Building up solar power in Africa

It’s proving tough enough in the UK to increase the amount of renewable energy we use, and attempting this in Africa may seem like a pipe dream. However, six years ago, University of Bristol alumni Edward Matos (Engineering Design, 2009) and Oliver Kynaston (Physics, 2007), fresh faced out of their degrees, created a company to do just this.

Last month, I interviewed Oliver from his home in Tanzania and he gave me the low down on how it all happened.

It all started when Edward won £10K for his social enterprise idea in the 2009 Bristol New Enterprise Competition hosted by RED (Research and Enterprise Development) at the University of Bristol. The basic plan was to design and disseminate biodigesters amongst the rural poor of developing countries that would produce clean fuel for cooking and heating from livestock excrement; thereby avoiding the need to burn firewood in the home. Inhaling smoke in the home causes acute respiratory infections and in Africa alone, this causes more than 400,000 people, mostly children, to die every year.

Intrigued to find out if his idea was at all feasible, Edward flew out to Tanzania for two weeks for a business research trip. Oliver was working at a renewable energy company in the UK at the time and upon Edwards return, he joined Edward in a pub in Bristol for an informal chat. Reminiscing over this meeting Oliver tells me that at as they got talking about the possibilities, they both thought: “May be, may be we could just do this.” By the age of 25 the pair had formed Shamba Technologies, a renewable energy company in Tanzania.

In the early stages of the company, they lived on a farm in rural Tanzania in order to test their products for the local market. This was a crucial step that Oliver and Edward took because only by putting themselves in the shoes of their target market could they design products that were appropriate for low-income households.

Although Shamba Technologies started off with biodigesters, the company has now focussed on a new product that generates electricity from solar power. Increasing access to electricity is key to reducing poverty: health, education and communication can be greatly improved. In Tanzania, 15% of the population have access to electricity and there isn’t any semblance of an electrical grid outside of the cities. Therefore, products that can provide clean electrical power off-grid are pivotal in lifting millions of people out of poverty.

Oliver tells me that there have been three key technological advances which have paved the way to being able to develop such a product: solar panels, LEDs and batteries. They have all become more effective and cheaper over the years. Using these components, Shamba Technologies have developed a domestic solar product with an interesting design feature: the product can be bought in affordable chunks and assembled like Lego. In fact, Oliver says that this modular design was influenced by observing how a Tanzanian built their houses near their farm.

This product can be bought in affordable chunks and assembled like Lego.

“One day the foundations were laid and they were left for a few months, then some trucks came along with bricks and a few layers were laid down. A further six months went by, weeds started growing on the unfinished walls and we’d thought the building had been abandoned, but sure enough they came back with more bricks.”

This erratic building schedule is reflected in how Tanzanians spend their money. A stable wage with an hourly rate is hard to come by in Tanzania, and workers usually get paid in lump sums for a period of work or after selling farm produce. Given the lack of secure banking in Tanzania, it is prudent to turn your money into assets as soon as possible. So a Tanzanian would buy as many bricks as their money can allow, lay them on their house and then wait for the next pay packet.

The modular design of the solar energy product that Shamba Technologies have developed is a brilliant example of how Oliver and Edward have really understood and listened to their market. This underlying ethos of their company has put them in good stead for future success in the renewable energy market in Africa.

Edward and Oliver in Tanzania.

At present, Oliver still lives in Tanzania carrying out market trials of their products and Edward has recently returned from a year in China where he has been learning how to decrease the cost of their products through mass-manufacture. Shamba Technologies have high hopes for the future and would like to be at the forefront of Africa’s renewable energy sector in the next 10 years.

——————————
This blog is written by Cabot Institute member and PhD student Lewis Roberts.

Power, policy and piranhas: Martin Bigg on energy

When it comes to energy solutions, we need to be like Martin Bigg’s favourite fish; the piranha. Why do we need to be like a flesh-eating aquatic animal to get these solutions? Because being passive isn’t working.

Such was the closing message of Bigg’s talk at the Bristol Politics Café in the kitchen of The Station. Bigg’s talk entitled ‘Energy generation, use and denial’ was a well-integrated combination of academic analysis and challenging chit-chat about the UK’s energy enigmas.

While his concluding remark was engineered to influence our future actions, Bigg cleverly began with the UK’s energy past. He walked us through the history of UK energy supply, intertwining the physical processes of production with the bureaucracy and politics.

This technique highlighted how energy has been manipulated time and time again to fulfil regulations and financial expectations. Coal fired power stations built in the 1970’s are still producing today, requiring a string of expensive modifications in an attempt to meet the demands of the modern day.

Drax power station. Image credit:
Wikimedia Commons

Drax power station is the biggest energy producer in the UK and was used by Bigg as an example of the problems with current regulations. The old coal powered generators have been modified to run off imported wood chips in order to meet air quality objectives. The technology established on the plant is not optimised for this fuel, yet the station stays open.

In addition, the audience was introduced to facts and figures representing current energy demand. Two things struck me as disturbing. Firstly, how small our green energy contribution is, and secondly, how coal power stations are used to fulfil our energy needs.  Many coal stations are paid huge government subsidies to remain on standby to provide energy at peak times. What is absurd is that coal power stations are the least efficient to start and stop when compared to other forms of power generation, so why are we using them?

What was more interesting, was Bigg’s presentation of green energy supply. He showed the audience real bids for green energy. Solar was the cheapest, followed by onshore wind. Offshore wind was one of the most expensive but it is the scheme the government is investing most in. The utterly nonsensical nature of the process was brought on in part by environmentalists concerned about the impact of onshore wind farms on local wildlife, particularly bird life. In reality, Bigg pointed out, CO2 emission are far more damaging to bird populations through acidification of wetlands than through wind farms.

What was reassuring, however, was that the green energy, at peak production was able to compete economically with the products of hydrocarbon-guzzling plants. The main issue was what to do when the wind stops blowing and the sun goes down. Here, Bigg admitted, there is the need for further research and development into effective energy storage.

The event was meant to not only be a talk but a discussion, and the strength of opinions bounced around the room was evident. Much of the discontent was channelled into the up-coming elections, particularly that green policies are not playing a bigger role in the political football preceding 9 May 2015. Hopefully, discussion such as these can only help expand the dialogue amongst green-minded voters in the Bristol area in the hope that a less passive attitude may start to take effect in future green policy making.

————————
This blog is written by Cabot Institute member Keri McNamara, a PhD student in the School of Earth Sciences at the University of Bristol.

Manufacturing in Bristol – Bridging the gap to a more sustainable and more resilient future

University of Bristol

The University of Bristol and partners announce the launch on 22 of April of a new collaborative research project to determine how highly adaptable manufacturing processes, capable of operating at small scales (re-distributed manufacturing), can contribute to a sustainable and resilient future for the city of Bristol and its hinterland. 

The next few years have the potential to be transformative in the history of our society and our planet.  We are faced with numerous choices in how we live our lives, and our decisions could either embed the practices of the last two centuries or empower new paradigms for the production of our food and energy, our buildings and transport systems, our medicine, furniture and appliance, all of those things on which we have grown to depend. It could be a transformation in what we own or borrow, how we use it…. And how we make it.

Bristol is one of the Rockefeller Foundation’s 100 Global Resilient Cities.  Unlike many of the other cities (and somewhat unconventionally), Bristol, the University of Bristol and its Cabot Institute have adopted a holistic definition of resiliency that includes not just adaptation to future change but also the contemporary behaviour that minimises the chances of future shocks.  Recognising that, the launch of the Bristol 2015 European Green Capital year focussed on the need to bridge the gap  between our resource intensive and environmentally harmful current behaviour and a more sustainable – and resilient – future.

This combination is key.  Increasingly we recognise that our non-sustainable behaviour could bring about dangerous climate change and resource stress. But we are also obtaining a sharper understanding of the limits of our knowledge. Unfortunately, our behaviour is not just threatening the security of our food, water and energy but is inducing a profound uncertainty in our ability to forecast and adapt to future change.  Not only does such radical uncertainty demand mitigative rather than adaptive action  but, where we fall short or the damage has already been done, it will require an equally radical emphasis on resiliency.

Part of Bristol’s path to achieving these goals of sustainability and resiliency is localism, including local production of food and energy, exemplified by the recent launch of a municipally-owned energy company  but also community-owned energy and food cooperatives.   Localism can only go so far in our highly interconnected and interdependent world, but it is undeniably one of Bristol’s strongest tools in empowering local communities and driving its own sustainability agenda while making us more resilient to external factors.  But why stop at food and energy?

Manufacturing has undergone a suite of radical transformations over the past decade, the potential of which are only now being harnessed across a range of manufacturing scales from high-value (such as Bristol’s aerospace industry) to SMEs and community groups.  Crudely put, the options for the manufacturer have traditionally been limited to moulding things, bashing things into shape, cutting things and sticking things together.  New technologies now allow those methods to be downscaled and locally owned. Other technologies, enabled by the exponential growth of computer power, are changing the manufacturing framework for example by allowing complex shapes to be made layer-by-layer through additive manufacturing.

Crucially, these new technologies represent highly adaptable manufacturing processes capable of operating at small scales.  This offers new possibilities with respect to where and how design, manufacture and services can and should be carried out to achieve the most appropriate mix of capability and employment but also to minimise environmental costs and to ensure resilience of provision.  In short, manufacturing may now be able to be re-distributed away from massive factories and global supply chains back into local networks, small workshops or even homes. This has brought about local empowerment across the globe as exemplified by the Maker movement and locally in initiatives such as Bristol Hackspace.  These technologies and social movements are synergistic as localised manufacturing not only brings about local empowerment but fosters sustainable behaviour by enabling the remanufacturing and upcycling that are characteristic of the circular economy.

There are limits, however, to the reach of these new approaches if they remain dependent on traditional manufacturing organisations and systems into which we are locked by the technological choices made in two centuries of fossil-fuel abundance.  As well as the technologies and processes that we use, a better understanding of how to organise and manage manufacturing systems and of their relationship with our infrastructure and business processes is central to the concept of re-distributed manufacturing and its proliferation.  It requires not only local production but a fundamental rethinking of the entire manufacturing system.

This is the focus of our exciting new RCUK-funded project: it will create a network to study a whole range of issues from diverse disciplinary perspectives, bringing together experts in manufacturing, design, logistics, operations management, infrastructure, engineering systems, economics, geographical sciences, mathematical modelling and beyond.  In particular, it will examine the potential impact of such re-distributed manufacturing at the scale of the city and its hinterland, using Bristol as an example in its European Green Capital year, and concentrating on the issues of resilience and sustainability.

It seems entirely appropriate that Bristol and the SW of England assume a prominent leadership role in this endeavour.  In many ways, it is the intellectual and spiritual home of the industrial use of fossil fuels, responsible for unprecedented growth and prosperity but also setting us on a path of unsustainable resource exploitation.  Thomas Newcomen from South Devon produced arguably the first practical steam engine, leading to the use of fossil fuels in mining and eventually industry; in the late 1700s, coal-powered steam energy was probably more extensively used in SW England than anywhere in the world.  Continuing this legacy, Richard Trevithick from Cornwall developed high pressure steam engines which allowed the use of steam (and thus fossil fuels) for transportation, and of course Brunel’s SS Great Western, built in Bristol, was the first vehicle explicitly designed to use fossil fuel for intercontinental travel.

But that legacy is not limited to energy production.  Abraham Darby, who pioneered the use of coke for smelting iron in Coalbrookdale, i.e. the use of fossil fuels for material production, had worked at a foundry in Bristol and was funded by the Goldney Family, among others.  He married fossil fuels to the production of materials and manufactured goods.

These are reasons for optimism not guilt.  This part of the world played a crucial role in establishing the energy economy that has powered our world.  On the back of that innovation and economic growth have come medical advances, the exploration of our solar system and an interconnected society.  That same creative and innovative spirit can be harnessed again.  And these approaches need not be limited to energy and materials; our colleagues at UWE been awarded funds under the same scheme to explore redistributed healthcare provision. The movement is already in place, exemplified by the more than 800 organisations in the Bristol Green Capital Partnership.  It is receiving unprecedented support from both Universities of this city.  This new project is only one small part of that trend but it illustrates a new enthusiasm for partnership and transformative change and to study the next generation of solutions rather than be mired in incremental gains to existing technology.
———————————————–
This blog is written by Cabot Institute Director Prof Rich Pancost and Prof Chris McMahon from the Engineering Department at the University of Bristol.

Prof Rich Pancost

More information

For more information about the issues covered in this blog please contact Chris McMahon who is keen to hear from local industries and other organisations that may be interested in the possibilities of re-distributed manufacturing.

The grant has been awarded to the University of Bristol, supported by the Universities of Bath, Exeter and the West of England and Cardiff University, by the Engineering and Physical Sciences Research Council (EPSRC), supported by the Arts and Humanities Research Council (AHRC). The network, one of six being funded by the EPSRC for the next two years to study RDM, will also explore mechanisms by which interdisciplinary teams may come together to address societal grand challenges and develop research agendas for their solution. These will be based on working together using a combination of a Collaboratory – a centre without walls – and a Living Lab – a gathering of public-private partnerships in which businesses, researchers, authorities, and citizens work together for the creation of new services, business ideas, markets, and technologies.

EPSRC Reference: EP/M01777X/1, Re-Distributed Manufacturing and the Resilient, Sustainable City (ReDReSC)

The Cabot Institute

The Cabot Institute carries out fundamental and responsive research on risks and uncertainties in a changing environment. We drive new research in the interconnected areas of climate change, natural hazards, water and food security, low carbon energy, and future cities. Our research fuses rigorous statistical and numerical modelling with a deep understanding of social, environmental and engineered systems – past, present and future. We seek to engage wider society by listening to, exploring with, and challenging our stakeholders to develop a shared response to 21st Century challenges.

The challenges of global environmental change: Why we (Bristol) should ‘bridge the gap’

Our planet and the people who live upon it face profound challenges in the coming century. As our population, economies and aspirations grow we consume increasing amounts of precious and finite resource.  The side effects and waste products of this consumption also have profoundly negative impacts on our environment and climate, which  in a vicious circle will make it even harder to support our food, energy and water needs.


In order to live on this planet, we must bridge the gap between wasteful lifestyles based on limited resources to efficient lifestyles based on renewable ones. Nowhere is that more apparent than in our consumption of fossil fuels. Much of our prosperity over the past two centuries has derived from the exploitation of these geological gifts, but those gifts have and are causing climate change with potentially devastating consequences. These are likely to include more extreme weather, loss of marine ecosystems and droughts; in turn, these could cause famine, refugee crises and conflict. 


These climatic and environmental impacts will be felt locally in the European Green Capital as well as globally.  We live in an interconnected world, such that drought in North America will raise the price of our food. The floods of last winter could have been a warning of life in a hotter and wetter world.  Many of us in the South West live only a few metres above current sea level.  


In my own work with Cabot Institute colleagues, I have investigated not just how Earth’s climate might change but how it has changed in the past.  This shows that our climate forecasts are generally right when it comes to the temperature response to greenhouse gases, although perhaps they underestimate how much the poles will warm.  More concerning, Earth history reveals how complex our planet is; with dramatic biological and physical responses to past global warming events. During one such event 55 million years ago, rapid warming transformed our planet’s vegetation and water cycle: rivers in Spain that had carried fine grained silts suddenly carried boulders. And that ‘rapid’ warming event occurred over thousands to tens of thousands of years not two hundred a reminder of the unprecedented character of our current climate change experiment.

Flooding in Whiteladies Road, Bristol. Credit: Jim Freer



Consequently, despite our best understanding of some factors, climate change will make our world a more uncertain place, whether that be uncertainty in future rainfall, the frequency of hurricanes or the timing of sea level rise. This uncertainty is particularly problematic because it makes it so much harder for industry or nations to plan and thrive.  How do we ensure a robust and continuous food supply if we are unsure if the planet’s bread baskets will become wetter or dryer?  Or if we are unsure how our fisheries will respond to warmer, more acidic, more silt-choked oceans?


Underlying this uncertainty is a deep ethical question about who will bear the risk and the inequality issues hidden within our choices.  Most of us recognise that we are consuming the resources and polluting the environment of our children.  But the inequity is deeper than that it is not all of our children who will suffer but the children of the poorest and the most vulnerable.  Those whose homes are vulnerable to floods, who lack the resources to move or the political capacity to emigrate, who can barely afford nutritious food now, whose water supplies are already stretched and contaminated. 


Bristol in 2015 will not bridge the gap by despairing at these challenges, but we can lead in acknowledging them. We can lead in showing how to avoid the worst uncertainty and taking responsibility for the consequences of where our efforts fall short.  Most importantly, we can lead towards not just radical resiliency but inclusive resiliency. 

—————————————–

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.

Prof Rich Pancost

Why we must Bridge the Gap

Much of the climate change of the past century has been caused by our burning of fossil fuels. And without a change in that fossil fuel use, continued climate change in the next century could have devastating impacts on our society. It is likely to bring increased risk and hazards associated with extreme weather events. Refugee crises could be caused by rising sea levels or droughts that make some nations uninhabitable. Climate change will also make our world a more uncertain place to live, whether that be uncertainty in future rainfall patterns, the magnitude of sea level rise or the response of global fisheries to ocean acidification.  This uncertainty is particularly problematic because it makes it so much harder for industry or nations to plan and thrive.  Or to grapple with the other great challenge facing humanity – securing food, water and energy for 7 billion people (and growing).  Because of this, most nations have agreed that global warming should be held below 2°C.

Flooding on Whiteladies Road, Bristol. Image credit Jim Freer

These climatic and environmental impacts will be felt in the South West of England.  We live in an interconnected world, such that drought in North America will raise the price of our food. The effects of ocean acidification on marine ecosystems and UK fisheries remain worryingly uncertain. The floods of last winter could have been a warning of life in a hotter and wetter world; moreover, it will only become harder to protect our lowlands from not only flooding but also salt water incursions as sea level rises.  The proposed Hinkley Point nuclear power station will have an installation, operating and decommissioning lifetime of over 100 years; what added risks will it face from the combination of more severe weather, storm surges and rising sea level?  Climate change affects us all – globally, nationally and locally in the 2015 European Green Capital.

That requires reductions in emissions over the next decade.  And it then requires cessation of all fossil fuel emissions in the subsequent decades.  The former has been the subject of most negotiations, including the recent discussions in Lima and likely those in Paris at the end of this year. The latter has yet to be addressed by any international treaty. And that is of deep concern because it is the cessation of all fossil fuel emissions that is most difficult but most necessary to achieve.  Carbon dioxide has a lifetime in the atmosphere of 1000s of years, such that slower emissions will only delay climate change.  That can be useful – if we must adapt to a changing world, having more time to do so will be beneficial. However, it is absolutely clear that emissions must stop if we are to meet our target of 2°C.  In fact, according to most climate models as well as the geological history of climate, emissions must stop if we are to keep total warming below 5°C.

In short, we cannot use the majority of our coal, gas and petroleum assets for energy.  They must stay buried.

Can we ‘geoengineer’ our way to alternative solution?  Not according to recent research. Last November, a Royal Society Meeting showcased the results of three UK Research Council Funded investigations of geoengineering feasibility and consequences. They collectively illustrated that geoengineering a response to climate change was at best complicated and at worst a recipe for disaster and widespread global conflict.  The most prominent geoengineering solution is to offset the greenhouse gas induced rise in global temperatures via the injection of stratospheric particles that reflect some of the solar energy arriving at Earth.  However, on the most basic level, a world with elevated CO2 levels and reflective particles in the atmosphere  is not the same as a world with 280 ppm of CO2 and a pristine atmosphere. To achieve the same average global temperature, some regions will be cooler and others warmer.  Rainfall patterns will differ: regional patterns of flood and drought will differ. Even if it could be done, who are the arbitrators of a geoengineered world?  The potential for conflict is profound.

In short, the deus ex machina of geoengineering our climate is neither a feasible nor a just option.  And again, the conclusion is that we cannot use most of our fossil fuels.

One might argue that we can adapt to climate change: why risk our economy now when we can adapt to the consequences of climate change later? Many assessments suggest that this is not the best economic approach, but I understand the gamble: be cautious with a fragile economy now and deal with consequences later.  This argument, however, ignores the vast inequity associated with climate change.  It is the future generations that will bear the cost of our inaction.  Moreover, it appears that the most vulnerable to climate change are the poorest – and those who consume the least fossil fuels.  Those of us who burn are not those who will pay.  Arguably then, we in the UK have a particular obligation to the poor of the world and of our own country, as well as to our children and grandchildren, to soon cease the use of our fossil fuels.

Energy is at the foundation of modern society and it has been the basis for magnificent human achievement over the past 150 years, but it is clear that obtaining energy by burning fossil fuels is warming our planet and acidifying our oceans.  The consequences for our climate, from extreme weather events to rising sea levels, is profound; even more worrying are the catastrophic risks that climate change poses for the food and water resources on which society depends.  It is now time for us to mature beyond the 19th and 20th century fossil-fuel derived energy to a renewable energy system of the 21st century that is sustainable for us and our planet.

We must bridge the gap.

—————————————–

Could retaining old coal lead to a policy own goal?

A large painting and an imposing statue of the former Speaker of the House of Commons Betty Boothroyd overlooked a busy Boothroyd Room at Portcullis House in Westminster.  Members of parliament, journalists, academics, NGOs and Third Sector organisations gathered to hear the reporting and discussion of a new report from Imperial College on the future of coal power in the UK as part of a All Party Parliamentary Climate Change Group meeting on 20 November 2014.

This report was commissioned by the World Wildlife Fund to give an idea of whether the continued operation of the eleven existing coal-fired plants in the UK is compatible with the UK’s targets for cutting greenhouse gas emissions.

Coal-fired power stations in the UK still generate approximately 36% of the country’s electricity (WWF briefing data). I was personally amazed how large this figure is and underlines the relevance of this type of economic modelling to the future of the energy mix in the UK.

The panel was chaired by Lord Oxburgh and consisted of Dr Robert Gross (Director, Imperial College Centre for Energy Policy and Technology), Tim Yeo MP (Chair, Energy and Climate Change Committee), Baroness Bryony Worthington (Shadow Spokesperson, Energy and Climate Change) and Jessica Lennard (Head of Corporate Affairs, Ovo Energy).

 

After the report had been summarised by Robert Gross, each member of the panel had a chance to speak before the discussion was opened to the floor and this is where opinions and politics began to show their faces.

The first panel member to speak after the introduction of the report was Baroness Bryony Worthington, an enthusiastic environmental campaigner who was appointed to the Labour benches of the House of Lords in 2011. Her opposition to so-called “unabated” coal power (generation without measures to capture emitted carbon) was clear and unambiguous, describing coal power stations from the 1960s as unreliable, inefficient and polluting. Political and economic realities were also introduced when she noted that “old coal” will tend to squeeze out “new gas” due (at least in part) to the large infrastructure costs associated with building a new gas powered facility, in spite of its better environmental credentials. Baroness Worthington’s short response (panel members were only given 5 minutes to initially respond to the report) was enthusiastic and pulled no punches.

The next panel member to speak was Tim Yeo MP (a former Minister for the Environment and Countryside in John Major’s government in the 1990s). He openly stated that he shared Baroness Worthington’s concerns and that he supports “full decarbonisation”, although the details of this wish (commendable as they may be), were lacking. He criticised the “20th century energy mind-set” of many in political and industrial energy circles, i.e. those who simply want to build more generators. Although this jibe was clearly not aimed at any one body or person in particular, National Grid’s financial incentives to build more capacity were noted.

Jessica Lennard noted that their customers are not happy with the amount of coal currently in the energy mix that they are able to supply, which was clearly a worry for a company where customers are free to come and go as they please (noting that they are a supplier not a generator of energy).

As is increasingly the case nowadays, especially with such a potentially incendiary subject as future power generation, there were many members of the audience who were active on their twitter accounts during the meeting itself, myself included I should add. Those who were adding to the online debate, and keeping those who weren’t present in the loop included the head of modelling at the Committee on Climate Change, the public affairs team of the World Wildlife Fund and the UK chief scientist of Greenpeace, although none of the tweets that I noted at the time or since seemed particularly argumentative or controversial. I must admit I found this rather surprising. I was certainly expecting some fireworks, yet the meeting often seemed more like an academic conference than a committee meeting overlooking the Thames just a hundred metres or so from the Palace of Westminster itself.

By far the most animated person in the room (and on twitter before the meeting) was Baroness Worthington, noting that DECC’s “crossed fingers” were not enough on this issue.

I personally left the meeting feeling that there is much still to do on this front and Lord Oxburgh echoed what I feel was a general feeling in the room, closing the meeting with a plea for “policy certainty” and I think this is something that everyone in the room would welcome.

This last point is particularly pertinent with the upcoming ‘COP21’ meeting in Paris in December 2015 because it is at this meeting that the United Nations Framework Convention on Climate Change negotiators will aim to agree on global, legally binding climate targets. Tim Yeo was clearly mindful of this, noting that the UK should aim to cut emissions by 40% with respect to 1990 levels “going in to Paris”. With coal power still such an important player in the UK energy mix, the potential for this industry to make inroads into this target are substantial.

————————

This blog is written by Cabot Institute member, Dr Jonny Williams, an environmental physicist working in the School of Geographical Sciences at the University of Bristol.

Further reading

Energy supply: Experiences of traditional and environmentally conscious growth models

This September, I travelled to Tohoku University, Japan, to take part in the RENKEI summer school programme on the theme of Energy Supply within Traditional and Environmentally Conscious Growth Models. RENKEI is a Japan-UK collaboration and six universities from each country participate in pilot projects in three key areas: technology and knowledge exchange with industry, student mobility, and universities’ social engagement. Early career researchers, PhD students and taught postgraduates work together within a supported framework to develop critical skills in a dynamic environment.

In my role of Education for Sustainable Development (ESD) Coordinator, I was interested to see the teaching and learning applications of this theme in an interdisciplinary context. I am forever indebted to the University of Bristol for supporting this extraordinary opportunity (thanks to PVC Nick Lieven for funding provided and for accepting my application).

The international contingent visit the Toyota factory.
Image credit: Aisling Tierney

Fieldtrips were an essential component of the experience. At the Sendai municipal incinerator plant we learned how household waste provided energy for the city. I was surprised to hear that the household waste in Sendai is not segregated into recycling and non-recycling. When asked, the lead incinerator engineer commented that this situation was not ideal, but until recycling became widespread, incineration provided an energy benefit to the waste problem. The Miyagi Province Toyota Factory demonstrated how surplus heated water from the manufacturing process could be channelled into community-run glass houses to support local agricultural production. Factory workers were also encouraged to explore sustainable projects on the company’s grounds, for example, planting tree grooves that would serve as a relaxing space for future generations of workers. The implication was that the children of the factory workers would continue to work for Toyota and Toyota would continue to support the community.

The interior of one of the few buildings left
standing after the tsunami.
Image credit: Aisling Tierney

The last fieldtrip of the week was to tsunami-devastated regions to the north of Sendai. The ravaged coastline and high death-toll (estimated in the region of 16,000) three and a half years later was still in the process of recovery. Plant regrowth disguised much of the damage. Construction workers showed us models and videos of the reconstruction plans, including: moving rail lines; flattening hill tops; building sea barriers; and rehousing thousands of displaced families. A boat-ride along the coast showed how the fishing industry was slowly recovering, while the tourism industry, once flourishing, was now in shambles. Over 3,300 locals are still homeless, living in pre-fabricated buildings that are quickly disintegrating. While the press criticises the speed of rebuilding efforts, speaking to the construction team showed that every effort was being made but the scale of the work was a huge undertaking.

Talks and workshops engaged with the theme of energy supply, focusing on applying interdisciplinary knowledge to create “Sustainable City” solutions. Prof. Nakata of Tohoku University acted as our lead academic for the week.

Prof. Bahaj (Southampton) was the first of the week’s speakers. He explored contrasting ideas of refurbishment of cities vs green fields, the consumer society vs equity, and that city planners must consider the ecological footprint, not just carbon. A basic tenant he offered was “everything is driven by money”.  Prof. Nakata (Tohoku) wanted us to think about cities, towns, everything, not just government systems. He noted the importance of economics, resource constraints, environmental constraints, technological systems, and energy system components. The idea of community energy systems that are small scale and less dense in their demand was proposed, summarised as “Global + Local = Glocal”. He also highlighted how a low carbon society leads to sustainable and resilient business.

Mr. Suzuki (Fukushima Prefecture Government, business creation division) spoke on the importance of collaboration, including local company support, collaborative R&D, university support, and human public relations.  Mr. Tsuruoka (HOPE – Higashimatsushima Organisation for Progress & Economy, Education and Energy) startled the room with the shocking facts surrounding the tsunami disaster. Fishing was reduced to 60% of before, tourism was down to a third of pre-disaster, 65% of the city went underwater, resulting in a loss of life of 3% of the population. Simulations of potential tsunami damage were twenty times smaller than reality, meaning that there was a lack of preparation and proper evacuation when alarms were raised.

Discussions continued at break times.
Image credit: Aisling Tierney

Dr. Kunimitstu (NARO – National Agricultural & Food Research Organisation) introduced us to the Japanese concept of Hosaku Binbou, which is the impoverishment of farmers because of a bumper harvest. This relates to market equilibrium and the optimisation of producers. Prof. Shukuya (Tokyo City University) explained the low energy system design and its application to sustainable city design. Dr. Barret (United Nations University) discussed energy equity on a global scale. Prof. Kurokawa (Tokyo Institute of Technology) showed how 10 countries are using 50% of world’s capacity for carbon and what this means for future sustainability planning. Shuichi Ashina (National Institute for Environmental Studies) discussed planning for future energy demands, adaptation models, and low carbon society scenarios.

The majority of students were from Engineering, with a handful from the Sciences, while I was the only collaborator from an Arts background (Archaeology). This difference was particularly noticeable during questions and discussions, and within the group work sessions. Many students commented on how the Arts approach to problem solving and systems thinking was quite different, but proved beneficial to broadening their perspective.

As I stated, my aim was to see what teaching and learning elements I could take from the experience, and one that stood out was how interdisciplinary approaches to problem solving could be developed much further. In the future, I hope that RENKEI will open itself more to contributions from the Arts and other subject areas to encourage broader views.
————————
This blog is written by Aisling Tierney, Education for Sustainable Development Coordinator, University of Bristol.

Aisling Tierney

Tradable Energy Quotas: The future of energy use?

The idea of Tradable Energy Quotas or TEQs has been floating around political circles since it was proposed by Dr. David Fleming in 1996. It’s been called the most influential scheme of its type, and has attracted cautious interest from both Labour and the Conservatives within the UK, as well as from EU bodies concerned with climate change.

TEQs are, in effect, a rationing scheme designed to curb the use of carbon-intensive energy sources. Each TEQ certificate would be a licence to emit a certain quantity of CO2, and would have to be surrendered by energy generators to the TEQ registrar at the end of each year. The TEQ certificates would begin in the hands of the end consumers of energy, and would travel up the production chain as TEQs would be used alongside cash as a parallel payment system for energy.

At the heart of the TEQ system is the idea that a country should be held to an annual ‘carbon budget’, and that each adult citizen should be entitled to an equal proportion of the domestic part of that budget. Businesses and industry would have to purchase rights to the remainder of that budget in order to power offices and machinery. TEQs would replace the more traditional method of emissions limitation, the carbon tax. The schematic below was reproduced from a report on TEQs by the All Party Parliamentary Group on Peak Oil.

In the TEQ scheme, 40% of the annual carbon budget would be distributed free to citizens, perhaps through an online account. The remaining 60% would be available to purchase from the TEQ registrar, and is mainly aimed at businesses. However, domestic users who exceed their free allowance of TEQs can also ‘top up’ by purchasing TEQs from this pool.

People who don’t use their full allowance of TEQs could sell their surplus on a market that is overseen by the registrar. This encourages domestic energy users to be frugal in their energy use in order to profit from the sale of TEQs. Businesses too would need to curb their energy use in order to avoid having to buy too many TEQs. Finally, the generators and importers of energy would have to gather all the TEQ certificates gained from sale of energy and return them to the registrar at the end of each year. If they are unable to provide enough TEQ certificates to cover the energy they have produced, they would face financial penalties.

The TEQ scheme is designed to produce a profit for the government through the sale of 60% of the TEQ certificates. This income would replace that of a more traditional carbon tax, and could hopefully be ploughed back into creating more low-carbon energy.

Now I’m going to put my cards on the table. I like this scheme. My instinct tells me that TEQs, or rationing of some form, is a sensible response to the problem of climate change. But as it stands, I don’t think this scheme would work.

Let’s start with the most pressing problem: Who is the registrar? In the proposed TEQ system, an astonishing amount of power and control is given to the ‘registrar’, without any firm idea of who or what the registrar is.

Perhaps it’s a public-sector organisation? With 60% of the TEQs initially allocated to the registrar for tender, the power it has over the price of each TEQ is practically insurmountable, allowing them to increase or decrease prices almost at will. With this kind of control, they will come under intense pressure from the treasury to raise TEQ prices to generate more revenue. At the same time they would be lambasted by the populace, who would demand an ever lower TEQ price. To offer control over the registrar to a government department would be akin to offering someone a grenade without the pin- it’s political suicide. To put it mildly, I suspect the creators of the TEQ scheme would have trouble finding someone to do the job.

So how about letting a private sector company have control of the registrar? Well, I’m certain you would have companies lining up for the job, but trusting any of them would be a fatal mistake. With such a remarkable monopolistic power, a private sector company would inevitably succumb to the temptation to appropriate a larger and larger proportion of the revenues. It wouldn’t be anything illegal of course, merely a creeping expansion in administration costs and a slow rise in wages- especially of the top executives. And how long would it be before the first accusations of insider trading surface? It wouldn’t be hard for a company in charge of the registrar to conceal its preference for certain other firms, offering them cheaper or earlier deals on TEQs. Handing control of the energy industry to a private firm also has energy security implications; how can we be certain that the company will work in the best interests of our country? In the worst case, it might even be persuaded to work in the interests of a foreign power. The final problem with private-sector control is transparency. Once the government loses control of the registrar, it will lose sight of the intricacies of running the TEQ scheme. At this point, it becomes very difficult to verify if the registrar is doing a good job, and even harder to justify reprimanding them.

Centralising power over the market and allocation of TEQs also has one other major problem. What happens if the registrar’s servers crash? It would paralyse the country’s energy network, ensuring nobody could buy or sell energy. We wouldn’t have to worry about energy security anymore; we could have all the fuel in the world stacked in warehouses around the UK, but if the TEQ exchange goes down it would all be effectively useless. My conclusion: having a single TEQ market overseen by a single registrar would make us incredibly vulnerable to hackers or hostile governments.

So is there a remedy for all these problems? I think there is.

Decentralise.

First, split the job of regulating TEQ markets away from the task of allocating and collecting TEQs. There is no strong reason why both jobs have to be done by the same organisation, and it’s far safer for it to be done by two separate ones. Second, open up the job of administering TEQ markets to private sector brokers, but make them liable for the exchanges they handle. This means that hackers would have to target several exchanges to bring down the country’s energy network, rather than just the one.

Finally, eliminate the job of administering the TEQ accounts of every citizen completely. Users could store their TEQs in digital wallets that reside on their own computers and mobile devices, and the value of their TEQs could be cryptographically protected using something akin to a blockchain.

Decentralisation might not solve every problem that TEQs currently pose, but it could go a long way towards making it a more secure and accountable system. Will TEQs be introduced anytime soon? I doubt it, but it’s possible that a smaller scheme may be trialled somewhere in the world over the next few years, as governments struggle with the problem of emissions reduction.

This blog is written by Cabot Institute member Neeraj Oak, the Chief Analyst and Energy Practice Lead at Shift Thought.

 

Neeraj Oak

Materials and energy… over a pint?

Bristol, along with 20 other cities, in 6 different countries, was host to an interesting approach to science communication – over three nights, 19 – 21 May 2014, science took place at the pub!

Although varied, relevant and interesting research takes place every day at Universities, in many cases the general public is completely unaware of what goes on inside them – other than lectures and exams! Pint of Science is a volunteer-based, not-for-profit festival, which takes academic research into the everyday world, by having scientists at the pub sharing their work and answering questions.

Premièring this year in Bristol, the festival was well received, with many of the events sold-out before the doors were even opened. Across the city, four pubs opened their doors to a curious audience looking to learn about a range of topics from nanotechnology, to energy, to the brain and oceans or volcanoes.

Engaging society being at the heart of the Cabot Institute’s aims, it was quick to become involved when approached. As well as sponsoring the event, the Institute was well represented by two of its members, Professors David Fermín and Paul Weaver, who shared their research during the festival.

Energy, Materials and the Electrochemist Dream

 

L-R David Parker and David Fermin

Prof David Fermín and one of his PhD students, Mr David Parker, took on the second evening of the festival, talking about “Energy, Materials and the Electrochemist Dream”. During this event renewable energy sources, in particular solar, were championed. Of interest was the many ways in which solar energy can be harvested and used, whether to be directly converted into electricity or used to produce “solar fuels” from water or carbon dioxide. The need for developing new photovoltaic materials, which are cheap, efficient and made from abundant elements, was stressed. Questions from the public revolved about “how green” these technologies really are and the need to develop a “complete, systematic” approach to energy, which can incorporate various forms and sources of energy. This last is another key interest of the Institute, with groups in Bristol doing interesting work in this area.

Morphing cars, planes and wind turbines: the shape of things to come

 

Paul Weaver talks to the pub-goers

On the festival’s last evening, Prof Paul Weaver and one of his PhD students, Eric Eckstein, talked about “Morphing cars, planes and wind turbines: the shape of things to come”. They discussed the development of new composite materials with the ability to tailor structural properties and the difficulties involved in predicting responses. Also highlighted was the very important interaction and synergy between University and Industry in this field. In a particularly interactive approach they brought along many of the composite materials they work with, alongside demonstrating the strength and failure of various materials, allowing the public to see and feel how different properties can be altered. The use of composite materials in wind turbines and helicopter blades was of particular interest and generated an animated discussion on the subject.

This blog was written by Cabot Institute members Daniela Plana (Chemistry) and Matt Such (ACCIS) at the University of Bristol.

A brighter future for India’s energy sector?

In 2001, the Kutch District of Gujarat, India was struck by a magnitude 7.7 earthquake which killed around 20,000 people and destroyed nearly 400,000 homes. The total property damage was estimated at $5.5 billion and had a disastrous effect on what was already an ailing economy. In the aftermath of the earthquake, Narendra Modi, a member of the right-wing, Hindu nationalist Bharatiya Janata Party (BJP), became the Chief Minister of Gujarat and led the region out of darkness and into economic growth and prosperity. By 2007, Gujarat contained 5% of the total population yet accounted for 25% of total bank finance in India and continues to outpace growth in other states. Indeed, when I visited Kutch in January, it was clear that there was a growing and aspirational middle class population. Modi was recently elected Prime Minister of India, triumphing over Rhaul Ghandi, a member of the centre-left India National Congress (INC) Party, and with it became one of the most powerful players in the fight against climate change. So what does the future hold for the Indian energy sector?

Previous examples suggest that Modi wants to embrace the clean energy model. As Chief Minister of Gujarat, Modi bankrolled the largest single-location solar plant in Asia with an operating capacity of 55 megawatts and launched the first Asian governmental department dedicated to climate change. Before 2012, Gujarat had the highest share of renewable energy sources in India (~14%) and as Prime Minister, Modi plans to use solar power to supply energy to approximately 400 million people who still lack basic access to electricity. Yet some have accused Modi of losing interest in his solar revolution following his failure to submit an action plan for the Prime Ministers National Climate Change Action Plan in 2013.

Despite the solar revolution, India still generates 60-70% of its energy from non-renewable sources. The dominant non-renewable resource is coal which accounts for 40% of total energy production. Yet, output from Coal India Ltd, the largest coal producing company in India, has stagnated over the past few years and has consistently missed targets. If Modi is to revive coal production in India he has to address a number of issues including infrastructure, corruption and a lack of pricing power. Failure to meet last years target was also partly attributed to cyclone Phaline and monsoon flooding. This is also likely to affect future coal production; all IPCC models and scenarios predict an increase in both the mean and extreme precipitation of the Indian summer monsoon.

Although sitting on huge reserves of coal, India also has to import a staggering amount of coal. Last year, 152 million tons of coal were imported, an increase of 21% on last year, while only China and Japan imported more. In order to decrease their dependence on coal, India have began hunting for domestic oil reserves. Alternatively, Modi has spoke of strengthening ties with Russian President, Vladimer Putin, with the possibility of developing a Russian pipeline through the Altai region into northwest China and, eventually, to northern India. Although this would be a costly procedure, it may be easier to forge a relationship with Russia rather than China, who are India’s closest competitors in the energy market.

So what does this mean for India’s energy sector? Ultimately, coal will likely remain the backbone of India’s energy sector. This is problematic because coal generates nearly twice as much carbon dioxide for every megawatt-hour generated when compared to a natural gas-fired electric plant. In his rush for economic prosperity, will Modi forget about his solar revolution? On Monday, President Obama will unveil a plan to cut carbon emissions from power plants by as much as 25%, with an emphasis on reducing emissions from coal. If this is achieved, the US will have greater leverage over India and other heavy polluters such as China. Will this encourage Modi to reduce India’s reliance on coal? For now, I remain somewhat optimistic.

—–

This blog was written by Gordon Inglis, a 3rd year palaeoclimatology PhD student working in the Organic Geochemistry Unit within the School of Chemistry. This post was originally published on his own blog http://climategordon.wordpress.com/. You can also follow him on twitter @climategordon