

Second, the uncertainty in our projections makes adaptation to climate change more expensive and challenging. Suppose we need to build flood defences for a coastal English town. If we could forecast a 1m sea level rise by 2100 without any uncertainty, the town could confidently build flood barriers 1m higher than they are today. However, although sea levels are most likely to rise by about 1m, we’re really looking at a range between 0.3m and 1.7m. Therefore, flood defences must be at least 1.7m higher than today – 70cm higher than they could be in the absence of uncertainty. And as uncertainty increases, so does the required height of flood defences for non-negotiable mathematical reasons.

And the problem doesn’t end there, as there is further uncertainty in forecasts of rainfall occurrence, intensity and storm surges. This could ultimately mandate a 2 to 3m-high flood defence to stay on the safe side, even if the most likely prediction is for only a 1m sea-level rise. Even then, as most uncertainty ranges are for 95% confidence, there is a 5% chance that those walls would still be too low. Maybe a town is willing to accept a 5% chance of a breach, but a nuclear power station cannot to take such risks.

Finally, some global warming consequences are associated with deep, so-called systemic uncertainty. For example, the combined impact on coral reefs of warmer oceans, more acidic waters and coastal run-off that becomes more silt-choked from more intense rainfalls is very difficult to predict. But we do know, from decades of study of complex systems, that those deep uncertainties may camouflage particularly grave risks. This is particularly concerning given that more than 2.6 billion people depend on the oceans as their primary source of protein.

Similarly, warming of Arctic permafrost could promote the growth of CO2-sequestering plants, the release of warming-accelerating methane, or both. Warm worlds with very high levels of carbon dioxide did exist in the very distant past and these earlier worlds provide some insight into the response of the Earth system; however, we are accelerating into this new world at a rate that is unprecedented in Earth history, creating additional layers of complexity and uncertainty.

Uncertainty does not imply ignorance

Increasingly, arguments against climate mitigation are phrased as “I accept that humans are increasing CO2 levels and that this will cause some warming but climate is so complicated we cannot understand what the impacts of that warming will be.”

Well if we can’t be certain…
Telegraph

This argument is incorrect – uncertainty does not imply ignorance. Indeed, whatever we don’t know mandates caution. No parent would argue “I accept that if my child kicks lions, this will irritate them, but a range of factors will dictate how the lions respond; therefore I will not stop my child from kicking lions.”

The deeper the uncertainty, the more greenhouse gas emissions should be perceived as a wild and poorly understood gamble. By extension, the only unequivocal tool for minimising climate change uncertainty is to decrease our greenhouse gas emissions.

The Conversation

Richard Pancost receives funding from the NERC, the EU and the Leverhulme Trust.

Stephan Lewandowsky receives funding from the Australian Research Council, the World University Network, and the Royal Society.

This article was originally published on The Conversation.
Read the original article.

The uncertain world

J.G Ballard’s The Drowned World
taken from fantasticalandrewfox.com

Over the next 18 months, in collaboration with Bristol Green Capital 2015 artists, civic leaders and innovative thinkers, the Cabot Institute will be participating in  a series of activities in which we examine how human actions are making our planet a much more uncertain place to live.

Fifty years ago, between 1962 and 1966, J. G. Ballard wrote a trio of seminal environmental disaster novels: The Drowned World, The Burning World and The Crystal World.  These novels remain signposts to our future, the challenges we might face and the way people respond to rapid and unexpected change to their environment. In that spirit and coinciding with the Bristol Green Capital 2015, we introduce The Uncertain World, a world in which profound uncertainty becomes as much of a challenge to society as warming and rising sea levels.

For the past twenty years, the University of Bristol has been exploring how to better understand, mitigate and live with environmental uncertainty, with the Cabot Institute serving as the focus for that effort since its founding in 2010.  Uncertainty is the oft-forgotten but arguably most challenging aspect of mankind’s centuries-long impact on the environment.  We live our lives informed by the power of experience: our own as well as the collective experience of our families, communities and wider society. When my father started dairy farming he sought advice from my mother’s grandfather, our neighbours, and the grizzled veterans at the Middlefield auction house. Experience helps us make intelligent decisions, plan strategically and anticipate challenges.

Similarly, our weather projections, water management and hazard planning are also based on experience: tens to hundreds of years of observation inform our predictions of future floods, drought, hurricanes and heat waves. These records – this experience  – can help us make sensible decisions about where to live, build and farm.

Now, however, we are changing our environment and our climate, such that the lessons of the past have less relevance to the planning of our future.  In fact, many aspects of environmental change are unprecedented not only in human experience but in Earth history. As we change our climate, the great wealth of knowledge generated from human experience is losing capital every day.

The Uncertain World is not one of which we have no knowledge – we have high confidence that temperatures and sea level will rise, although there is uncertainty in the magnitude and speed of change. Nor should we view The Uncertain World with existential fear – we know that warm worlds have existed in the past.  These were not inhospitable and most evidence from the past suggests that a climate ‘apocalypse’ resulting in an uninhabitable planet is unlikely.

Nonetheless, increasing uncertainty arising from human-induced changes to our global environment should cause deep concern.  Crucial details of our climate remain difficult to predict, and it undermines our ability to plan for our future. We do not know whether many regions of the world will become wetter or dryer. This uncertainty propagates and multiplies through complex systems: how do we make sensible predictions of coastal flood risk when there is uncertainty in sea level rise estimates, rainfall patterns and the global warming that will impact both?  We can make predictions even in such complex systems, but the predictions will inevitably come with a degree of uncertainty, a probabilistic prediction.  How do we apply such predictions to decision making? Where can we build new homes, where do we build flood defences to protect existing ones, and where do we abandon land to the sea?

Perhaps most worrying, the consequences of these rapid changes on biological and chemical systems, and the people dependent upon them, are very poorly understood. For example, the synergistic impact of warmer temperatures, more acidic waters, and more silt-choked coastal waters on coral reefs and other marine ecosystems is very difficult to predict. This is particularly concerning given that more than 2.6 billion people  depend on the oceans as their primary source of protein. Similarly, warming of Arctic permafrost could promote the growth of CO2-sequestering plants or the release of warming-accelerating methane – or both. Warm worlds with very high levels of carbon dioxide did exist in the past and these do provide some insight  into the response of the Earth system, but we are accelerating into this new world at a rate that is unprecedented in Earth history, creating additional layers of uncertainty.

During late 2014 and 2015, the Cabot Institute will host a variety of events and collaborate with a variety of partners across Bristol and beyond to explore this Uncertain World and how we can live in it. How do we better explain uncertainty and what are the ‘logical’ decisions to make when faced with uncertainty? One of our first events will explore how uncertainty in climate change predictions should motivate us to action: the more uncertain our predictions the more we should employ mitigation rather than adaptation strategies. Future events will explore how past lessons from Earth history help us better understand potential future scenarios; how future scenario planning can inform the decisions we make today; and most importantly, how we build the necessary flexibility into social structures to thrive in this Uncertain World.

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.

Prof Rich Pancost

Responding and adapting to climate change: Recognizing and managing uncertainty in the physical, social, and public spheres

A meeting of international experts at the University of Bristol addresses one of the crucial issues facing humanity.

“Uncertainty, uncertainty, uncertainty … so why should we bother to act?”

Who hasn’t heard politicians or media personalities appeal to uncertainty to argue against climate mitigation? And indeed, why should we interfere with the global economy when there is uncertainty about the severity of climate change?

Some 20 leading experts from around the world will be meeting in Bristol late in September to discuss the implications of scientific uncertainty on the proper response to climate change.

This is particularly crucial because in contrast to the widespread public perception that uncertainty is an invitation to delay action on climate change, recent work suggests that scientific uncertainty actually provides an impetus to engage in mitigative action. Specifically, the greater the scientific uncertainty, the greater are the risks from climate change.

This conflict between people’s common perceptions of uncertainty and its actual implications is not altogether uncommon, and there are many situations in which people’s risk perception deviates from best scientific understanding.

The Bristol meeting brings together scientists and practitioners with the goal of (a) developing more effective means to communicate uncertainty and (b) to explore how decision making under uncertainty can be better informed by scientific constraints.

To address the scientific, cultural, health, and social issues arising from climate change requires an in-depth and cross-disciplinary analysis of the role of uncertainty in all of the three principal systems involved: The physical climate system, people’s cognitive system and how that construes and potentially distorts the effects of uncertainty, and the social systems underlying the political and public debates surrounding climate change.

The results of the meeting will become publicly available through scientific publication channels, with the details to be announced closer to the time of the meeting. In addition, two attendees at the meeting will be presenting public lectures at the University of Bristol:

Friday 19 September, 6:00-7:30 pm. Dogma vs. consensus: Letting the evidence speak on climate change.

In this Cabot Institute public lecture, we are pleased to present John Cook, Global Change Institute, University of Queensland, and owner of the Skeptical Science blog, in what promises to be a fascinating talk.

In 2013, John Cook led the Consensus Project, a crowd-sourced effort to complete the most comprehensive analysis of climate research ever conducted. They found that among relevant scientific articles that expressed a position on climate change, 97% endorsed the consensus that humans were causing global warming. When this research was published, it was tweeted by President Obama and received media coverage all over the world, with the paper being awarded the “best article” prize by the journal Environmental Research Letters in 2013. However, the paper has also been the subject of intense criticism by people who reject the scientific consensus. Hundreds of blog posts have criticised the results and newspapers such as the Wall Street Journal and Boston Globe have published negative op-eds. Organisations who deny or reject current science on human-caused climate change, such as the Global Warming Policy Foundation in the UK and the Heartland Institute in the US, have published critical reports, and the Republican Party organised congressional testimony against the consensus research on Capitol Hill. This sustained campaign is merely the latest episode in over 20 years of attacks on the scientific consensus on human-caused global warming. John Cook will discuss his research, both on the 97% consensus and on the cognitive psychology of consensus. He will also look at the broader issue of scientific consensus and why it generates such intense opposition.

Register for this free event.

Tuesday 23 September 2014, 6 pm to 7.30 pm. The Hockey Stick and the climate wars—the battle continues…

In this Cabot Institute lecture, in association with the Bristol Festival of Ideas, Professor Michael E Mann will discuss the science, politics, and ethical dimensions of global warming in the context of his own ongoing experiences as a figure in the centre of the debate over human-caused climate change.

Dr. Michael E Mann is Distinguished Professor of Meteorology at Penn State University, with joint appointments in the Department of Geosciences and the Earth and Environmental Systems Institute. He is also director of the Penn State Earth System Science Center. He is author of more than 160 peer-reviewed and edited publications, and has published books include Dire Predictions: Understanding Global Warming in 2008 and The Hockey Stick and the Climate Wars: Dispatches from the Front Lines in 2012. He is also a co-founder and avid contributor to the award-winning science website RealClimate.org.

Register for this free event.

————————————————
This blog is by Cabot Institute member, Prof Stephan Lewandowsky of the School of Experimental Psychology, University of Bristol.  You can also view this blog on the Shaping Tomorrow’s World blog.
Prof Stephan Lewandowsky

Uncertainties about the effects of fracking in the UK

I’m a bit of an energy agnostic. This week I attended a talk at UWE about fracking and its impact on the environment in the hope of making a better informed decision on the controversial topic.

What is fracking?

Jenna Brown, a first year PhD student, started off with an introduction to fracking, or hydraulic fracturing.

Gas molecules trapped in dense shale rocks are almost impossible to obtain by normal drilling. Fracking involves drilling vertically down and then horizontally into the rock. Fracking fluid, a mixture of water, sand and other chemicals, is injected into the rock at high pressure, expanding the tiny cracks and allowing the gas trapped within to escape and travel back up the pipe for collection.

Taken from BBC News

 

Natural gas is viewed as a transition energy source from dirty fossil fuels to greener renewable energies in the future. It produces almost half the amount of carbon dioxide per unit of energy than coal, which could help us meet the national target of reducing CO2 emissions by 80% by 2050.

 

Image by Varodrig
Jenna explained that the government see shale gas as a way to improve our national energy security. The British Geological Survey estimates that the Bowland Shale reserve in central England holds 1329 trillion cubic feet of shale gas, although across the entire UK estimates vary wildly because they are mainly based on data from other countries. Jenna highlighted the fact that whilst this is a huge amount of fuel, much if not most of it will not be technically recoverable. Still, it could provide greater energy security in the UK, which imported one trillion cubic feet of natural gas in the first six months of this year.

Water use
Dr. Chad Staddon, associate professor of resource geographies at UWE, spoke about the possible problems that UK water security faces with fracking. As well as the potential to pollute ground water (explained here), Chad was concerned that fracking could pose a problem to UK water security but even more worried that this had not yet been assessed in detail.
Fracking requires a huge volume of water; around 4 – 20 million litres per well in the USA according to the International Energy Agency. This amounts to just 0.3% of US national water usage, however Chad highlighted two important problems with this figure. First, US shale reserves are only around 750m deep. In the UK, our reserves may reach down as far as 3km, meaning we could layer six or more horizontal fracking pipes in a single well. The increased depth and number of fracking pipes means that significantly more water may be required in UK sites.
The second issue is one of local resources. Even in relatively rainy countries there can be pockets of water scarcity, which can be intensified by local demand. Unfortunately, there is little guidance in the published scientific literature to aid the UK in avoiding over-committing our water to fracking at the cost of food production and water security. Parts of the UK, such as the south east, are already at water capacity. Adding the water demands of fracking may lead to local droughts or the costly transport of water from other parts of the country. A 2013 report for the Department of Energy and Climate Change stated that if waste water is recycled where possible, water requirements for fracking could be managed sustainably.

Air quality
Dr. Enda Hayes, a UWE research fellow, spoke about the effect fracking could have on air quality management. He was trying to learn more about the emissions from a shale gas well, however the findings in scientific reports varied enormously because no two wells are the same. Different geographies, demands and outputs greatly affect the results, which means that it is very difficult to use US data to try and predict the effect of fracking on UK air quality. Fracking could contribute to particulates and toxic compounds in the air, as well as increased CO2 emissions and methane leaks.  
Less CO2 is produced per unit of energy when burning shale gas compared to coal and oil. However Enda spoke about recent reports stating that the net effect of shale gas on greenhouse gases is likely to be small, and could actually increase emissions if the displaced coal and other fossil fuels are used elsewhere. Another major player in climate change is methane. In the USA, 11% of methanee missions are produced from coal mining, mainly by methane leaking from the mines. Shale gas is mostly comprised of methane, which must be properly contained to prevent even greater emissions from leaks.

 

Big questions
The panelists agreed that there is simply not enough relevant information to decide whether the benefits outweigh the negatives of fracking in the UK. There are several big questions that I think need to be answered. Just how much water would a UK shale gas well need? Do we have the technology to prevent water and air pollution? Do viable alternatives to fracking exist, and can we afford them?
Is there a perfect energy source? Should we stick to cheap-but-dirty coal or switch to inefficient bird-killing windmills? Are you more scared of nuclear meltdowns or global warming? As David Shukman concluded in his excellent BBC article,whichever type of power you choose, it is going to make someone angry“.
This blog is written by Sarah Jose, Biological Sciences, University of Bristol
You can follow Sarah on Twitter @JoseSci
Sarah Jose

 

 

Environmental uncertainty: A challenge to both business and vulnerable communities

In September, the IPCC published the Fifth Annual Report on the Physical Basis of Climate Change.  It devotes little attention to the human and ecological impacts of global environmental and climatic change, topics that will be addressed by working group reports released in early 2014 .  Nonetheless, the trajectory of climate and other environmental changes and their implicit impacts on society are stark. Despite numerous treaties and efforts at mitigation, concentrations of carbon dioxide and other greenhouse gases continue to increase, and at greater rather than diminished rates. If those rates continue they will result in global warming of 3 to 5.5°C by 2100. This in turn, will result in dramatic changes to the global hydrological cycle, including both more evaporation and more rainfall.

A More Uncertain Climate

Flood by Paul Bates

The results will be a more hostile climate for many as land can become either drier or more flood-prone or both, changes exacerbated in coastal areas by sea level rise.  Freshwater supply will also be affected by the forecast changes in climate. The quantity of water flowing in glacier or snow-melt fed river basins will change, affecting around a sixth of the world’s population[i], while coastal freshwater will be contaminated with saline water[ii]. Areas of the Mediterranean[iii], Western USA[iv], Southern Africa[v] and North Western Brazil[vi] are projected to face decreased availability of freshwater.

Key to understanding who will be affected is our ability to predict changes in rainfall, seasonality, and temperature at a regional scale.  However, regional climatic predictions are the most challenging and least certain, especially with respect to the nature and amount of rainfall. For vast parts of the world, including much of South America, Africa and SE Asia, it is unclear whether climate change will bring about wetter or drier conditions. Thus, uncertainty will become the norm: uncertainty in rainfall; uncertainty in weather extremes and seasonality; and most importantly, uncertainty in water resources.

Those combined effects lead to an additional and perhaps the most profound uncertainty for the latter half of the 21st century: uncertainty in food production and access. In the absence of other factors, climate uncertainty and more common extreme events will compromise agriculture at all scales, yielding increased food prices and increased volatility in markets.

 

Impacts on the Poor

Although the human impacts of climate change will be diverse, their effects will be worst for the most impoverished and, by extension, least resilient population groups.  The UN reports that climate change could “increase global malnutrition by up to 25% by 2080.”  And all of this occurs against a backdrop in which access to food is already a challenge for the poorest of the world already a challenge for the poorest of the world [p5], a situation exacerbated by the global financial crash.

These risks to the poorest result from a lack of resources to mitigate harm, lack of power to protect resources, and the global competition for resources.

Those who lack the financial resources to migrate or build more hazard-resistant homes will suffer most from extreme events, as has been sharply illustrated by those suffering most in the aftermath of Typhoon Haiyan.  Those who can least afford to dig deeper wells into more ancient aquifers as water resources diminish will go thirsty.  Subsistence farmers – and those dependent on them – are less resistant to climate shocks (desertification) and adverse weather events (flooding) than commercial farmers.

Land ownership for the poorest is often tenuous, and displacement from land a serious problem for many.  Previous switches to biofuels have led to land competition, resulting in both loss of land to subsistence [p6]  farmers, and diversion of commercial production leading to shortages [p7]  and increased food prices. Within communities, these effects are not evenly spread as marginalised groups, such as women, are the least likely to hold land tenure [p8] .  Similarly, there is increased competition for water [p9]  between peoples, but also between water for industry (including agriculture) and water for drinking. When water is scarce, pollution of fresh water is common, and governance is weak, the poorest are likely to lose out.

 

Image by Mammal Research UnitUniversity of Bristol

Food competition will most likely be exacerbated by other factors: rising demand from a rapidly expanding population and a growing demand for meat from a global ‘middle class’; the increased economic divide between post-industrial and developing nations; the ongoing depletion of soil nutrients and associated impacts on the nutritional value of our food.  The combination of these factors will result in profound impacts on food security. Who decides what gets grown? Who can afford it in the context of global markets and the loss of agricultural land? The poorest members of even the wealthiest societies are the most vulnerable to dramatic and unpredictable changes in food costs[p10] .

‘Wicked Problems’

These issues yield a profoundly challenging ethical issue: the wealthy who are most responsible for anthropogenic climate change, via the greatest material consumption and energy demand, have the greatest resilience to food market fluctuations and the greatest means for avoiding their most deleterious impacts.  Therefore, these issues challenge all governments to dramatically and swiftly act to decrease greenhouse gas emissions and mitigate the associated climate change.

Unfortunately, many proposed mitigation strategies could also have negative consequences for food prices and availability. Increasing energy prices, such as those brought about by a carbon tax, will be passed onto food prices.  Genetically modified foods could be essential to feeding a growing population, and we would urge that future efforts expand to incorporate a greater degree of climate resilience in crops; however, the patents on those crops can make them financially inaccessible to the poorest nations or build critical dependencies.

Although sustainable agriculture and crops might reduce the impact of climate change and uncertainty in some countries, these solutions can be deleterious for the poorest.  They are more likely to live in regions and areas most negatively affected by climate change, most likely to be relying on subsistence/small scale agriculture and least likely to have access to the global market as consumers.  In other words, a stable global market will be of little direct benefit to them; in fact, most of these populations are likely to face competition for land/water use from globalised markets (for biofuels or commercial farming).  In short, what builds food resilience in one nation might be exposing the most economically vulnerable in another.

In fact, when properly mobilised for the benefit of the community, access to new energy sources – even if in the form of fossil fuels – can be transformative and facilitate the economic growth needed to access increasingly globalised food markets [p12].    Domestic access to gas reduces the need to collect wood for fires, reducing deforestation, improving air quality, and freeing up time for communities to address other development needs.

This is not an argument against mitigation of climate change, but it does need to be balanced against human development needs; and this represents one of the world’s most profound challenges. In some circles, we consider this a ‘wicked’ problem: a problem that has multiple causes, probably in interaction, and where information is incomplete, such that proposed solutions might be incomplete, contradictory, complex and work across multiple causes in complex systems.

Challenges and Opportunities

Biofuel by La Jolla

Wicked problems are not intractable, however, and previous studies of land use for biofuels provide clues as to how a complex solution could be more sustainable for all; well planned switches to biofuels which consider local custom in land tenure can provide more land for agriculture, and reduce deforestation pressure.

In such situations, we argue, solutions which focus on halting or slowing climate change alone, and then coping with the business and development problems that they might create answer the wrong question.  Our challenge to the business (and academic) community, then, is to engage with some wicked questions:

  • What are the business opportunities in improving the social and physical environment?
  • Can the global agricultural system be a single resilient network, rather than a competition?
  • What technology or innovation is needed to support a resilient food network?
  • How can innovative solutions to these challenges generate local income, allowing reinvestment in education and development?

These are difficult questions but they also represent opportunities for development and growth in poor communities.  A world with increasing environmental uncertainty is a challenge for both businesses and vulnerable communities.  But it could also be a shared opportunity for growth and development: to innovate and identify new solutions, to co-invest in local resilience and risk reduction, and to share the growth that arises from more stable communities.

 


[i] Z Kundzewicz, L Mata, N Arnell, P Doll, P Kabat, K Jimenez, K Miller, T Oki, Z Sen & I Shiklomanov, Freshwater Resources and their Manegemtn. Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press2007
[ii] R Buddemeier, S Smith, S Swaaney & C Crossland, The Role of the Coastal Ocean in the Disturbed and Undisturbed Nutrient and Carbon Cycles,  LOICZ Reports and Studies Series2002, 84
[iii] P Etchevers, C Golaz, F Habets & J Noilhan, Impact of a Climate Change on the Rhone River Catchment Hydrology,Journal of Geophysical Research2002, 4293
[iv] J Kim, T Kim, R Arritt & N Miller, Impacts of Increased CO2 on the Hydroclimate of the Western United States, Journal of Climate2002, 1926
[v] M Hulme, R Doherty & T Ngara, African Climate Change, Climate Research2001, 145
[vi] J Christensen, B Hewitson, A Busuioc, A Chen, X Gao, I Held, R Jones, R Kolli, W Kwon, R Laprise, V Magana Rueda, L Mearns, C Menendez, J Raisanen, A Rinke, A Sarr & P Whetton, Regional Climate Change, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007, 847

————

This blog is written by Prof Rich Pancost, Director of the Cabot Institute and Dr Patricia Lucas, School for Policy Studies, both at University of Bristol.

Prof Rich Pancost

This blog has kindly been reproduced from the Business Fights Poverty blog.

Nine lessons and carols in communicating climate uncertainty

About a month ago I was invited to represent the Cabot Institute at the All Parliamentary Party Climate Change Group (APPCCG) meeting on “Communicating Risk and Uncertainty around Climate Change”. All Party Groups are groups of MPs and Lords with a common interest they wish to discuss, who meet regularly but fairly informally. Here are the APPCCG registerblogTwitter and list of events.

The speakers were James Painter (University of Oxford), Chris Rapley (UCL) and Fiona Harvey (The Guardian), and the chair was (Lord) Julian Hunt (UCL). Rather than write up my meeting notes, I’ll focus on the key points.

[Disclaimer: All quotes and attributions are based on my recollections and note-taking, and may not be exact.]

1. People have a finite pool of worry
I’ll start with this useful phrase, mentioned (I think by Chris) in the discussion. Elke Weber describes this:
“As worry increases about one type of risk, concern about other risks has been shown to go down, as if people had only so much capacity for worry or a finite pool of worry. Increased concern about global warming may result in decreased concern about other risks…the recent financial crisis reduced concern about climate change and environmental degradation.” — “What shapes perceptions of climate change?”; pdf currently here)

Lessons: We cannot expect or ask people to worry about everything: concern about other issues can reduce concern about climate change, while evoking strong emotions about climate change can reduce concern about other issues. So Chris encouraged talking about opportunities, rather than threats, wherever possible.

2. People interpret uncertainty as ignorance
People often interpret the word “uncertainty” as complete ignorance, rather than, for example, partial ignorance(..!) or a well-defined range of possible outcomes. This may be due to language: “I’m not certain” is close to “I don’t know”.

Just as important is exposure to research science. Science is often presented as a book of facts, when in fact it is a messy process of reducing our uncertainty about the world. At a school this year the head teacher told us about an Ofsted inspection during which they had a fantastic science workshop, where groups of students solved challenging problems using real data. At the end of the day, the inspector said: “Fine, but wouldn’t it have been quicker to have told them the answer first?”

Lessons: Revolutionise the education system.

3. People are uncomfortable with uncertainty
Even when people do understand uncertainty, it can become a convenient rug under which to brush difficult decisions. Chris said that over-emphasising uncertainty leads to decision-making paralysis. When a decision invokes fear or anxiety (or, I would add, political disagreement), uncertainty can be used to dismiss the decision entirely.

“The Higgs boson”, Chris said, “was not a ball bearing found down the back of sofa, but a statistical result”. It was just possible it hadn’t been discovered. But it wasn’t reported this way. The Higgs, of course, does not invoke fear, anxiety or political disagreement (though please leave comments below if you disagree).

Lessons: Decision paralysis might be reduced by talking in terms of confidence rather than uncertainty. But perhaps more importantly…

4. People do accept the existence of risk
Finite worry and the problems of talking about uncertainty need not mean deadlock, James and Chris argued, because people do understand the concept of risk.  They accept there are irreducible uncertainties when making decisions. Businesses are particularly familiar with risk, of course. James mentioned that Harvard Business School is actively viewing climate change in this way:
“It’s striking that anyone frames this question in terms of ‘belief,’ saying things like, ‘I don’t believe in climate change,’… I think it’s better seen as a classic managerial question about decision-making under uncertainty.” — Forest L. Reinhardt, Business and Environment Institute faculty co-chair, HBS
Viewed in this way, the problem is not whether to make a decision based on uncertain or incomplete information, which is nearly always the case in other spheres (Chris: “Why should climate change be a special case required to have absolute certainty?”). The problem is whether the decision made is to bet against mainstream climate science:
“It seems clear that no one can know exactly what’s going to happen–the climate is a hugely complex system, and there’s a lot going on”….[The vast majority of the world’s scientists] may be wrong. But it seems to me foolish to bet that they are certainly wrong. — Rebecca Henderson, Business and Environment Institute faculty co-chair, HBS
Chris pointed out that the Technical Summary of the latest Intergovernmental Panel on Climate Change (IPCC) assessment of climate science uses the word “uncertainty” a thousand times and the word “risk” not at all, so it is not surprising the media focus on uncertainty. And how well humans understand risk is a matter worthy of much discussion. But as James writes:
“There is… a growing body of literature suggesting that risk language may be a good, or at least a less bad, way of communicating climate change to the general public”. — “Climate Change in the Media: Reporting Risk and Uncertainty”, (Executive Summary, page viii)

Lessons: Where possible, talk in terms of risk not uncertainty; see for example the IPCC report on extreme weather and, naturally, our book Risk and Uncertainty Assessment for Natural Hazards.

5. Scientists have little training
Most of us are not well trained – perhaps hardly at all – in science communication. But we must consider how the way we present numbers affects their interpretation. In 2007, the IPCC said the likelihood that most of global warming since the mid-20th century was caused by greenhouse gas emissions was assessed to be greater than 90%. This year they made a similar statement but the likelihood was 95% or greater. Chris said that if a journalist asked, “What does it mean to increase from 90% confident to 95% confident?”, a scientist could make this clearer with “[We think] the chance climate change is natural is now half as likely as before.”

He also pointed out that we don’t have training in how to deal with the “street fight” of the climate debate. In my experience, this is one of the two main reasons why most of my colleagues do not do public engagement (the other being time commitment).

Lessons: For communicating uncertainty and risk, I recommend UnderstandingUncertainty.org. For dealing with the street fight, my advice is first to start with a lot of listening, not talking, to get a feel for the landscape. And to talk to climate scientists already engaging on how to avoid and deal with conflict (if, indeed, they are avoiding or dealing with conflict…).

6. Journalists have little (statistical) training
The IPCC assessment reports use a “language” of uncertainty, where phrases such as “extremely likely” are given a specific meaning (in this case, 95% or greater likelihood). But James said that only 15% of media articles about this year’s report explained the meaning of this uncertainty language.

And in the discussion someone quoted a journalist as saying “The IPCC report says it has 95% confidence – what do the other 5% of the scientists think?” In other words, confusing the idea of a consensus and a confidence interval. There was a laugh at this in the room. But I think this is easily done by people who do not spend all day thinking about statistics. That would be: the majority of the human race.

Lessons: Er, many journalists could benefit from more statistical training. Here is what that might look like.

7. “Newspaper editors are extremely shallow, generally”
Fiona, her tongue only slightly in cheek, gave us this memorably-made and disappointing (if predictable) point.

Just because something is important it doesn’t mean it will get into a news outlet. An editor might go to a cocktail party, talk to their glamorous celebrity friends, hear some current opinion, and then the next day their paper says…

In other words, the social diary – including meetings with high profile climate sceptics – can have a substantial influence on the viewpoint taken. (Of course, she noted, the editor of The Guardian is a profound man, not influenced by such superficiality). To counter this we would need to go to influential people and whisper in their ears too. We would need to launch a prawn cocktail offensive – or more appropriately, as one wit suggested, a goats cheese offensive. You heard it here first. And last.

Lessons: Go to more cocktail parties hosted by influential people.

8. There are many types of climate sceptic
There was generally support of scepticism by the speakers. Chris said it was perfectly valid for the public to ask scientists “Can we see your working?”; in other words, to ask for more details, code and data. All the speakers said they don’t use the word “denier”.

James said we should not generalise, and described four types of sceptic: trend, attribution, impacts, and policy. A trend sceptic would not be convinced there is global warming; an attribution sceptic about how much is man-made; an impacts sceptic might say we don’t know enough about when and how severe the impacts will be; and a policy sceptic would take issue with how to tackle the problem. (Personally, I believe there are as many types of sceptic as there are sceptics, but that would be a longer list to write down). Fiona pointed out that one person can be all these types of sceptic, moving from one argument to another as a discussion progresses. Some thought this would be incoherent (i.e. kettle logic, contradictory arguments) but others thought it could be coherent to be sceptical for more than one of those reasons.

Lessons: Treat each sceptic as an individual (flower); don’t assume they are one type of sceptic when they may be another, or more than one.

9. Trust is important 
What determines people’s views on climate change? As James pointed out, there is evidence that what drives opinions is not science, or even the media (they determine only the topics of discussion), but political, cultural and social values. Fiona had said earlier in the meeting, “Climate change is more politicised than ever before in my lifetime: it is becoming a matter of right or left. This is very, very scary. If you allow this, you lose any hope of doing anything sensible about it.”

All this is true. But I’ll end with a slightly more optimistic quote, which I think was from Chris: “The sea change in the battle with tobacco companies was when the message got across that the adverts were not trustworthy.” I quote this not because I believe it is the same as the climate debate, and not because sceptics are untrustworthy (though some may be), but because I (some might say, choose to) interpret it to mean that trust is important. When people trust the messenger, the message is more likely believed.

Lessons: Other things are important, but sometimes communication is a matter of trust. I emphasise this point because it’s what I already believe; others may disagree (politely, please…).

–/–

I would have liked to add more references supporting the points made by the speakers, but ran out of time. Some are in James’ book mentioned above. Do please add them in the comments if you have them.

The title of this blogpost came from realising I had nine points to make and thinking of this set of shows curated by Robin Ince celebrating science, skepticism, and rationalism. If you’re in the UK this December, do go.

 ———–
This blog is written by Dr Tamsin Edwards, Geographical Sciences, University of Bristol and also features on her PLOS blog All Models Are Wrong.
Follow Tamsin on Twitter @flimsin

Making decisions in an environmentally uncertain world

Improved decision making in the face of environmental uncertainty is at the heart of the Cabot Institute. Although individuals, businesses and society aspire to make logical decisions, informed by evidence and wisdom, we are also influenced by a complex mixture of emotions, ethics, political opportunism and personal beliefs.  These murky waters become even more challenging to navigate when dealing with the inherent uncertainty in the basic evidence.  And it becomes almost impossible when pre-conceived beliefs and opinions replace evidence.  In such scenarios, uncertainty can be manipulated as a tool to undermine evidence and justify flawed decisions.  This is the particular challenge of decision making in the context of complex environmental, economic and ecological issues.

To a scientist confronted with evidence that human activity is changing our environment at unprecedented rates, it is apparent that environmental uncertainty is rarely appropriately deployed in policy making.  Most perniciously, it is commonly argued that the risk of an action (i.e. loss of biodiversity or increasing CO2 emissions) could be at the low end of the probability distribution – ‘the temperature might not warm that much’, ‘we might not get more hurricanes’.  That is not proper governance; that is hiding behind uncertainty and hoping for the best.  Nor is it appropriate to govern based on the worst-case scenario.  But nor can we govern by solely considering the most likely outcome.  We must recognise the range of possibilities and plan within it – strategically, flexibly, resiliently.  In other words, the uncertainty brought about by ongoing environmental change is itself a profound cause for concern and a challenge for governance.

However, environmental uncertainty is not an opaque label for things ‘we do not understand’ and by an extension it is not a cause for inaction.

Rich Pancost’s old farm, US Midwest

I grew up on a farm in the US Midwest and so environmental uncertainty to me mainly concerns our food and the people who provide it.   Anyone who has ever been involved in farming understands how uncertain our environment can be. And they understand how undermining and economically challenging that uncertainty is, especially with respect to the weather (weather is not the same as climate, but it makes for a useful environmental analogy).

We had about 30 head of cattle on our small Ohio dairy farm , and my brother, parents and I needed to put aside 4000 bales of hay every summer. I loved that job – I remember the smell of drying hay and the fat bumble bees buzzing in the clover. I remember being with my family, the satisfaction of completed work and the closeness that came from achieving things together. But it was hard and uncertain work, my father cutting the grass, raking it and baling it, quickly over successive hot days so that it would dry before a summer rain shower could strip away the nutrients. Or worse: before an extended few days of rain saturated the mowed hay on the ground, causing it to become fungus-ridden and rotting it away in the field.  We could work with a prediction of rain and we could work with a prediction of no rain or even drought.  But we could not work with an overly uncertain prediction.  Even worse were wrong (i.e. overly certain) predictions.  We navigated the probabilistic terrain of the daily weather forecasts somewhat by instinct, but the stakes were high, and just three or four bad decisions in a summer would have been financially catastrophic.  The farm is long gone but my Mom is still addicted to the weather reports.

The barn

But uncertainty does not mean paralysis; it means risk management.  We mitigated the risk of wasted crop by renting and working fields that could yield 4500 bales rather than 4000.  And those 4000 bales of hay were themselves, risk management, exceeding our likely needs.  Gathering the bales and storing them in our barn’s loft was hard, sticky, hot and gritty work.  The hay was delivered to the loft by a metal elevator – metal plates carried by metal chains up a metal chute, all powered by our forty-year old International Harvester tractor’s power take-off shaft.  I loved doing this work on the farm – its physicality and the stimulus of all of your senses – but I do not miss that tremendous rattling, clanging noise!  The loft itself could reach temperatures of 110°F and was filled with clouds of dust and darting, irritated wasps.  Our necks would burn and our forearms would be filled with tiny splinters of hay.

We worked hard and put away 4000 bales each summer even though we would probably only need 3500, because we had to err on the side of caution in case there was an early winter. Or a long winter.

That is environmental uncertainty – and risk management – to me.  Cutting the hay when the forecast predicts a 35% chance of rain and watching 400 bales of alfalfa rot in the field.  Renting more land than we would likely need. Working 20% harder than necessary – just in case.

All of us understand this, whether it be maintaining the garden, managing the allotment or planning a holiday. This is part of human history: sound, profitable, secure decision-making has always required a confrontation with environmental uncertainty; consequently, almost all societies have strived to mitigate risks by understanding the environment, managing essential resources, and building up our own resilience.

From IPCC 2013, Working Group 1

What is disturbing and unique about the 21st century is that we are no longing mitigating environmental uncertainty but instead, we are very rapidly increasing it. We are changing our planet and where and how we live upon it.  Increasing carbon dioxide emissions might warm the planet by 1.5°C.  Or 3°C.  Or 5°C.   Such warming will probably cause the Southwest of England to have wetter summers and the great food-supplying regions of the American Midwest to become drier.  But there is a probability that the opposite will happen.  How does the small farmer plan?  For that matter, how does the huge international agritech firm plan? I would argue that the greatest challenge posed by our changing environment is not how much the Earth warms but the uncertainty in how much it will warm and the uncertainty associated with the consequences of that warming. Planning for our future – perhaps for the first time in human history – is actually becoming more uncertain every year.

But we are also learning much more about ourselves and our environment, and this perhaps makes the future a bit more certain than it might otherwise be.  Currently the Met Office is improving our prediction tools and tailoring specific advice to farmers; engineers are learning how we might mitigate or even adapt to this uncertainty; and we are developing methods to limit our dependence on fossil fuel and thus the associated climate change.  And we are learning how to make sound decisions in the face of it. To achieve these objectives, the Cabot Institute and similar entities are bringing together a wide variety of scientists, social scientists, managers and engineers, all of whom share expertise with the community and industry.  That expertise includes those who deal specifically with quantifying uncertainty, the underlying psychology and sociology of decision making, and the clash of ethical and pragmatic ideas that inform policy making.  The world’s population is growing and with it our basic food, water and energy needs; to provide for those needs, we must make our future more certain but also more resilient and adaptable.

This blog was written by Professor Rich PancostCabot Institute Director, University of Bristol

Prof Rich Pancost