How to turn a volcano into a power station – with a little help from satellites

File 20171031 18735 1gapo0c.jpg?ixlib=rb 1.1
Erta Ale in eastern Ethiopia. mbrand85

Ethiopia tends to conjure images of sprawling dusty deserts, bustling streets in Addis Ababa or the precipitous cliffs of the Simien Mountains – possibly with a distance runner bounding along in the background. Yet the country is also one of the most volcanically active on Earth, thanks to Africa’s Great Rift Valley, which runs right through its heart.

Rifting is the geological process that rips tectonic plates apart, roughly at the speed your fingernails grow. In Ethiopia this has enabled magma to force its way to the surface, and there are over 60 known volcanoes. Many have undergone colossal eruptions in the past, leaving behind immense craters that pepper the rift floor. Some volcanoes are still active today. Visit them and you find bubbling mud ponds, hot springs and scores of steaming vents.

Steam rising at Aluto volcano, Ethiopia. William Hutchison

This steam has been used by locals for washing and bathing, but underlying this is a much bigger opportunity. The surface activity suggests extremely hot fluids deep below, perhaps up to 300°C–400°C. Drill down and it should be possible access this high temperature steam, which could drive large turbines and produce huge amounts of power. This matters greatly in a country where 77% of the population has no access to electricity, one of the lowest levels in Africa.

Geothermal power has recently become a serious proposition thanks to geophysical surveys suggesting that some volcanoes could yield a gigawatt of power. That’s the equivalent of several million solar panels or 500 wind turbines from each. The total untapped resource is estimated to be in the region of 10GW.

Converting this energy into power would build on the geothermal pilot project that began some 20 years ago at Aluto volcano in the lakes region 200km south of Addis Ababa. Its infrastructure is currently being upgraded to increase production tenfold, from 7MW to 70MW. In sum, geothermal looks like a fantastic low-carbon renewable solution for Ethiopia that could form the backbone of the power sector and help lift people out of poverty.

 

Scratching the surface

The major problem is that, unlike more developed geothermal economies like Iceland, very little is known about Ethiopia’s volcanoes. In almost all cases, we don’t even know when the last eruption took place – a vital question since erupting volcanoes and large-scale power generation will not make happy bedfellows.

In recent years, the UK’s Natural Environment Research Council (NERC) has been funding RiftVolc, a consortium of British and Ethiopian universities and geological surveys, to address some of these issues. This has focused on understanding the hazards and developing methods for exploring and monitoring the volcanoes so that they can be exploited safely and sustainably.

Teams of scientists have been out in the field for the past three years deploying monitoring equipment and making observations. Yet some of the most important breakthroughs have come through an entirely different route – through researchers analysing satellite images at their desks.

This has produced exciting findings at Aluto. Using a satellite radar technique, we discovered that the volcano’s surface is inflating and deflating. The best analogy is breathing – we found sharp “inhalations” inflating the surface over a few months, followed by gradual “exhalations” which cause slow subsidence over many years. We’re not exactly sure what is causing these ups and downs, but it is good evidence that magma, geothermal waters or gases are moving around in the depths some five km below the surface.

Taking the temperature

In our most recent paper, we used satellite thermal images to probe the emissions of Aluto’s steam vents in more detail. We found that the locations where gases were escaping often coincided with known fault lines and fractures on the volcano.

When we monitored the temperature of these vents over several years, we were surprised to find that most were quite stable. Only a few vents on the eastern margin showed measurable temperature changes. And crucially, this was not happening in synchronicity with Aluto’s ups and downs – we might have expected that surface temperatures would increase following a period of inflation, as hot fluids rise up from the belly of the volcano.

A productive geothermal well on Aluto. William Hutchison

It was only when we delved into the rainfall records that we came up with an explanation: the vents that show variations appear to be changing as a delayed response to rainfall on the higher ground of the rift margin. Our conclusion was that the vents nearer the centre of the volcano were not perturbed by rainfall and thus represent a better sample of the hottest waters in the geothermal reservoir. This obviously makes a difference when it comes to planning where to drill wells and build power stations on the volcano, but there’s a much wider significance.

This is one of the first times anyone has monitored a geothermal resource from space, and it demonstrates what can be achieved. Since the satellite data is freely available, it represents an inexpensive and risk-free way of assessing geothermal potential.

With similar volcanoes scattered across countries like Kenya, Tanzania and Uganda, the technique could allow us to discover and monitor new untapped geothermal resources in the Rift Valley as well as around the world. When you zoom back and look at the big picture, it is amazing what starts to come into view.
——————————-
This blog is written by William Hutchison, Research Fellow, University of St Andrews; Juliet Biggs, Reader in Earth Sciences and Cabot Institute member, University of Bristol, and Tamsin Mather, Professor of Earth Sciences, University of Oxford

This article was originally published on The Conversation. Read the original article.
——————————
Juliet Biggs is a member of the University of Bristol Cabot Institute.  She studies Continental Tectonics and Volcanic Deformation and has won numerous awards in her field.  Find out more about Juliet Biggs research.

MSc Environmental Policy and Management Course Trip to Warsaw, Poland

Each year, students on the MSc Environmental Policy and Management program receive funding to plan an educational trip in Europe. Previous cohorts have chosen to visit Berlin, Copenhagen, Riga, and Amsterdam. This year, we democratically decided to visit Warsaw. We chose to do so not because the city and Poland are exemplary in environmental management, but rather because they have real challenges facing them in the transition to a low-carbon future.

The energy sector represents the biggest environmental challenge in Poland and government leaders are reported to actively oppose European Union climate change targets (Kowalski, 2016). After its most recent election (2015), the country announced that energy policy would prioritise the exploitation of domestic coal deposits. Indeed, there is a historical and cultural attachment to coal in Poland, as the coal industry was influential in the country’s socio-economic development in the period between World War I and World War II, and during the post-World War II Communist era (Kowalski, 2016). More recently, coal has been promoted as a path to increase Poland’s energy independence, particularly from Russia, by reducing the need for imported fuel.

Poland has consistently been one of the biggest coal producers in the EU (Lukaszewska, 2011). A large majority of the country’s electricity generation (80 – 94%) comes from coal-fired power plants fuelled by domestic hard coal and lignite (Kozlowska, 2017; Lukaszewska, 2011). The dominant position of these fossil fuels in Poland’s energy mix presents a significant challenge in the fight against global climate change. We arranged meetings with the Polish Climate Coalition, the Heinrich Böll Foundation, and Greenpeace Poland to learn more.

Our first meeting was with the Polish Climate Coalition. As our large cohort climbed the stairs to their office, it soon became clear that we would not all fit in and so we turned back and headed for a local café just around the corner. Walking with Krzysztof and Urszula, they seemed apologetic, but they need not have been. We found the experience to be an honest representation of how a grassroots organisation may operate when fighting for causes arguably more important than having a fancy corporate office. The Coalition is an association of 22 NGOs engaged in climate protection and includes Friends of the Earth, Greenpeace, and ClientEarth. It was established under the outright belief that humans are responsible for climate change.

Over the next 90 minutes, Krzysztof and Urszula provided us with an in-depth overview of the energy sector in Poland. We learned that the dominant driving force for current practice is a flawed interpretation of energy security which focuses on supply in lieu of other considerations, such as tackling fuel poverty and environmental pollution or ensuring stable, long-term access to energy.

The Polish energy sector is seemingly outdated and inadequate in the face of 21st century challenges. It was particularly concerning to hear that the combination of both a dry winter in 2014 and a hot summer in 2015 significantly reduced the water levels in Poland’s rivers. These rivers are the primary source of water for cooling the country’s coal-fired power plants, and in August 2015, power restrictions were imposed on 1,600 of the biggest companies in Poland as a result (Olszwski, 2015). The population face an ever-increasing risk of power blackouts due to the vulnerability of the energy sector from over-reliance on coal. If hot summers persist (temperatures exceeded 24C on the day of our visit in May!), then such vulnerability will surely continue.

One thing became clear in that, despite the major challenges which Poland faces, there are good people like Krzysztof and Urszula who are willing to fight the uphill battle, within a context where motivation must surely be difficult to find.

Upon arrival at the Heinrich Böll Foundation, for our second meeting, we were welcomed into a light, air-conditioned conference room where water and nibbles were laid out for us. While our physical environment was starkly different to our first meeting, we soon realised an overarching theme in Poland.

The Heinrich Böll Foundation is a politically independent ‘green visions’ think tank with 30 offices worldwide. Their work is divided into three programmes and we met with Katarzyna from the Energy and Climate programme in Warsaw, whose work aims to intensify the discourse about the challenges presented by energy transformation and climate change.

Much of Katarzyna’s message reinforced what we had learned in our first meeting. However, it was particularly interesting to enter into a discussion about air pollution toward the end of her presentation. We learned that coal is not only the primary source of electricity production, but is also still burned, alongside rubbish and other discarded materials, to heat homes in the winter, creating an ever-worsening problem with smog in Warsaw and across Poland. We were told that in the winter of 2016 – 2017, smog was so thick that you could not see your hand in front of you. In January 2017, air pollution in Warsaw was so bad that local authorities decided to limit local emissions by making public transport free for a short period. Approximately 45,000 people in Poland die each year from air pollution (Kozlowska, 2017). The total population is around 38 million (“Population, total,” 2017).

Our final meeting was with Greenpeace, and this took us away from the city centre to their office in what was once a very large home. Many of us took advantage of Warsaw’s bike rental scheme, called Veturilo, to make the almost 6-kilometre ride from our hostel along cycle lanes, roads, and even the sidewalk.

The office culture immediately felt distinct to that of the previous two organisations. Staff dressed more casually; unmade bunk beds showed us where visiting volunteers can stay; bumper stickers and sketched environmental messages decorated some walls; and stuffed bees the size of large dogs hung from the ceiling (purportedly they have used the bees for campaigning). The efforts of Greenpeace Poland depend less on paper and pen and more on influential signage and community engagement.

Our contact, Anna, shared stories of human chains to call attention to the rivers that have dried up because of open-pit lignite mining. She taught us about the mining process, showing us on a map of the country where current mines are operating and new ones are planned. The process destroys landscapes, diverts massive volumes of water, and forces displacement of people. The low energy content of lignite means power plants must be built immediately adjacent to the mines. Since opening about 10 years ago, Greenpeace Poland has had some successes. Anna shared her involvement in advocating for the sale of excess renewable energy back to the grid, which ultimately came to pass, at least temporarily. To highlight that the battle for environmental progress is constantly uphill however, the government later reverted this policy, and at the time of writing has not reinstated it.

Despite a certain level of negativity in our meetings, Anna’s anecdote provided some optimism. The temporary success depended on using political divisions and public advertising focusing on the benefits to individuals. Though a small step, it shows that sometimes addressing the self-interest of the general public can be an effective way to combat environmental issues in a country with Poland’s political context.

Due to a lack of climate change education in Poland, environmentalism must be achieved through its benefits to the public rather than through traditional means. Indifference towards environmentalism is something that can be seen in other countries, and to us provided a good indication of how hostile public attitudes can be addressed to allow for environmental and climate protection. One of the authors, Michael, comes from Texas and found parallels between the situation in Poland and that back home. Progress cannot depend on a shared sense of responsibility to address climate change, in which many people do not even believe. Counterproductive financial interests are rampant. However, reframing the conversation to discuss savings from energy efficiency, economic opportunities in renewables, and energy security can achieve gains in the low-carbon transition. In Texas, wind power has boomed not because of political or public will to move beyond fossil fuels, but because of its economic viability.

We are truly grateful to the School of Geography for affording us the opportunity to undertake this trip. Beyond learning more about the energy system in Poland and organisations working to improve it, we became closer as a cohort and had a wonderful time.

The reader can reach out with any questions on the trip or the program to the authors of this blog post: Mark Nichols (mn16169@my.bristol.ac.uk), Allan MacLeod (am12313@my.bristol.ac.uk), or Michael Donatti (md16045@my.bristol.ac.uk).

References
Kowalski, K., 2016. In Poland, efforts to rescue coal industry will likely come up short. [online] Available: https://pl.boell.org/en/2016/09/26/poland-efforts-rescue-coal-industry-will-likely-come-short

Kozlowska, H., 2017. When it comes to air pollution, Poland is the China of Europe. [online] Available: https://qz.com/882158/with-air-pollution-skyrocketing-warsaw-is-severely-hit-by-polands-smog-problem/

Lukaszewska, H., 2011. Poland’s Energu Security Strategy. Journal of Energy Security.

Olszewski, M., 2015. The Polish Energy Drought. [online] Available: https://energytransition.org/2015/09/the-polish-energy-drought/

“Population, Total.” The World Bank, 2017. http://data.worldbank.org/indicator/SP.POP.TOTL.

Challenges of generating solar power in the Atacama Desert

My name is Jack Atkinson-Willes and I am a recent graduate from the University of Bristol’s Engineering Design course. In 2016 I was given the unique opportunity to work in Chile with the renewable energy consultancy 350renewables on a Solar PV research project. In this blog I am going to discuss how this came about and share some of the experiences I have had since arriving!

First of all, how did this come about? Due to the uniquely flexible nature of the Engineering Design course I was able to develop my understanding of the renewable energy industry, a sector I had always had a keen interest in, by selecting modules that related to this topic and furthering this through industry work experience. In 2013, the university helped me secure a 12 month placement with Atkins Energy based near Filton, and while this largely centred around the nuclear industry it was an excellent introduction into how an engineering consultancy works and what goes into development of a utility-scale energy project.

In 2015 I built on this experience with a 3 month placement as a research assistant in Swansea University’s Marine Energy Research Group (MERG). I spent this time working on the EU-funded MARIBE project, which aimed to bring down the costs of emerging offshore industries (such as tidal and wave power) by combining them with established industries (such as shipping). This built on the experience I had gained through research projects I had done as part of my course at Bristol, and allowed me to familiarise myself further with renewable energy technology.

Keen to use my first years after graduation to learn other languages and travel, but also start building a career in renewables, I realised that the best way to combine the two was to start looking at countries overseas that had the greatest renewable energy potential. Given that I had just started taking an open unit in Spanish, Latin America was, naturally, the first place I looked; and I quickly found that I needn’t look much further! Latin American was the fastest growing region in the world for renewable energy in 2015, and this was during a year when global investment in renewables soared to record levels, adding an extra 147GW of capacity. (That’s more than double the UK demand!)

So, eager to find out more about the opportunities to work there, I discussed my interest with Dr. Paul Harper. He very kindly put me in touch with Patricia Darez, general manager of 350renewables, a renewable energy consultancy based in Santiago. As luck would have it, they were looking to expand their new business and take someone on for an upcoming research project. Given my previous experience in both an engineering consultancy and research projects I was fortunate enough to be offered a chance to join them out in Chile. Of course I jumped at the opportunity!

 

1 – Santiago, Chile (the smog in this photo being at an unusually low level)

Fast-forward by 8 months and I am tentatively stepping off the plane into a new country and a new life, eager to get started with my new job. Santiago was certainly a big change to Bristol, being about 10 times the size, but to wake up every day with the Andes mountains looming over the skyline was simply incredible. The greatest personal challenge by far has been learning Spanish, largely because the Chilean version of Spanish is the approximate equivalent to a thick Glaswegian accent in English. So for my (at best) GSCE level Spanish it was quite a while before I felt I could converse with any of the locals (and even now I spend almost all my time nodding and smiling politely whilst my mind tries to rapidly think of a response that would allow the conversation to continue without the other person realising I haven’t a clue what they’re saying!) But it has taught me to be patient with my progress, and little by little I can see myself improving.

Fortunately for me though, I was able to work in English, and before long I was getting to grips with the research project that I had travelled all this way for! But before I go into the details of the project, first a little background on why Chile has been such a success story for Solar.

2 – There’s a lot of empty space in the Atacama

The Atacama desert ranges from the pacific ocean to the high plains of the Andes, reaching heights of more than 6000m in places. It is the driest location on the planet (outside of the poles) where in some places there hasn’t been a single drop of rain since records began. This combined with the high altitude results in an unparalleled solar resource that often exceeds 2800 kWh/m2 (Below are two maps comparing South America to the UK, and one can see that even the places of highest solar insolation in the UK wouldn’t even appear on the scale for South America!)

3 – Two maps comparing the solar resource of Latin America to the UK. If you think about the number of solar parks in the UK that exist, and are profitable, just imagine the potential in Latin America!

The majority of the Atacama lies within Chile’s northern regions, and because of this there has been a huge rush over the past 3 years to install utility-scale Solar PV projects there. Additionally, Chile has seen an unprecedented period of economic growth and political stability since the 1990’s, in part due to the very same Atacama regions which are mineral-rich. The mines used to extract this wealth are energy-hungry, and as Chile has a lack of natural fossil fuel resources, making use of the plentiful solar resource beating down on the desert planes surrounding these remote sites made perfect economic sense. This is added to the need for energy in the rapidly-growing cities further south, in particular the capital Santiago, where almost a third of the Chilean population live. From 2010 to 2015, the total installed capacity of PV worldwide went from 40GW to 227GW, a rapid increase largely due to decreasing PV module manufacture costs. As the cost of installation dropped, investors began to search for locations with the greatest resources, and so Chile became a natural place to invest for energy developers.

However, as large scale projects began generating power, new challenges began to emerge. New plants were underperforming and thus not taking full advantage of the powerful solar resource. This underperformance could be down to a whole range of factors; faulty installation, PV panels experiencing a drop in performance due to the extremely high UV radiation (known as degradation). But the main culprits are likely to be two factors; curtailment and soiling.

Firstly, curtailment. Chile is a deceptively large country, which from top to bottom is more than 4000km long (roughly the distance from London to Baghdad). Because of this, instead on having one large national grid, it is split into four smaller ones. The central grid (in blue, which is connected to the power-hungry capital of Santiago) offered a better price of energy than the northern grid (in green) supplying the more sparsely populated Atacama regions. This lead to a large number of plants being installed as far into the Atacama desert as possible, and therefore as far north as possible, whilst still being connected to the more profitable central grid.

4
– A map of the central (blue) and northern (green) grids in Northern Chile.
Major PV plants are shown with red dots

This lead to a situation where the low number of cables and connections that existed connecting these areas with the cities further south suddenly became overloaded with huge quantities of power. When these cables reach capacity, the grid operators (CDEC-SIC – http://www.cdecsic.cl/), with no-where to store this energy, simply have no other option but to limit (or curtail) the clean, emission-free energy coming out of these PV plants. This is bad news for the plant operators as it limits their income, and bad news for the environment as fossil fuels still need to be burned further south to make up for the energy lost.

The solution to this is to simply build more cables, a task easier said than done in a country of this size and in an area so hostile. This takes a long time, and so until the start of 2018 when a new connection between the northern and central grids will be made, operators have little choice but to busy themselves by improving plant performance as much as possible in preparation for a time when generation is once again unlimited.

This leads me onto soiling. Soiling is a phenomenon that occurs when wind kicks up sand and dust from the surrounding environment and this lands on the PV panels. This may seem relatively harmless but in Saudi Arabia is has been found to be responsible for as much as a 30% loss in plant performance. Chile, however, is still a very new market and so the effects of soiling here are not as well understood. What we do know for sure is that it affects some sites much more than others – the image below being taken by the 350renewables team at an existing Chilean site.

5 – The extent of soiling in the Atacama. One can appreaciate the need for an occasional clean!

These panels can be cleaned, but this becomes somewhat more complicated when you consider that some of these plants have more than 200,000 panels on one site. Cleaning then becomes a balance between the cost of cleaning, the means of cleaning (water being a scarce commodity in the desert) and the added energy that will be gained by removing the effects of soiling.

This is what the research project that I am taking part in hopes to establish. Sponsored by CORFO, a government corporation that promotes economic growth in Chile, and working with the University of Santiago, 350renewables hopes to establish how soiling effects vary across the Atacama and which cleaning schedules are best suited to maximising generation. There are 10 utility scale projects currently taking part, providing generation data and cleaning schedules. My role within this project has thus far been to inspect, clean and process all the incoming data and transfer this to our in-house tools for analysis. In the future (as my spanish improves) this will move onto liaising with the individual maintenance teams at each site to ensure that cleaning schedules are adhered to.

My most notable challenge thus far was presenting some of our initial findings at the Solar Asset Management Latin America (SAM LATAM – http://www.samlatam.com/#solar-asset-management-latam) conference in September. Considering I had only been in the country for just over a month, it was a lot to learn in not very much time! My presentation discussed the underperformance of Chilean PV plants and the potential causes for this, examining some of the publicly available generation data over the past few years. It was certainly terrifying, but getting the opportunity to share a stage with a plethora of CEOs, managers and directors from the Chilean solar energy industry was a fantastic opportunity.

6 – I felt like an impostor amongst all the Directors and Managers

A few weeks prior to this we had also gone to the Intersolar South America conference (https://www.intersolar.net.br/en/home.html) in São Paulo, Brasil, where Patricia was speaking. This was another fantastic opportunity to meet other people from the industry (although somewhat limited by my non-existent Portuguese abilities) and I was lucky enough to have some time to explore the city for a few days thereafter.

7 – São Paulo, Brazil

In addition to São Paulo, I have been able to find the time to travel elsewhere in Chile during my time here, including down to Puerto Varas in the south with its peaceful lakes nestled at the feet of imposing active volcanoes (including the Calbuco volcano, which erupted in spectacular fashion in early 2015: https://www.youtube.com/watch?v=faacTZ5zeP0). Being further south the countryside is much more green, and with a significant German influence from several waves of immigration in the 1800s.

8 – Me in front of the incredible Osorno Volcano near Puerto Varas
9 – Puerto Varas

By far my favourite though was the astounding Atacama desert. As beautiful as it is vast. The high altitude making for astounding blue skies contrast against the red rocks of the surrounding volcanic plains. It is also one of the best stargazing spots on the planet, and the location of the famous A.L.M.A. observatory, which hopes to provide insight on star birth during the early universe and detailed images of local star and planet formations (http://www.almaobservatory.org/).

 

10
– Me in the Atacama. The second photo being what can only be described as a
dust tornado. To call the Atacama inhospitable would be taking it lightly
11 -Valle de la luna, an incredible formation of jagged peaks jutting out of the desert plains. Certainly a highlight.

In the new year the soiling project really gets underway, and by the end of 2017 we hope to have some findings that will provide some insights into the phenomenon that is soiling. Personally, it has been a great adventure so far, the language skills I have developed and the experience of living in another culture, as opposed to merely passing through as a tourist, has been very rewarding. I still have a long way to go, and hope to post an update to this blog in the future, but for now a Happy New Year from Chile!

The Diamond Battery – your ideas for future energy generation

On Friday 25th November, at the Cabot Institute Annual Lecture, a new energy technology was unveiled that uses diamonds to generate electricity from nuclear waste. Researchers at the University of Bristol, led by Prof. Tom Scott, have created a prototype battery that incorporates radioactive Nickel-63 into a diamond, which is then able to generate a small electrical current.

Details of this technology can be found in our official press release here: http://www.bristol.ac.uk/news/2016/november/diamond-power.html.

Despite the low power of the batteries (relative to current technologies), they could have an exceptionally long lifespan, taking 5730 years to reach 50% battery power. Because of this, Professor Tom Scott explains:

“We envision these batteries to be used in situations where it is not feasible to charge or replace conventional batteries. Obvious applications would be in low-power electrical devices where long life of the energy source is needed, such as pacemakers, satellites, high-altitude drones or even spacecraft.

“There are so many possible uses that we’re asking the public to come up with suggestions of how they would utilise this technology by using #diamondbattery.”

Since making the invitation, we have been overwhelmed by the number of amazing ideas you’ve been sharing on Facebook, Twitter and by email. In this blog, we take a brief look at some of the top suggestions to date, and offer some further information on what may and may not be possible.

10 of our favourite ideas (in no particular order!)

Medical devices
From ocular implants to pacemakers, and from insulin pumps to nanobots, it’s clear that there is a great deal of potential to make a difference to people’s lives in the medical field. Many devices must be implanted within the body, meaning long battery life is essential to minimise the need for replacements and distress to patients.

@rongonzalezlobo suggests that the #diamondbattery could power nanorobots which can be injected into a person or animal to sense and transmit information about the health of the individual to an external device. This could be particularly helpful to diabetes patients, for example.

 

@TealSkys also suggests they could be used to monitor vital signs in individuals in high-risk jobs such as explorers, military
professionals or miners.

 

@JulianSpahr suggests we also investigate ICDs (Implantable Cardioverter Defibrillators- small devices which can treat people with dangerously abnormal heart rhythms) and DBS (deep brain stimulation – a surgical procedure used to treat a variety of disabling neurological symptom most commonly the debilitating symptoms of Parkinson’s disease).
The opportunities for implantable #diamondbattery powered devices appear to be significant.

GPS trackers or Geo-markers
GPS trackers are rating highly so far, and could offer an opportunity for us to keep tabs on pets or valuable items without worrying about device batteries running out of charge. Implantable devices using a #diamondbattery would not need to be replaced, minimising discomfort to tracked animals. Indeed, @Boomersaurus suggests we could also use these for tagging animals in wildlife studies.

In addition to Geo-tagging/ tracking, some of you have suggested that the #diamondbattery could be used to power permanent geomarkers.

 

The Internet of Things
A major concern surrounding the new wave of ‘Internet of Things’ (IoT) technologies is the amount of power they might consume. IoT devices require a constant stream of power to transmit over wireless frequencies which could cause issues as these proliferate.

@CIMCloudOne suggests the #diamondbattery could become the new default for IoT devices in the future.

 

Safety and security
A number of you suggested that the #diamondbattery could be extremely useful in smoke detectors.

The US National Fire Protection Association states that 21% of home fire deaths resulted from fires in homes with no working smoke alarms, where around 46% of the alarms had missing or disconnected batteries. Dead batteries caused one-quarter (24%) of the smoke alarm failures.

If feasible, this suggestion from @StarhopperGames could therefore not only prevent annoying late-night battery beeps, but may also help avoid preventable death.

 

However, a question remains as to whether the battery would be sufficient to power the alarm (and not just the detector).
@idbacchus suggested we use the #diamondbattery to power Black Box transmitters in aeroplanes to ensure it is possible to track and record planes for safety reasons.

 

Remote sensing
Many corners of our planet are far from civilisation and are inaccessible, complex environments. If we are to study the seas, or mountains (or indeed, space) effectively over long periods, low-powered devices with long-life batteries are required.

Many of you called for the use of these batteries in sea and remote location studies:

 

 

Seismology and building resilience
Seismic sensors that are located underground could help us to detect early warnings for earthquake risk.

 

Additionally, small sensors housed within the foundations of buildings/ within building walls may also prove helpful for indoor environment sensing, structural resilience, heat etc.

Mechanical bees
Whilst this is possibly the most futuristic of all the suggestions, we felt that it warranted a mention for innovation! @TheSteveKoch suggests a low-power #diamond battery might be able to power mechanical bees in the future.

 

Watches
It’s often impossible to know when a watch battery is about to run out, and when it does, it can feel disastrous to the owner. Perhaps a #diamondbattery watch could help people around the world avoid those missed appoints and trains in the future.

 

Space exploration
Of course, when we send devices out into space we need to know that they have sufficient battery life and sufficient levels of resilience to maintain operations for long periods. @johnconroy and others noted the opportunities for space probes and radio transmitters on the moon:

 

Bringing the internet to new areas
Finally, whilst it’s currently unclear what the power requirements would be for this idea, deployment of low power UAVs in remote areas to deliver free internet sounds like a highly worthwhile cause.

 

If you are inspired by these ideas and think you might have a suggestion for future diamond battery uses, send us a tweet at
@cabotinstitute or @UoBrisIAC with the hashtag ‘#diamondbattery’.

New models of community energy

Credit: Bristol Energy Cooperative
North Yorkshire County Council’s recent decision to approve Third Energy Ltd’s application to begin exploratory fracking in Kirby Misperton (by a majority vote of seven councillors to four) was seen by some as riding roughshod over the democratic process – 36 individual representations were made in support of the application, while 4420 were made against.  
 
On the same day, closer to home, there was news that Bristol Energy Cooperative would soon become the largest generator of community energy in the UK with the development of a 4.2 MW solar farm in Lawrence Weston.
 
The two organisations could not be further apart. While Third Energy Ltd is a recently registered private equity company with all shares held in house and likely backed by a parent oil and gas company (Third Energy UK Gas Ltd), Bristol Energy Cooperative is a community owned cooperative that has financed solar developments through community share offers, funding from the local council and ethical banks. Although at this stage we don’t know how Third Energy would finance any fracking activities – there is no reason why it couldn’t make a community share offer – Bristol Energy Cooperative has demonstrated with its existing solar developments a way to generate new electricity generation that is participative and engaging rather than exclusionary and remote.
 
That is not to say that the cooperative model provides all the answers; questions over who has money and time to invest/participate remain. Given the explosion of energy cooperatives and community benefit societies over the last few years, such models are clearly striking a cord with communities around the UK. Nevertheless, as a result of recent cuts in subsidies, we are now entering a period of uncertainty. Many community energy groups are waiting for prices of technology to fall and/or major planning decisions to be made. However, it is unlikely that that is the last we see of community energy organisations, many are working hard to function in the new harsher environment; devising novel models to develop renewable energy in ways that give communities more say.
 
What these new models might look like is still very much up in the air. With the introduction of Bristol Energy Company and Robin Hood Energy in Nottingham, it might be that we see more collaboration between community energy groups and local councils (or their energy companies) drawing on both their relative strengths to leverage the necessary finance and public support, or we might see larger community energy organisations refocus their efforts by offering direct energy connections (private wire developments) to high energy consumers. There may also be a trend towards scaling-up and turning themselves into energy supply companies or cooperative services providers, and then there are partnerships taking place with traditional energy supply companies.
 
Whichever models come to thrive in the coming years, there is a growing acceptance that communities should have more, not less, say over how energy is generated at the local level. And with the introduction of Neighbourhood Plans (through the Localism Act 2011) there is a potential regulatory channel that local communities can employ to continue to pursue transparent and open decision-making. If such devolution continues, it seems likely that we will see more active, not less active, communities in all things energy in the years to come.
 
———————————

This blog has been written by University of Bristol Cabot Institute member Jack Nicholls, a PhD student in Law and Sociology, Policy and International Studies (SPAIS), who researches renewable energy development at the local scale. He has no financial interests in either Bristol Energy Cooperative or Third Energy Ltd.  

Jack Nicholls

This blog has also been featured on the Big Green Week blog.   Big Green Week runs from 11 June in Bristol and there are lots of exciting events to attend.  Check out the official website

The Cabot Institute is hosting a special Big Green Week event on 15 June on Nicaragua’s progress towards 90% renewable energy. Full details and tickets can be found online.

Hydrogen and fuel cells: Innovative solutions for low carbon heat

On 29 February 2016, I attended a meeting in Westminster that was jointly organised by the UK Hydrogen and Fuel Cell Association (UKFCA) and Carbon Connect with the aim of discussing current challenges in the decarbonisation of heat generation in the UK. The panel included David Joffe (Committee on Climate Change), Dr. Marcus Newborough (ITM Power), Ian Chisholm (Doosan Babcock), Klaus Ullrich (Fuel Cell Energy Solutions), Phil Caldwell (Ceres Power) and was chaired by Dr Alan Whitehead MP and Shadow Energy Minister. The attendees included a number of key players in the field of hydrogen production, fuel cell and renewable energy industries, as well as organisations such as the Department for Energy and Climate Change (DECC).

To set the scene, I would like to quote some facts and figures from the 2015 Carbon Connect report on the Future of Heat (part II).

  1. The 2025 carbon reduction target is 404.4 MtCO2e (million metric tons of carbon dioxide equivalent), but the reduction levels as of 2014 have only been 288.9 MtCO2e. The current Government’s low carbon policy framework is woefully inadequate to bridge this gap.
  2. The government introduced the Renewable Heat Incentive in 2011, with the ambition of increasing the contribution of renewable energy source to 12% of the heat demand by 2020. Some of the initiatives include biomass, “energy from waste” and geothermal. However, clear policies and financial incentives are nowhere to be seen.
  3. What is the current situation of renewable heat and how good is the 12% target? The good news is that there is a slight increase in the renewable share from 2004. The really bad news is that the contribution as of 2013 is just 2.6%. The UK is further behind any other EU state with regards to its renewable heat target. Sweden has a whopping 67.2% contribution and Finland 50.9%.

Towards a decarbonised energy sector, two important networks should be considered, electrical and gas. Electrification of heat is very well suited for low carbon heat generation, however, the electricity demands at peak time could be extremely costly. The UK’s gas network is a major infrastructure which is vital for providing gas during peak heat demand. However, it needs to be re-purposed in order to carry low carbon gas such as bio-methane, hydrogen or synthetic natural gas.

It was clear from the debate that hydrogen can play an important role in decreasing carbon emissions even within the current gas network. The introduction of up to 10% of hydrogen into gas feed can still be compatible with current gas networks and modern appliances, while generating a significant carbon emission reduction. However, where is the hydrogen coming from? For heat production at the national scale, steam reforming is the only player. However, with the government pulling away from carbon capture and storage (CCS), this option cannot provide a significant reduction in carbon emissions.  Capital costs associated with electrolysers would not be able to deliver the amount of hydrogen required at peak demands. The frustration in this community with regards to the future of CCS was palpable during the networking session.

We need hydrogen, generated from renewable energy sources… but the question is how?

———————–
This blog is written by Cabot Institute member David J. Fermin, Professor of Electrochemistry in the University of Bristol’s School of Chemistry.  His research group are currently looking at the direct conversion of solar energy to chemical fuels, in particular hydrogen; the conversion of CO2 to fuels; and electrocatalysts for energy vectors (e.g. what you put in fuel cells and electrolysers).

David Fermin

David will be giving a free talk on the challenges of solar energy conversion and storage on Tuesday 12 April 2016 at 6.15 pm at the University of Bristol.  To find out more and to book your ticket, visit the University of Bristol’s Public and Ceremonial Events web page.

Divestment at the University of Bristol?

Earlier this year I was approached by students who were involved in the campaign to petition the University of Bristol to divest from fossil fuel investments to see if I would be prepared to support their campaign and to encourage other members of the University’s staff to do so also.  I give lectures to students from the Faculty of Engineering on the subject of sustainable development, and through those lectures the students were aware that I have a good understanding of some of the challenges that face us.

I am a mechanical engineer by training, a specialist in engineering design, and I have worked in and with the transportation industries throughout my working life.  These industries– automobile, railway, aerospace, marine – are among the prime users of the fossil fuels with which the students are concerned, and although I am passionate about all things mechanical I have become convinced in recent years that we must be more radical in addressing issues of climate change than we have so far been prepared to be.  I was thus pleased to be able to give the students my support.  I felt at the very least the subject should figure strongly in debate and discussion within the University. I wrote emails to a number of members of the University staff inviting them to sign up to the campaign, using the letter reproduced below.

Dear Vice Chancellor,
We are writing to you to express our support for the open letter [1] that urges the University of Bristol to divest itself of investments in companies in the fossil fuel industry.  We acknowledge that exploitation of fossil fuels has enabled the remarkable developments of the industrial world, but we are now convinced that its continuation poses enormous threats to our planet and its population through climate change and through the pursuit of ever-more risky approaches to resource extraction.  We appreciate that reducing our use of fossil fuels is a tremendous challenge: we are ‘locked in’ to our current ways of doing things by the choices we have made at a time of fossil fuel abundance. Any change we make will be painful and might seem less than rational in terms of immediate short term financial impact (although not if fossil fuel assets become ‘stranded’ as the Bank of England has recently warned). But the longer we wait before we take decisive action the worse the negative impacts are likely to be, and for this reason we respectfully request that you give very serious consideration to the case for divestment.
[1] https://campaigns.gofossilfree.org/petitions/university-of-bristol-divest-from-the-fossil-fuel-industry

Those replies that I received were very largely supportive: over 50 members of staff have agreed to add their names to the petition. But I also received a number of thoughtful comments, and I thought I should share those through a Cabot Institute blog as a contribution to a debate on the topic.

Of those who declined to offer support, the most frequent reason offered was that the subject was too political – I received emails from colleagues saying that they were supportive in principle, but that it was “above their pay grade” or that they did not want to tie the hands of the University’s management.  For others, the University had important relationships with industry, especially with the petro-chemical industry – as sponsors of research and employers of our graduates – that might be threatened by divestment (and indeed an engineering student from the petro-chemical industry asked me why were we not also targeting the aerospace and automobile industries, among others, whose activities were leading to the demand for fossil fuels).

There were dissenters on technical grounds also.  A number of colleagues felt that to lump all fossil fuels together was much too indiscriminate, that natural gas and shale gas at least should play an important role in the transition to a low carbon future, and that technologies such as carbon capture and storage should be a part of future energy strategy.  For another respondent the difficulties in transitioning to alternative fuels were underestimated. Another felt that we should not divest until we have a viable alternative.  He believed that this could be nuclear, but that we needed to address the issues of the long-term storage of waste first (and he believed it was addressable).  Other colleagues admonished me for the way I wrote the statement of support.  I had suggested that divestment would be painful, but that I believed that the pain would be worth enduring because the consequences of runaway climate change were so unthinkable.  I was reproached by one writer for being too pessimistic – he said that the track record of market-based measures for reducing fossil fuel use is excellent: putting a price on pollution is very effective and it’s not even that costly.  For another colleague the letter was insufficiently assertive.  We should request that the University divest itself from investments in fossil fuel industries, not just consider it!

The responses that I received have caused me to re-examine my views, but I have not substantially changed them.  I still believe that we must very actively transition away from fossil fuels, even if it means significant changes in our lifestyles (and I remain convinced that it will).  As one colleague said we have reached a point where all scenarios are painful and that the logical thing to do is to act as quickly as possible to minimise the long term impact.  But the responses also demonstrated to me that there is an appetite in the University for an informed debate on the topic, and I hope that this blog entry and any responses that it attracts will be a helpful contribution to that debate.

 

Addendum

Kevin Anderson’s commentary in Nature Geoscience this month and reproduced in his blog at http://kevinanderson.info/blog/duality-in-climate-science/ is very relevant to the divestment debate.  His conclusion that ” . . even a slim chance of ‘keeping below’ a 2°C rise . .  now demands a revolution in how we both consume and produce energy. Such a rapid and deep transition will have profound implications for the framing of contemporary society” is in line very much with the sentiments behind the divestment campaign, and supports the need for urgent action.

———————————————–
This blog is written by Cabot Institute member Prof Chris McMahon from the Faculty of Engineering at the University of Bristol.

The end of the road for diesel?

Smoggy day in Bristol
The Volkswagen (VW) emissions scandal is now into its second week, and with each day the enormity of the deception seems to increase. What started off as a few hundred thousand cars in the US has now become an astonishing 11 million cars worldwide that VW says may have to be recalled. In addition to the VW brand, diesel models of Audi, Skoda and SEAT cars have all been affected, with 1.2 million in the UK alone.
 
At the heart of this deception is the use of software, designed to be able to detect when a car was under test conditions, in order to reduce the emissions of a group of nitrogen and oxygen compounds, commonly referred to as NOx.  However, these emissions controls would not be switched on during normal driving.
 
Given that the cars were clearly built with the potential to emit less NOx, it’s not immediately clear why the emissions controls were applied only under test conditions.  Although VW have admitted they “screwed up”, they don’t seem to have said why. However, it’s a fair assumption that the emissions controls would affect the performance of the car, both in terms of drive and fuel economy. Since fuel economy is probably the main selling point of a diesel car, anything detrimentally affecting it, could easily lead to a decline in sales.
 
In addition to the flouting of the rules by VW, the wider issue is the NOx emissions themselves, which are a seemingly inevitable product of diesel powered vehicles.
 
The use of diesel as a fuel in cars has been on the up (in Europe at least) over the last couple of decades, with a supposedly superior fuel economy and hence lower CO2 emissions, meaning they have been incentivised in Britain with lower tax. However, this policy failed to take into account other pollutant emissions such as NOx and particulate matter that have been linked with thousands of premature deaths. Indeed, this push to diesel was labelled in a Channel 4 documentary earlier this year “the great car con” and just this week former science minister Lord Drayson called this policy a mistake.
 
Due in part to this push for more diesel vehicles on the roads in the UK and Europe, Bristol is just one of many cities which fail to meet the 40 μg/m3 annual mean WHO guideline level for NO2 (one of the collection of NOx gases). NOx levels in the UK have seen only a very small decline over the last decade or so, despite vehicle manufacturers telling us they make the cleanest cars yet. This contrasts with petrol vehicles, which have seen a dramatic decrease in NOx emissions over this time.
 

Why is NOx bad?

 
The presence of NOx in the lowermost part of our atmosphere, along with other pollutants such as volatile organic compounds (VOCs) promotes the formation of ozone. Not to be confused with the protective ozone layer which is much higher up in the atmosphere, ozone near the surface has detrimental health effects, mostly involving the respiratory system, in addition to being a greenhouse gas. Furthermore, NO2 has itself been linked with certain respiratory health problems
 

Is there a simple solution?

 
Well, technologies exist to reduce NOx emissions from diesel vehicles, such as urea injection, only it seems that the VW group chose to cheat the system rather than use it, since it would add cost and weight to the car. If these technologies are implemented manufacturers claim to be able to filter out particulate emissions and greatly reduce NOx emissions. But, given the current furore, why on earth should we believe them?
 
In addition, a recent report from the International Council of Clean Transportation (ICCT) said that the real-world CO2 emissions of diesel (and petrol) cars are well above those in tests. There go the supposed CO2 savings of diesel then. Again you can’t help but question why diesel cars continue to enjoy a tax break in this country.
 

The death knell tolls for diesel…

 
…Ok, maybe not. Given the massive investment that the automobile industry has put into diesel over the last 20 years or so, they’re unlikely to suddenly jack it all in. What will probably follow is a splurge of marketing diarrhoea about how each new car is the ‘greenest yet’, all the while completely ignoring the fact that the simplest way to cut emissions would be to have fewer cars not more. Nevertheless, the current news story highlights how frivolously pollutant regulations, and the health implications, are taken when set against generating a profit. It also serves to impress the need for independent verification of emissions, such as those that uncovered VW’s fraudulent behaviour. The Atmospheric Chemistry Research Group here at Bristol, performs similar verification at the national level for greenhouse gases. It has been said that not taking the time to verify emissions statistics is like dieting without weighing oneself. Well, in this case I guess they did make it to the scales, but no one bothered to check they’d been calibrated properly. 
 
————————————
This blog has been written by Cabot Institute member Mark Lunt, from the University of Bristol’s Atmospheric Chemistry Research Group.

Is nuclear green?

It may not be surprising to you that printing the question “Is nuclear green?” on two large banners at the Bristol Harbour Festival in July caused a bit of a stir, but this is exactly what Dr Tom Scott (reader in Nuclear Materials and member of the Cabot Institute at the University of Bristol) and his group of volunteers wanted to do.  I joined the group at their stall next to the MShed to listen to their conversations with the public ignited by this thought provoking question.

The volunteers largely comprised of Bristol members of the South West Nuclear Hub (a joint research partnership – which Dr Scott co-directs – with Oxford University), University of Bristol physics undergraduates and some employees of Magnox Ltd a nuclear company in the South West. Together, they rolled out a wide range of activities at their marquee that invited everyone to join in and voice their opinions without judgement.

A live opinion poll with green and red plastic tokens (to vote “yes” and “no” respectively) was placed amongst the crowds along the harbour side to encourage participation and, in general, people were happy to vote publicly. We asked people to explain why they thought that way as they voted: “The sooner that they build Hinkley C the better!” one man announced as he dropped in his green token. (Hinkley C is the name of the new nuclear power station scheduled to be built at Hinkley Point in Somerset.) A red token voter proclaimed “We should go back to coal!” as he dropped his token in. Some members of the public even pretended to scoop up large numbers of tokens to demonstrate the intensity of their view.

Yes/No board to take note of people’s thoughts and feelings about nuclear energy.

The juxtaposition of the words “nuclear” and “green” in the question “Is Nuclear Green?” suggests that there is no straight-forward answer, but yet intense opinions on the matter persist. Nuclear energy, in general, suffers from a negative public opinion and there are three key reasons for this:

  1. the perceived risk of the waste product
  2. the potential for disasters like Chernobyl to happen again
  3. the historical link between nuclear energy and nuclear weapons.

Dr Scott and his volunteers set about to change public opinion on nuclear energy by presenting the facts on their activities in a neutral light, such that the public would feel free to make up their own minds.

One of the activities at the stall, popular with children, had a Scalextric set (a slot car racing set) connected to a pedal generator – demonstrating how much human power was required to drive the toy cars. Further inside the marquee, you’d see a bucket of coal, 16kg of which is required to meet the electrical demands of one person per day. Many were impressed when they were then presented with a dummy pellet of nuclear waste the size of the end of their thumb that would produce enough energy for their entire lifetime.

This dummy pellet of nuclear waste shows how much nuclear material
would be needed to produce enough energy for your entire lifetime.

Meeting the energy demands of today is a pressing global issue and nuclear power provides a virtually carbon-free way of producing a large quantity of electrical power. Festival-goers were also surprised to learn that due to the large amounts of cement used to install solar and offshore wind power stations, the amount of carbon dioxide released is greater per unit of energy produced than nuclear over the lifetime of the power station.

However, people are generally fearful of the toxicity of waste that nuclear power reactors produce and how it is dealt with. By mimicking Bruce Forsyth’s TV show, Play Your Cards Right, people could learn about the relative radioactivity from different sources. For example, if you went on three transatlantic flights in a year, you would exceed the average annual occupational exposure of a nuclear power station worker.

What gives off the most radioactivity?

“But what if it all goes wrong?” said one lady from Bristol. This fear is understandable given disasters such as Chernobyl, Three Mile Island and Fukushima and it has resulted in publicly driven change. In Germany, for example, large anti-nuclear protests occurred in the wake of the Fukushima nuclear disaster in March 2011 caused by a tsunami. Partly in response to these protests, the German government have scheduled all nuclear power stations in Germany to be shut down by 2022.

It would be foolish to suggest that the effects of the Fukushima disaster are innocuous and that nothing went wrong. However, it surprised people to learn that despite the large number of fatalities caused by the tsunami directly, there were no recorded fatalities due to short term overexposure of radiation at Fukushima. Of course, the long term effects are unknown and it would be surprising if there were not any future health risks from the disaster.

Many older members of the public were concerned about the connection between nuclear power and nuclear weapons. It is a fact that the idea of using nuclear energy to generate electricity was borne out of the nuclear arms race that started during the Second World War. Nowadays though, the link between nuclear weapons and nuclear energy is unfounded in the UK because the plutonium required to make the weapons is not extracted from nuclear waste reprocessing.

The University of Bristol nuclear research group talking to
the public about nuclear energy at the Bristol Harbour Festival.

The physics of nuclear fission is very well understood by the scientists and engineers working in nuclear energy, and the risks of using this process to generate electricity are met with very strict safety standards. Despite these rigorous safety measures, nuclear power gets a bad press because the evidence for its potential to harm is clearly visible: the waste has to be specially treated before it is buried and the mass evacuations are put into place following a disaster. Nuclear power station disasters are etched into people’s memories because of their scale but the actual risk posed by a nuclear incident is much lower than maintained by the public.

On the other hand, large quantities of greenhouse gases are continuing to be released into the atmosphere from burning fossil fuels and although there is also visible evidence for climate change, the serious threat it poses to our planet it is diluted by politics. This plight is encapsulated by the most solemn of quotes from the event;

“I suppose the truth of it is, that the thing that isn’t green is humanity.” 

Perhaps nuclear fission could be a necessary interim energy source before cleaner nuclear fusion takes over in 50-100 years time.
——————————–
This blog is written by Cabot Institute member and PhD student Lewis Roberts.

Read more about nuclear research at the University of Bristol by visiting the Interface Analysis Centre website.

If we burned all fossil fuels, would any of Antarctica’s ice survive?

Andy Ridgwell, University of California, Riverside

Here is a great “what-if”: if we (the human race) were to burn all available fossil fuels, could we melt the largest and most stable ice sheet on the planet – Antarctica? Could our collective industrial impacts on the planet possibly have that far a reach?

The spoiler is: “yes,” although in our recent computer modeling-based study, we find that it would require all of our fossil fuel resources to do it, and to see the very last of the ice melt, we might have to wait as long as 10,000 years.

Before we get any further, let’s consider this as a thought experiment in ice sheet dynamics and the global carbon cycle response to CO2 emissions to test our understanding of the long-term effects that extreme perturbations could have on the Earth system.

What I have in mind is a socioeconomic carbon use scenario that I hope personally would never come to fruition, but equally one that is not intended to be an implausible scare story or a “sky is-falling-in” simulation of doom and gloom and future global environmental catastrophe. (And also, to be completely honest, it was not my thought experiment in the first place, but instead comes from the head of Ken Caldeira at the Carnegie Institution for Science, Stanford, who was very ably assisted in bringing it to fruition by a brace of ice-sheets modelers at the Potsdam Institute for Climate Impact Research in Germany – Ricarda Winkelmann and Anders Levermann.)

However, given unrestrained burning of fossil fuels, our study does show that the largest mass of ice in the world, including both the East and West Antarctica ice sheets, ultimately is vulnerable to irreversible melting – and dramatic sea-level rise.

Lessons from the past?

We already know that the Antarctic ice sheet has not always been there, and there is abundant geological evidence that around 50-100 million years ago, sea surface temperatures around Antarctica were pleasantly warm and vegetation on the Antarctic Peninsula was lush and warm-temperature. (And yes, prior to 65 millions years ago, there were dinosaurs living there too.) Our best reconstruction of atmosphere CO2 at the time is somewhere in the region of 556-1,112 parts per million (ppm) and higher than the almost 400 ppm we have reached today.

 

How Antarctic ice would be affected by different emissions scenarios. GtC stands for gigatons of carbon.
Ken Caldeira and Ricarda Winkelmann, Author provided

But this does not provide a particularly helpful guide to future ice sheet susceptibility. These past warm climates represent intervals of millions of years of elevated atmospheric CO2, whereas in the future, CO2 levels will start to drop back down once fossil fuel emissions cease. And this brings us to the crux of the problem, at least from my perspective: just how quickly will CO2 decay back down toward 278 ppm, the preindustrial atmospheric concentration?

The ‘long tail’ of CO2

There are a variety of processes that will act to progressively remove CO2 from the atmosphere, starting with uptake by the ocean and the terrestrial biosphere, occurring on timescales of up to 1,000 years. There are also a series of geological processes, involving first reactions of carbonic acid (CO2 dissolved in water) with calcium carbonate minerals in chalks and limestones and then ultimately, the gradual dissolution of silicate rocks such as granites and basalts over hundreds of thousands of years.
Can the ocean absorb enough CO2 before too much ice melt occurs? What about the geological processes – are these really too slow to help in time even under a much warmer climate and faster weathering rates?

This map shows the changes to coastlines if sea level rose six meters. Recent projections show that continued fossil fuel use over the next 1,000 years will lead to sea-level rise of 100 feet.
NASA, CC BY

Without access to a time machine, I constructed numerical models that incorporate as many of the key processes of the global carbon and climate system as is feasible. To run a model to simulate many thousands of years, I must leave out many of the atmospheric physical processes, but the basic CO2 response is carefully tested and relatively independent of the omission of monsoons and El Ninos and all the complex short-term dynamics of the real climate system.

We then ran the model forced by a wide range of possible CO2 emissions scenarios, from 1,000 gigatons of carbon to 10,000 gigatons. To date, people have cumulatively emitted close to 600 gigatons, so we are easily on track to soon exceed the minimum assumption we tested in the study.

The tail wagging the climate dog

Even before considering the Antarctic ice sheet response, an unexpected result emerges – once enough CO2 is emitted to the atmosphere, climate almost gets “stuck” in a warm state that persists for the ~8,000 years until the end of the model experiment.

There are two things at play here: first, the more carbon we emit to the atmosphere, the less effective the ocean is in absorbing it. Basically, at some point, the main mechanism by which the ocean absorbs CO2, which is chemical reaction with carbonate ions (CO32-), gets maxed out (in other words: there are no more carbonate ions left to react with). This is also the way in which ocean acidification occurs. A warmer ocean doesn’t help, as CO2 is less soluble at higher temperatures and prefers to stay in the atmosphere. What about the geological sinks? Yes, they are working hard, and atmospheric CO2 does decline in all experiments, but just not quickly enough to avoid large-scale melting in Antarctica.

The second thing concerns the underlying nature of the relationship between climate and CO2.
Per molecule, CO2 becomes progressively less effective at trapping outgoing heat (infrared radiation) the more molecules that are already there. For society, this is a good thing: instead of each gigaton emitted having the same additional climatic impact, you have to approximately double the excess CO2 in the atmosphere to raise the surface temperature by the same amount each time – a log relationship. In our experiments, we see the flip side of this in response to the highest carbon emissions scenarios. Because we require a halving of CO2 to give us the same cooling each time, surface temperature declines even slower than CO2 concentrations.

In a nutshell: if we were to burn all fossil fuel reserves, the Antarctic ice sheet is threatened in its entirety, principally because we break the ability of the ocean and other natural mechanisms to bring atmospheric CO2 concentrations down fast enough.

Ice loss and sea-level rise

The future climate patterns we simulated then drove the ice sheet model, which is absolutely key and is as carefully tested as any of the other model components used in our study.

As expected from previous work, for low-emissions scenarios, the ice sheet actually gains mass due to increased snowfall over the coming century. However, on the long term, it is the surface warming and associated melt that dominates the mass balance.

And as the ice sheet melts, things go from bad to worse: surface temperatures get warmer as the elevation of the ice sheet falls, and sea-level rise increasingly helps to destabilize the ice sheet from below.

The rest is history. Or need not be. I hope that consuming as much as 10,000 gigatons of fossil fuel carbon is unlikely. But we also found that sea level progressively creeps up once we look beyond the end-of-century focus where much of the climate change debate is focused, for all scenarios. Even for really rather moderate carbon releases, sea level could rise 5-10 meters, or about 15-30 feet, by the end of the millennium.

Hence, a genuinely plausible scenario is that the world’s coastline in 50-100 generations’ time is going to look very different. Now is the time to invest in far inland “beachfront” real estate for your great-great-great-…-great-grandchildren.

———————————————-
This blog was written by Andy Ridgwell, Professor of Earth System Science, University of California, Riverside and member of the University of Bristol’s Cabot Institute.

This article was originally published on The Conversation. Read the original article.