Is climate change really a reason not to have children? Here’s four reasons why it’s not that simple

Should we consider having children to be the same as overconsumption?
Piyaset/Shutterstock

In 2009, statistician Paul Murtaugh and climate scientist Michael Schlax calculated that having just one child in a high-emitting country such as the United States will add around 10,000 tonnes of CO₂ to the atmosphere. That’s five times the emissions an average parent produces in their entire lifetime.

The reason this number is so large is because offspring are likely to have children themselves, perpetuating emissions for many generations to come.

According to one prominent argument from 2002, we should think of procreation in analogy to overconsumption. Just like overconsumption, procreation is an act in which you knowingly bring about more carbon emissions than is ethical. If we condemn overconsumption, then we should be consistent and raise an eyebrow at procreation too.

Given the potential climate impact of having even a single child, some ethicists argue that there are ethical boundaries on how big our families should be. Typically, they propose that we ought to have no more than two children per couple, or perhaps no more than one. Others have even argued that, in the current circumstances, it may be best not to have any children at all.

These ideas have gained traction through the efforts of activist groups such as the BirthStrike movement and UK charity Population Matters.

Climate ethicists broadly agree that the climate crisis is unprecedented and requires us to rethink what can be ethically demanded of individuals. But proposing ethical limits on family size has struck many as unpalatable due to a number of concerns.

Parents playing with their daughter in a park.
Some ethicists propose limits on family size.
Liderina/Shutterstock

1. Blaming certain groups

Philosopher Quill Kukla has warned of the danger of stigmatisation. Affirming a duty to have fewer children might suggest that certain groups, which have or are perceived to have more children than average, are to blame for climate change. These groups tend to be ethnic minorities and socioeconomically disadvantaged people.

Kukla has also expressed concern that if we start talking about limiting how many kids we have, the burden might end falling disproportionately on women’s shoulders. Women are already pressured to live up to society’s idea of how many children they should or shouldn’t have.

These worries do not directly concern what actual moral obligations to reduce emissions we have. However, they do highlight the fraught nature of talking about ethical limits to procreation.

2. Who’s really responsible?

A philosophical worry we’ve raised in the past challenges the conception of responsibility that underlies arguments for limits to procreation. We usually only think that people are responsible for what they do themselves, and not what others do, including their adult children.

From this perspective, parents might have some responsibility for the emissions generated by their underage children. It’s conceivable that they might also bear some responsibility for the emissions their adult children cannot avoid. But they’re not responsible for their children’s luxury emissions, or for the emissions of their grandchildren and beyond.

When broken down like this, the carbon footprint of having a child is much less drastic and no longer stands out compared to other consumption choices. According to one estimate that follows this logic, each parent bears responsibility for about 45 tonnes of additional CO₂ emissions. This is the same as taking one transatlantic return flight every four years of one’s lifetime.

A plane taking off.
A plane departing from Manchester Airport, UK.
Plane Photography/Shutterstock

3. Simply too slow

We are already seeing signs of climate breakdown. The ice is melting, oceans are warming and many climate records have tumbled already this summer.

To avoid the escalating impacts of climate change, climate scientists are in agreement that we must urgently reach net zero emissions. The most commonly proposed targets for this goal are by 2050 or 2070. In many countries, these targets have been written into law.

But, given the pressing need for urgent emissions reductions, limiting procreation is a woefully inadequate response. This is because the resulting emissions reductions will come into effect only over a much longer period. It is simply the wrong place to look for the emissions savings that we need to make now.

4. Path to net zero

Since limiting procreation does not reduce emissions quickly enough, per capita emissions need to drop – and fast. But that is not solely in the power of individual consumers or would-be parents.

What we are facing is a collective action problem. The ethical responsibility for reducing emissions rests on the shoulders of not just individuals, but also with societies, their institutions and businesses.

In fact, if we collectively manage to reduce our per capita emissions to net zero by 2050, then having a child today leads to only a small amount of emissions. After 2050, they and their descendants would cease to add to net emissions.

However, despite political commitments to achieve this target, the jury is still out on whether this target will be met. More than US$1.7 (£1.3) trillion is expected to be invested in clean energy technologies globally this year – by far the most ever spent on clean energy in a year. Yet, the UK continues to grapple with how to fund its net zero transition – a predicament they’re unlikely to be alone in.

Philosophical arguments that we should have fewer children challenge our understanding of what morality can demand in an age of climate change. They also call into question whether the most meaningful choices we can make as individuals are simple consumption choices (for example, between meat and plant-based alternatives). But the philosophical debate about whether there is a duty to have fewer children is complex – and remains open.

——————————

This blog is written by Dr Martin Sticker, Lecturer in Ethics, University of Bristol and Dr Felix Pinkert, Tenure-track Assistant Professor, Universität Wien. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Martin Sticker
Martin Sticker

Bats are avoiding solar farms and scientists aren’t sure why

The common pipistrelle. Rudmer Zwerver/Shutterstock

As our planet continues to warm, the need for renewable energy is becoming increasingly urgent. Almost half of the UK’s electricity now comes from renewable sources. And solar accounts for one-fifth of the energy capacity installed since 2019.

Solar farms are now a striking feature of the British landscape. But despite their growth, we’re still largely in the dark about how solar farms impact biodiversity.

This was the focus of a recent study that I co-authored alongside colleagues from the University of Bristol. We found that bat activity is reduced at solar farms compared to neighbouring sites without solar panels.

This discovery is concerning. Bats are top predators of nighttime insects and are sensitive to changes in their habitats, so they are important indicators of ecosystem health. Bats also provide valuable services such as suppressing populations of insect pests.

Nonetheless, our results should not hinder the transition to renewable energy. Instead, they should help to craft strategies that not only encourage bat activity but also support the necessary expansion of clean energy sources.

An aerial shot of a solar farm in south Wales.
Solar farms are now a striking feature of the British landscape. steved_np3/Shutterstock

Reduced activity

We measured bat activity by recording their ultrasonic echolocation calls on bat detectors. Many bat species have distinctive echolocation calls, so we could identify call sequences for each species in many cases. Some species show similar calls, so we lumped them together in species groups.

We placed bat detectors in a solar farm field and a similar neighbouring field without solar panels (called the control site). The fields were matched in size, land use and boundary features (such as having similar hedges) as far as possible. The only major difference was whether they contained solar panels.

We monitored 19 pairs of these sites, each for a week, observing bat activity within the fields’ centre and along their boundaries. Field boundaries are used by bats for navigation and feeding.

Six of the eight bat species or groups studied were less active in the fields with solar panels compared to the fields without them. Common pipistrelles, which made up almost half of all bat activity, showed a decrease of 40% at the edges of solar panel fields and 86% in their centre. Other bat species or groups like soprano pipistrelles, noctules, serotines, myotis bats and long-eared bats also saw their activity drop.

Total bat activity was almost halved at the boundaries of solar panel fields compared to that of control sites. And at the centre of solar panel fields, bat activity dropped by two-thirds.

Why are bats avoiding solar farms?

Conflict between clean energy production and biodiversity isn’t just limited to solar farms; it’s an issue at wind farms too. Large numbers of bats are killed by colliding with the blades of wind turbines. In 2012, for example, one academic estimated that around 888,000 bats may have been killed at wind energy facilities in the United States.

The way solar farms affect bats is probably more indirect than this. Solar panels could, in theory, inadvertently reduce the abundance of insects by lowering the availability of the plants they feed on. We’re currently investigating whether there’s a difference in insect numbers at the solar farm sites compared to the control sites.

Solar panels may also reflect a bats’ echolocation calls, making insect detection more difficult. Reduced feeding success around the panels may result in fewer bats using the surrounding hedgerows for commuting, potentially explaining our findings.

However, bats are also known to collide with smooth vertical flat surfaces because they reflect echolocation calls away from bats and hence appear as empty space. Research has also found that bats sometimes attempt to drink from horizontal smooth surfaces because they interpret the perpendicular echoes as coming from still water. But, given the sloped orientation of solar panels, these potential direct effects may not be of primary concern.

Improving habitats

An important lesson from the development of wind energy is that win-win solutions exist. Ultrasonic acoustic deterrents can keep bats away from wind turbines, while slightly reducing the wind speed that turbines become operational at (known as “cut-in speeds”) has reduced bat fatality rates with minimal losses to energy production. Research suggests that increasing turbine cut-in speeds by 1.5 metres per second can reduce bat fatalities by at least 50%, with an annual loss to power output below 1%.

A slightly different approach could be applied to solar farms. Improving habitats by planting native trees along the boundaries of solar farm fields could potentially increase the availability of insects for bats to feed on.

Research that I have co-authored in recent years supports this theory. We found that the presence of landscape features such as tall hedgerows and even isolated trees on farmland has a positive effect on bat activity.

Carefully selecting solar sites is also important. Prior to construction, conducting environmental impact assessments could indicate the value of proposed sites to bat populations.

More radically, rethinking the siting of these sites so that most are placed on buildings or in areas that are rarely visited by bats, could limit their impact on bat populations.

Solar power is the fastest-growing source of renewable energy worldwide. Its capacity is projected to overtake natural gas by 2026 and coal by 2027. Ensuring that its ecological footprint remains minimal is now particularly important.

——————————

This blog is written by Gareth Jones, Professor of Biological Sciences, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Britain’s next election could be a climate change culture war

Signs indicating Ultra Low Emission Zone (ULEZ) on a street in London, UK.

A byelection in a London suburb has placed environmental policy at the centre of political debate in the UK, and could make it a key battleground in the next general election.

The Conservative party narrowly held former prime minister Boris Johnson’s seat in Uxbridge and South Ruislip, vacated after his resignation from parliament. The win has been cast as a victory driven by popular anger against climate policy, particularly London’s ultra-low emissions zone (Ulez) – an area where drivers of the highest-polluting vehicles must pay a fee.

The winning candidate positioned himself as the anti-Ulez choice, tapping into local anger at the policy. But as comments from media and politicians show, the Uxbridge story signals a new stage of national politics that demonises environmental policies. And my research suggests this could develop into an important new front in the culture war, with the power to help determine the next election.

The Ulez, created by Boris Johnson as mayor of London in 2015, is a restricted area covering central London, where vehicles must meet emissions standards or pay £12.50 to enter. Most petrol cars registered after 2005 and diesel cars registered after 2015 meet the standards. It’s primarily a public health policy, with the goal to reduce air pollution and encourage the use of low-emission vehicles.

It is due to expand into London’s outer boroughs in August 2023 – an area 18 times larger than the original zone. Legal battles and public protests have blamed London’s Labour mayor, Sadiq Khan, for the expansion of the policy.

The opposition to Ulez is highly partisan. Nationally, 59% of Conservatives oppose Ulez schemes compared to 23% of Labour voters. In London, 72% of those who voted Leave in the 2016 Brexit referendum opposed the Ulez expansion. Former Remain voters are evenly split, with 44% in support and 44% against the policy.

The Conservative prime minister, Rishi Sunak, has now distanced the government from green policies that could contribute to household expenses. Labour leader Keir Starmer acknowledged the role that Ulez played in the loss, saying that “policy matters” in elections. He also called on Khan to “reflect” on the Ulez expansion.

Climate change culture wars

My research shows net-zero policies are the next target of right-wing populism and culture wars in the UK. Narratives are emerging that tie complaints about climate policies being undemocratic or expensive to issues of Brexit, energy security and a “green elite”.

Last year, Nigel Farage called for a referendum on net-zero, policies that, in his words, had “been imposed upon people without any public discussion.”

This narrative is evident in the opposition to Ulez, despite evidence for the scheme. Air pollution has dropped dramatically one year into the Ulez expansion across inner London, and most cars in London’s outer boroughs fulfil the Ulez standards and would be unaffected by the expansion.

Yet videos of anti-Ulez protests show placards reading “Stop the toxic air lie”, a cardboard coffin with “democracy” written across it and protesters complaining about a lack of fairness and transparency in the policy.

Climate and public health measures are now linked in broader ideological battles about political and economic priorities. These policies have become fertile ground for anybody seeking to rally new supporters. Those supporters will come from groups whose day-to-day lives are impacted by these policies.

Green policies

The Ulez is not the first environmental policy to face public opposition. In 2009, the UK saw a popular campaign against the replacement of incandescent lightbulbs with LEDs.

More recently, bollards that designate low-traffic neighbourhoods have been set on fire. Opposition to these schemes has also been co-opted by conspiracy theorists arguing that climate policies are an attempt to take away personal freedoms.

We have seen the consequences of such debates before. A decade before Sunak, Conservative prime minister David Cameron stepped back from environmental policies, calling for ministers to “ditch the green crap”. This arguably led to a “lost decade” in climate policy, as well as the slowing of policies that would have reduced vulnerability in the recent energy crisis.

There is reason to hope that the coming election will be different. Public concern about the climate remains high: 67% of British people surveyed worried about climate breakdown.

And people are more likely to think that the government should do more, not less, in climate policy. New polling shows that climate concern is likely to pay off for Labour.

As I’ve argued, green policies can transform neighbourhoods. But governments must also recognise how such policies affect people’s everyday struggles, like cost of living, which are likely to dominate the next electoral cycle.

Policies must minimise impacts that disproportionately impact some groups over others. People living in London’s outer suburbs, without wide access to public transport, are more likely to own a car – driving local opposition to the Ulez in places like Uxbridge.

Ways to address this include paying people to scrap older vehicles. This is something Khan has put in place for Londoners, but has not had the government support to expand it to people living around London who would be affected when they drive into the capital.

Khan has spoken about opposition to the Ulez expansion as an “orchestrated campaign” that has moved beyond many Londoners’ “genuine concerns”. But concerns about Ulez aren’t limited to those engaging in conspiracy theories. They include residents worried about the getting to work, the school run, or caring for elderly relatives. These are problems that should be ironed out by comprehensive and sensitive policies that maximise the benefits of any change.

The coming election

The fact that a candidate can win on an anti-Ulez platform shows the effectiveness of simplifying climate action and its outcomes into what people can lose, and failing to emphasise the benefits.

The current debates miss a key point of climate action: it is never just about emissions. Opposition to the Ulez is not exclusively resistance to climate policy. It is dissent over who it impacts, and how.

The Labour party must decide whether to retreat from or double down on climate action. If the latter, the next general election will be fought as a climate change culture war.

On one side will be a group seeking to portray climate action as a costly, undemocratic and unfair exercise. On the other must be a call for climate policy that is about cleaner air, warmer homes and healthier neighbourhoods, without disproportionately impacting certain groups of people.


This blog is written by Dr Ed Atkins, Senior Lecturer, School of Geographical Sciences, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Ed Atkins
Ed Atkins

Limiting global warming to 2℃ is not enough – why the world must keep temperature rise below 1℃

Warming of more than 1℃ risks unsafe and harmful outcomes for humanity.
Ink Drop/Shutterstock

The Paris Climate agreement represented a historic step towards a safer future for humanity on Earth when it was adopted in 2015. The agreement strove to keep global heating below 2℃ above pre-industrial levels with the aim of limiting the increase to 1.5℃ if possible. It was signed by 196 parties around the world, representing the overwhelming majority of humanity.

But in the intervening eight years, the Arctic region has experienced record-breaking temperatures, heatwaves have gripped many parts of Asia and Australia has faced unprecedented floods and wildfires. These events remind us of the dangers associated with climate breakdown. Our newly published research argues instead that humanity is only safe at 1℃ of global warming or below.

While one extreme event cannot be solely attributed to global heating, scientific studies have shown that such events are much more likely in a warmer world. Since the Paris agreement, our understanding of the impacts of global heating have also improved.

A fishing boat surrounded by icebergs that have come off a glacier.
Fishing boat dwarfed by icebergs that came off Greenland’s largest glacier, Jakobshavn Isbrae.
Jonathan Bamber, Author provided

Rising sea levels are an inevitable consequence of global warming. This is due to the combination of increased land ice melting and warmer oceans, which cause the volume of ocean water to increase. Recent research shows that in order to eliminate the human-induced component of sea-level rise, we need to return to temperatures last seen in the pre-industrial era (usually taken to be around 1850).

Perhaps more worrying are tipping points in the climate system that are effectively irreversible on human timescales if passed. Two of these tipping points relate to the melting of the Greenland and West Antarctic ice sheets. Together, these sheets contain enough ice to raise the global sea level by more than ten metres.

The temperature threshold for these ice sheets is uncertain, but we know that it lies close to 1.5℃ of global heating above pre-industrial era levels. There’s even evidence that suggests the threshold may already have been passed in one part of west Antarctica.

Critical boundaries

A temperature change of 1.5℃ might sound quite small. But it’s worth noting that the rise of modern civilisation and the agricultural revolution some 12,000 years ago took place during a period of exceptionally stable temperatures.

Our food production, global infrastructure and ecosystem services (the goods and services provided by ecosystems to humans) are all intimately tied to that stable climate. For example, historical evidence shows that a period called the little ice age (1400-1850), when glaciers grew extensively in the northern hemisphere and frost fairs were held annually on the River Thames, was caused by a much smaller temperature change of only about 0.3℃.

A sign marking the retreat of a glacier since 1908.
Jasper National Park, Canada. Glaciers used to grow extensively in the Northern Hemisphere.
Matty Symons/Shutterstock

A recent review of the current research in this area introduces a concept called “Earth system boundaries”, which defines various thresholds beyond which life on our planet would suffer substantial harm. To avoid passing multiple critical boundaries, the authors stress the need to limit temperature rise to 1℃ or less.

In our new research, we also argue that warming of more than 1℃ risks unsafe and harmful outcomes. This potentially includes sea level rise of multiple metres, more intense hurricanes and more frequent weather extremes.

More affordable renewable energy

Although we are already at 1.2℃ above pre-industrial temperatures, reducing global temperatures is not an impossible task. Our research presents a roadmap based on current technologies that can help us work towards achieving the 1℃ warming goal. We do not need to pull a technological “rabbit out of the hat”, but instead we need to invest and implement existing approaches, such as renewable energy, at scale.

Renewable energy sources have become increasingly affordable over time. Between 2010 and 2021, the cost of producing electricity from solar energy reduced by 88%, while wind power saw a reduction of 67% over the same period. The cost of power storage in batteries (for when the availability of wind and sunlight is low) has also decreased, by 70% between 2014 and 2020.

An aerial photograph of a photovoltaic power plant on a lush hillside.
A photovoltaic power plant in Yunnan, China.
Captain Wang/Shutterstock

The cost disparity between renewable energy and alternative sources like nuclear and fossil fuels is now huge – there is a three to four-fold difference.

In addition to being affordable, renewable energy sources are abundantly available and could swiftly meet society’s energy demands. Massive capacity expansions are also currently underway across the globe, which will only further bolster the renewable energy sector. Global solar energy manufacturing capacity, for example, is expected to double in 2023 and 2024.

Removing carbon dioxide from the atmosphere

Low-cost renewable energy will enable our energy systems to transition away from fossil fuels. But it also provides the means of directly removing CO₂ from the atmosphere at a large scale.

CO₂ removal is crucial for keeping warming to 1℃ or less, even though it requires a significant amount of energy. According to research, achieving a safe climate would require dedicating between 5% and 10% of total power generation demand to effective CO₂ removal. This represents a realistic and attainable policy option.

Various measures are used to remove CO₂ from the atmosphere. These include nature-based solutions like reforestation, as well as direct air carbon capture and storage. Trees absorb CO₂ from the atmosphere through photosynthesis and then lock it up for centuries.

A group of people planting a mangrove forest next to the sea.
A mangrove forest being planted in Klong Khone Samut Songkhram Province, Thailand.
vinai chunkhajorn/Shutterstock

Direct air capture technology was originally developed in the 1960s for air purification on submarines and spacecrafts. But it has since been further adapted for use on land. When combined with underground storage methods, such as the process of converting CO₂ into stone, this technology provides a safe and permanent method of removing CO₂ from the atmosphere.

Our paper demonstrates that the tools and technology exist to achieve a safer, healthier and more prosperous future – and that it’s economically viable to do so. What appears to be lacking is the societal will and, as a consequence, the political conviction and commitment to achieve it.

————————-

 

This blog is written Cabot Institute for the Environment member Jonathan Bamber, Professor of Glaciology and Earth Observation, University of Bristol and Christian Breyer, Professor of Solar Economy, Lappeenranta University of TechnologyThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber
Jonathan Bamber

Why are neonicotinoids so polarised?

Bee on yellow flower

The use of neonicotinoid insecticides has been, and still is, a topic of huge controversy and dispute. To use an appropriate analogy, stakeholders appear to fall into one of two neighbouring fields, distinctly fenced off from one another.

In one field, there are those that believe that the scientific evidence revealing the impacts of neonicotinoid compounds on pollinators and the wider environment is more than sufficient to strictly ban their use as a pest management tool. In the other field, interested parties argue that the evidence is convoluted and context specific, and that in some circumstances neonicotinoid use can be a safe, and environmentally resourceful strategy.

But why has this topic become so polarised? And why is there increasingly less space for those that wish to ‘sit on the fence’? This blog summarises the research published in a recent paper by Hannah Romanowski and Lauren Blake. The paper investigates the causes of controversy, and analyses the viability of alternatives in the UK sugar beet system.

What are neonicotinoids?

Neonicotinoids (neonics) are a group of synthetic compounds used as the active ingredient in some insecticides. They are neuroactive, which means that they act on the nervous system of the insect, causing changes in behaviour. They specifically bind to receptors of the nicotinic acetylcholine (nAChRs) enzyme, which are specific to insects, meaning neonics have low toxicity to vertebrates, such as mammals. They are used to control a variety of pests, especially sap-feeding insects such as aphids. Neonics are a systemic pesticide, meaning that they are absorbed by the whole plant (either by seed coating or spraying) and distribute throughout all the plants tissue.

Are neonics legal in the UK?

That’s where things get confusing… the answer is both yes and no. In 2018, the UK prohibited the outdoor use of neonics following a review of the evidence about their risk to pollinators, published by the European Food Safety Authority. However, the UK and many other EU member states have since granted emergency authorisations, which allows the use of neonics under a set of specific circumstances and conditions. The best-known example of this in the UK is the emergency authorisations granted in 2021, 2022 and 2023 for the use of thiamethoxam, one of the banned neonicotinoid compounds, on sugar beet.

However, even if an emergency authorisation is approved by UK Government, the predicted virus incidence (forecasted by Rothamsted Insect Survey) in a given year must be above a decided threshold before authorisation is fully granted. If the threshold is not met, neonicotinoids use remains prohibited. In 2021 for example, Defra set the threshold at 9%, and since the forecast of the virus was only 8.37%, the neonicotinoid seed treatment was not used. The crop went on to grew successfully unscathed by the virus.

Why is sugar beet an exception?

The Expert Committee on Pesticides (ECP) produced a framework in 2020 that laid out a list of requirements for an emergency authorisation of a prohibited pesticide. Requirements include not having an alternative, adequate evidence of safety, limited scale and control of use, and evidence of a permanent solution in development. In essence, the long-term economic and environmental benefits of granting the temporary emergency authorisation must outweigh any potential adverse effects resulting from the authorisation.

Sugar beet farm in Switzerland
Sugar beet farm. Source: Volker Prasuhn, Wikimedia.

Sugar beet is extremely vulnerable to a yield-diminishing group of viruses known as yellows virus (YV). YV are transmitted by an aphid vector, Myzus persicae, which are effectively controlled by neonic seed treatment. Compared to other crop systems, sugar beet is also considered low risk and ‘safer’ as it does not flower before harvest and is therefore not as attractive to pollinator insects. As was found during the research of this paper, there are currently no alternatives as effective as neonics in this system, but long-term solutions are in development. Since sugar beet produces 60% of white sugar consumed in the UK, the economic and environmental impacts of yield loss (i.e. from sugar imports) would be serious. In 2021, the government felt that sugar beet sufficiently met the requirements outlined by the ECP, and emergency authorisation was granted.

What were the aims of this paper?

The main aim of this study was to identify the key issues associated with the debate surrounding the emergency authorisation of neonics on sugar beet, and evaluate and compare current policy with potential alternatives.

Most of the data for this study was collected through semi-structured interviews with nine respondents, each representing a key stakeholder in this discussion. Interviews took place in 2021, just after the announcement that neonics would not be authorised, despite granting the emergency authorisation, as the threshold was not met.

What did this research find?

The main take-home from this research was that uncertainty around the scientific evidence was not the biggest concern to respondents, as was predicted. Instead, respondents were alarmed at the level of polarisation of the narrative.  It was broadly felt that the neonicotinoid debate illustrates the wider issues around environment discussions, that are falsely perceived as a dichotomy, fuelled by media attention, and undermining of science.

The organisation of the sugar beet industry was also considered an issue. In east England, where sugar beet is grown, local growers supply only one buyer, British Sugar. This means that for British Sugar to meet demand they use a contractual system, whereby growers are contracted each year to meet a particular yield. This adds pressure to growers, and means that British Sugar controls the seed supply and therefore the treatment of seeds with synthetic pesticides. One respondent in the study said, “At one time you couldn’t order seed that wasn’t treated with neonicotinoid’.

The study also found that alternatives such as Integrated Pest Management (IPM) and Host Plant Resistance (HPR) were not yet effective in this system. There were 3 reasons why IPM fails. Firstly, sugar beet has a very low yield diminishing threshold for the virus, meaning that it does not take much infection to significantly effect yield. Secondly, the system is extremely specific, meaning that general IPM practices do not work and research on specific methods of IPM (such as natural predators of Myzus persicae) are limited. HPR is in development, and some new varieties of plant with host resistance have been produced, but the virus has multiple strains and no HPR varieties are resistant to all of them. Finally, there is no incentivisation for farmers to take up alternative practices. Due to the contract system, the risk to growers of sugar beet to try new pest management strategies is too high.

What is the latest in 2023?

In 2023, another emergency authorisation was granted, however the threshold set by Defra was increased to 63% virulence. In March, the Rothamsted Virus Yellows forecast predicted an incidence of 67.51%, and so the neonicotinoid seed treatment was used. With this authorisation there are still conditions that growers are required to meet to mitigate any risk to pollinators. This includes no flowering crops being grown for 32 months after neonic treated sugar beet has grown, using herbicides to reduce the number of flowering weeds that may attract pollinators to the field growing treated sugar beet, and compliance with stewardship schemes such as monitoring of neonicotinoid residues in the environment.

————————–

This blog is written by Hannah Romanowski, Biological Sciences, University of Bristol. The paper that this blog is based on can be found here: https://link.springer.com/article/10.1007/s13412-023-00830-z.

Hannah Romanowski

 

Arctic Ocean could be ice-free in summer by 2030s, say scientists – this would have global, damaging and dangerous consequences

Ice in the Chukchi Sea, north of Alaska and Siberia.
NASA Goddard Space Flight Center

The Arctic Ocean could be ice-free in summer by the 2030s, even if we do a good job of reducing emissions between now and then. That’s the worrying conclusion of a new study in Nature Communications.

Predictions of an ice-free Arctic Ocean have a long and complicated history, and the 2030s is sooner than most scientists had thought possible (though it is later than some had wrongly forecast). What we know for sure is the disappearance of sea ice at the top of the world would not only be an emblematic sign of climate breakdown, but it would have global, damaging and dangerous consequences.

The Arctic has been experiencing climate heating faster than any other part of the planet. As it is at the frontline of climate change, the eyes of many scientists and local indigenous people have been on the sea ice that covers much of the Arctic Ocean in winter. This thin film of frozen seawater expands and contracts with the seasons, reaching a minimum area in September each year.

Animation of Arctic sea ice from space
Arctic sea ice grows until March and then shrinks until September.
NASA

The ice which remains at the end of summer is called multiyear sea ice and is considerably thicker than its seasonal counterpart. It acts as barrier to the transfer of both moisture and heat between the ocean and atmosphere. Over the past 40 years this multiyear sea ice has shrunk from around 7 million sq km to 4 million. That is a loss equivalent to roughly the size of India or 12 UKs. In other words, it’s a big signal, one of the most stark and dramatic signs of fundamental change to the climate system anywhere in the world.

As a consequence, there has been considerable effort invested in determining when the Arctic Ocean might first become ice-free in summer, sometimes called a “blue ocean event” and defined as when the sea ice area drops below 1 million sq kms. This threshold is used mainly because older, thicker ice along parts of Canada and northern Greenland is expected to remain long after the rest of the Arctic Ocean is ice-free. We can’t put an exact date on the last blue ocean event, but one in the near future would likely mean open water at the North Pole for the first time in thousands of years.

Annotated map of Arctic
The thickest ice (highlighted in pink) is likely to remain even if the North Pole is ice-free.
NERC Center for Polar Observation and Modelling, CC BY-SA

One problem with predicting when this might occur is that sea ice is notoriously difficult to model because it is influenced by both atmospheric and oceanic circulation as well as the flow of heat between these two parts of the climate system. That means that the climate models – powerful computer programs used to simulate the environment – need to get all of these components right to be able to accurately predict changes in sea ice extent.

Melting faster than models predicted

Back in the 2000s, an assessment of early generations of climate models found they generally underpredicted the loss of sea ice when compared to satellite data showing what actually happened. The models predicted a loss of about 2.5% per decade, while the observations were closer to 8%.

The next generation of models did better but were still not matching observations which, at that time were suggesting a blue ocean event would happen by mid-century. Indeed, the latest IPCC climate science report, published in 2021, reaches a similar conclusion about the timing of an ice-free Arctic Ocean.

As a consequence of the problems with the climate models, some scientists have attempted to extrapolate the observational record resulting in the controversial and, ultimately, incorrect assertion that this would happen during the mid 2010s. This did not help the credibility of the scientific community and its ability to make reliable projections.

Ice-free by 2030?

The scientists behind the latest study have taken a different approach by, in effect, calibrating the models with the observations and then using this calibrated solution to project sea ice decline. This makes a lot of sense, because it reduces the effect of small biases in the climate models that can in turn bias the sea ice projections. They call these “observationally constrained” projections and find that the Arctic could become ice-free in summer as early as 2030, even if we do a good job of reducing emissions between now and then.

Walruses on ice floe
Walruses depend on sea ice. As it melts, they’re being forced onto land.
outdoorsman / shutterstock

There is still plenty of uncertainty around the exact date – about 20 years or so – because of natural chaotic fluctuations in the climate system. But compared to previous research, the new study still brings forward the most likely timing of a blue ocean event by about a decade.

Why this matters

You might be asking the question: so what? Other than some polar bears not being able to hunt in the same way, why does it matter? Perhaps there are even benefits as the previous US secretary of state, Mike Pompeo, once declared – it means ships from Asia can potentially save around 3,000 miles of journey to European ports in summer at least.

But Arctic sea ice is an important component of the climate system. As it dramatically reduces the amount of sunlight absorbed by the ocean, removing this ice is predicted to further accelerate warming, through a process known as a positive feedback. This, in turn, will make the Greenland ice sheet melt faster, which is already a major contributor to sea level rise.

The loss of sea ice in summer would also mean changes in atmospheric circulation and storm tracks, and fundamental shifts in ocean biological activity. These are just some of the highly undesirable consequences and it is fair to say that the disadvantages will far outweigh the slender benefits.

 


This blog is written by Cabot Institute for the Environment member Jonathan Bamber, Professor of Physical Geography, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber
Jonathan Bamber

Why 40°C is bearable in a desert but lethal in the tropics

Phew: heat plus humidity can make Bangkok an uncomfortable place in a heatwave.
Pavel V.Khon/SHutterstock

This year, even before the northern hemisphere hot season began, temperature records were being shattered. Spain for instance saw temperatures in April (38.8°C) that would be out of the ordinary even at the peak of summer. South and south-east Asia in particular were hammered by a very persistent heatwave, and all-time record temperatures were experienced in countries such as Vietnam and Thailand (44°C and 45°C respectively). In Singapore, the more modest record was also broken, as temperatures hit 37°C. And in China, Shanghai just recorded its highest May temperature for over a century at 36.7°C.

We know that climate change makes these temperatures more likely, but also that heatwaves of similar magnitudes can have very different impacts depending on factors like humidity or how prepared an area is for extreme heat. So, how does a humid country like Vietnam cope with a 44°C heatwave, and how does it compare with dry heat, or a less hot heatwave in even-more-humid Singapore?

Weather and physiology

The recent heatwave in south-east Asia may well be remembered for its level of heat-induced stress on the body. Heat stress is mostly caused by temperature, but other weather-related factors such as humidity, radiation and wind are also important.

Our bodies gain heat from the air around us, from the sun, or from our own internal processes such as digestion and exercise. In response to this, our bodies must lose some heat. Some of this we lose directly to the air around us and some through breathing. But most heat is lost through sweating, as when the sweat on the surface of our skin evaporates it takes in energy from our skin and the air around us in the form of latent heat.

annotated diagram of person
How humans heat up and cool down.
Take from Buzan and Huber (2020) Annual Review of Earth and Planetary Sciences, Author provided

Meteorological factors affect all this. For example, being deprived of shade exposes the body to heat from direct sunlight, while higher humidity means that the rate of evaporation from our skin will decrease.

It’s this humidity that meant the recent heatwave in south-east Asia was so dangerous, as it’s already an extremely humid part of the world.

The limit of heat stress

Underlying health conditions and other personal circumstances can lead to some people being more vulnerable to heat stress. Yet heat stress can reach a limit above which all humans, even those who are not obviously vulnerable to heat risk – that is, people who are fit, healthy and well acclimatised – simply cannot survive even at a moderate level of exertion.

One way to assess heat stress is the so-called Wet Bulb Globe Temperature. In full sun conditions, that is approximately equivalent to 39°C in temperature combined with 50% relative humidity. This limit will likely have been exceeded in some places in the recent heatwave across south-east Asia.

In less humid places far from the tropics, the humidity and thus the wet bulb temperature and danger will be much lower. Spain’s heatwave in April with maximum temperatures of 38.8°C had WBGT values of “only” around 30°C, the 2022 heatwave in the UK, when temperatures exceeded 40°C, had a humidity of less than 20% and WBGT values of around 32°C.

Two of us (Eunice and Dann) were part of a team who recently used climate data to map heat stress around the world. The research highlighted regions most at risk of exceeding these thresholds, with literal hotspots including India and Pakistan, south-east Asia, the Arabian peninsula, equatorial Africa, equatorial South America and Australia. In these regions, heat stress thresholds are exceeded with increased frequency with greater global warming.

In reality, most people are already vulnerable well below the survivability thresholds, which is why we can see large death tolls in significantly cooler heat waves. Furthermore, these global analyses often do not capture some very localised extremes caused by microclimate processes. For example a certain neighbourhood in a city might trap heat more efficiently than its surroundings, or might be ventilated by a cool sea breeze, or be in the “rain shadow” of a local hill, making it less humid.

Variability and acclimatisation

The tropics typically have less variable temperatures. For example, Singapore sits almost on the equator and its daily maximum is about 32°C year round, while a typical maximum in London in mid summer is just 24°C. Yet London has a higher record temperature (40°C vs 37°C in Singapore).

Given that regions such as south-east Asia consistently have high heat stress already, perhaps that suggests that people will be well acclimatised to deal with heat. Initial reporting suggests the intense heat stress of the recent heatwave lead to surprisingly few direct deaths – but accurate reporting of deaths from indirect causes is not yet available.

On the other hand, due to the relative stability in year-round warmth, perhaps there is less preparedness for the large swings in temperature associated with the recent heatwave. Given that it is not unreasonable, even in the absence of climate change, that natural weather variability can produce significant heatwaves that break local records by several degrees Celsius, even nearing a physiological limit might be a very risky line to tread.

—————————–

 

This blog is written by Cabot Institute for the Environment members: Dr Alan Thomas Kennedy-Asser, Research Associate in Climate Science; Professor Dann Mitchell, Professor of Climate Science, and Dr Eunice Lo, Research Fellow in Climate Change and Health, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Alan Kennedy-Asser
Alan Kennedy-Asser
Dann Mitchell
Dann Mitchell
Eunice Lo
Eunice Lo

Degrowth isn’t the same as a recession – it’s an alternative to growing the economy forever

lovelyday12/shutterstock

The UK economy unexpectedly shrank by 0.3% in March, according to the Office of National Statistics. And though the country is likely to narrowly avoid an official recession in 2023, just as it did the previous year, the economy is projected to hit the worst growth rates since the Great Depression, and the worst in the G7.

For many people, this certainly feels like a recession, with food prices soaring and pay falling dramatically below inflation meaning many people are having to reduce their standard of living.

Against this backdrop, the main political parties are focused on delivering economic growth for a better future. One of Prime Minister Rishi Sunak’s five priorities for 2023 is simply “growing the economy”, while opposition leader Keir Starmer has pledged to turn the UK into the fastest growing G7 economy.

Sunak and Starmer’s priorities reflect conventional economic wisdom that “growth, growth, growth” increases incomes and standards of living, employment and business investment. When the economy doesn’t grow, we see unemployment, hardship and inequality.

Growth cannot solve everything

However, economic growth on its own is not going to solve these multiple and intersecting crises, as it only counts the total value of goods and services produced without measuring qualitative change – whether this stuff makes you feel happy or secure.

TVs in a shop
GDP measures things not feelings.
Luckies / shutterstock

In contrast, an increasing number of policymakers, thinkers and activists argue for abandoning our obsession with growth at all costs. Instead of pursuing GDP growth, they suggest orienting the economy towards social equality and wellbeing, environmental sustainability and democratic decision making. The most far reaching of those proposals are made under the umbrella term of degrowth.

Degrowth is a set of ideas and a social movement that presents a comprehensive solution to these issues. The pandemic demonstrated that a new normal can be achieved at pace, as we saw sweeping changes to how many of us lived, worked, and travelled.

At the time, headlines equated the pandemic-related GDP squeeze with the perceived “misery of degrowth”. With persistently high inflation rates and the cost of living still spiralling, these debates are going to resurface.

Degrowth is not the same as shrinking GDP

To begin with, degrowth is not the same as negative GDP growth. Instead, degrowth envisions a society in which wellbeing does not depend on economic growth and the environmental and social consequences of its pursuit. Degrowth proposes an equitable, voluntary reduction of overconsumption in affluent economies.

Equally important is to shift the economy away from the ecologically and socially harmful idea that producing more stuff is always good. Instead, economic activity could focus on promoting care, cooperation and autonomy, which would also increase wellbeing and give people a bigger say in how their lives are run.

Yet, for many people the word smacks of misery and the type of frugality they are trying to escape from during the cost of living crisis.

But degrowth, if successfully achieved, would arguably feel better than a recession or a cost-of-living crisis. Here are three reasons why:

1. Degrowth is democratic

The first is the undemocratic and unplanned nature of a recession or cost-of-living crisis. Most citizens would agree, for example, that they had little to no control over the deregulation of the finance industry, and subsequent boom in sub-prime mortgage lending and derivatives trading that caused the 2008/09 financial crash.

Cranes in skyline
Things would still be built – but not just to satisfy a need for growth.
Oleg Totskyi / shutterstock

Degrowth, on the other hand, is a profoundly democratic project. It emphasises direct democracy and deliberation, which means citizens can shape which economic sectors are decreased and by how much, and which ones will grow and by how much.

One example of such a democratic endeavour is the Climate Assembly UK, whose 108 members were selected through a civic lottery process and were broadly representative of the population. After listening to expert testimony, the assembly issued a number of recommendations to support the UK’s net zero climate target. Over a third of all members prioritised support for sustainable growth. Economic growth itself was not among the top 25 priorities.

2. Degrowth would be egalitarian

Recessions, especially when coupled with fiscal austerity, tend to amplify existing inequalities by hitting the poorest members of society first, including women, working-class communities and ethnic minorities.

Degrowth drastically differs from a recession because it is a redistributive project. For instance, a universal basic income), an unconditional monthly state payment to all citizens, is a popular policy with degrowthers.

The degrowth vision is that basic income should guarantee a dignified living standard, remunerate unpaid care, and provide access to healthcare, food and accommodation for those in need. It could be financed by “climate income” schemes that tax carbon and return revenues to the public.

3. Degrowth wouldn’t hinder climate action

In an economy reliant on growth, a recession is generally bad news for the environment.

For instance, for the UK to hit its net zero targets, it must make annual public investments of between £4 billion and £6 billion by 2030. A recession would threaten public spending as well as the confidence investors have in low carbon developments in transport, housing or energy.

But such investments do not have to depend on growth but could instead be made through collective and democratic decisions to make climate action a priority. Carbon taxes will play a large part in this, as will stopping fossil fuel subsidies like the £3.75 billion tax break granted to develop the Rosebank oil and gas field in the sea north of Scotland.

To make sure we stay within the environmental limits within which we can safely operate, sometimes known as our planetary boundaries, degrowth suggests democratically establishing limits on resource use. For example, global greenhouse gas emissions or non-renewable energy use could be capped at a given level, and decline annually.

Sharing these resource “caps” among the population would ensure that while we stay within these safe environmental spaces, everyone has equitable access to the resources required to lead a fulfilling life. In contrast to the pursuit of endless growth, degrowth puts both climate action and human wellbeing at its heart.The Conversation


This blog is written by Cabot Institute for the Environment member, Dr Katharina Richter, Lecturer in Climate, Politics and Society, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Katharina Richter
Dr Katharina Richter

The Archers’ electric vehicle row shows why rural areas may oppose chargers – but they also have so much to gain

Muse Studio/Shutterstock

Long-running BBC radio soap opera The Archers might conjure images of an idyllic country life, but its storylines frequently highlight real tensions in British society.

The series, set in the fictional village of Ambridge, has been criticised in recent years for storylines which supposedly pander to younger listeners or fail to represent rural life accurately. But the Archers has never shied away from environmental issues, from the escapades of eco-warrior Tom Archer in the late 1990s to more recent episodes about soil health.

Lately, Ambridge has been gripped by a campaign to halt the construction of a new electric vehicle charging station, proposed on a parcel of land being sold by David and Ruth Archer – long-running characters at the centre of the series. This has provoked protests, debates about civic duty and police involvement in the rural idyll.

The placards and slogans of local opponents have fused topics of net zero and the energy transition with anxieties about the future of the countryside. What does this storyline tell us about real rural opposition to such changes?

Charging into trouble

The UK government has pledged to phase out the sale of new petrol and diesel cars by 2030. If electric vehicles (EVs) are to replace them, charging infrastructure must be expanded to help people switch.

By some estimates there are over 35,000 active EV charging ports across the UK. The Department for Transport has pledged 300,000 public chargers by 2030 to stop a patchy network of charging points putting some drivers off buying EVs and allay concerns about their potentially shorter driving range.

An electric vehicle charging point in a quiet, coastal car park.
A public charging point in Shetland, Scotland.
AlanMorris/Shutterstock

Infrastructure built to fulfil national commitments to cut emissions will have important local consequences. The concerns voiced in Ambridge might resonate in rural communities playing host to new construction projects which can bring with them increased traffic, noise and damage to the landscape.

When researching opposition to energy infrastructure for a new book, we learned about Littlehampton in Sussex, a seaside town where residents successfully opposed an on-street EV charging scheme. Residents complained about not being consulted beforehand and argued that charging points, built without off-street parking, would draw drivers from elsewhere who would take spaces from them.

Rural communities have also opposed new renewable energy projects, such as solar farms, for their potential disruption or effect on property values. Many who moved to a rural area to enjoy its natural beauty argue that new infrastructure industrialises the countryside.

Finding community support

In The Archers – like in Littlehampton, Sussex – local opposition to new EV charging stations derives from a feeling that something is happening to residents, rather than with or for them. Some Ambridge residents are suspicious of the shell corporation behind the scheme. In real-life Sussex, residents said that they weren’t properly consulted.

Rural opposition is not inevitable, however. With amenities and services often clustered in bigger towns, rural households must travel further to access them, making them particularly vulnerable to rises in the price of petrol or diesel.

This vulnerability has been exacerbated by dramatic cuts to rural bus routes. An analysis by the Guardian found that one in ten routes were axed in 2022, with 42 routes lost from the west of England alone.

Withdrawing public transport funding cuts off rural communities from essential services and friends and family elsewhere. These same communities could benefit the most from an expanded EV charging network.

A bus shelter beside an empty rural road.
Cuts to public transport funding have hit rural communities particularly hard.
Harry Wedzinga/Shutterstock

Some rural communities aren’t waiting for this to happen and have taken to sharing electric cars to fill the gaps left by lost services instead. For example, new EV clubs are being formed in Wales to give people easier access to shared transport.

These schemes ask people to pay an annual membership fee in return for being able to book a car 48 hours in advance. This is helping people get to GP appointments or job interviews.

But while those living in Greater London might access a charging point every mile on average, this number jumps to one every 16 miles in rural areas.

Plugging the gaps

One reason why rural areas are underserved by EV chargers concerns their cost-effectiveness. In areas where there might be less immediate demand, the upfront investment needed to install a charging point will take longer to pay off.

New subsidies and grants could help install more chargers in more places. But it will be necessary to work with communities to prevent conflict.

Despite the uproar in Ambridge, rural areas have a lot to gain from charging infrastructure. Residents will have differing views which planners must address.


 

This blog is written by Cabot Institute for the Environment members Dr Ed Atkins, Senior Lecturer, School of Geographical Sciences and Dr Ros Death, Lecturer in Physical Geography, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Nearly a quarter of people in the UK flush wet wipes down the toilet – here’s why they shouldn’t

Shutterstock/BigLike Images

Charlotte Lloyd, University of Bristol

Whether you’re cleaning your house, your car or your child, there are a variety of wet wipes manufactured for the job. Wet wipes are small, lightweight and extremely convenient. They have become a staple in most of our lives, particularly so during and since the COVID-19 pandemic.

But according to Water UK, an organisation representing the water industry, flushing wet wipes down the toilet is responsible for 93% of sewer blockages and costs around £100 million each year to sort out. And the majority of these wipes, about 90%, contain plastic.

Water UK also found that 22% of people admit to flushing wipes down the toilet, even though most of them knew they posed a hazard. And it’s estimated that 300,000 sewer blockages occur every year because of “fatbergs”, with wet wipes one of the main causes.

But it seems wet wipes could soon be banned in England – well, at least the ones that contain plastic – as the government has said it will launch a public consultation on wet wipes in response to mounting concerns about water pollution and blockages. This follows pledges made by major retailers, including Boots and Tesco, to discontinue the sale of such products.

Market projections show that 1.63 million tons of material will be produced in 2023 for wet wipes globally – an industry worth approximately $2.84 billion (£2.04 billion). Though these figures are likely to be on the conservative side as manufacturers increased the production of disinfecting wipes in 2020 during the pandemic – and have remained at the same level since.

Despite the popularity and wide use of wet wipes, not a lot is known about their environmental footprint. This is because manufacturers are not obliged to state what the wipes are made from on the packaging, only the intentionally added ingredients. This creates a challenge for both scientists and consumers alike.

What we know

Wet wipes are made from non-woven fibres that are fused together either mechanically or with the aid of chemicals or heat. The individual fibres can be made from either natural (regenerated cellulose or wood pulp) or petroleum-based (plastic) materials, including polyester and polypropylene.

Most wet wipes are a mixture of natural and synthetic fibres – and the majority contain plastic. As well as the fibres, wet wipes also contain chemicals, including cleaning or disinfecting agents which are impregnated into the material.

Wet wipes, disinfecting wipes.
Wet wipes can cause a lot of issues for our sewerage system.
JoyImage/Shutterstock

Some wipes are designed to be “flushable” and contain chemical binding agents that are designed to release the fibres of the wipe when they are exposed to water. This means that if wipes are not disposed of correctly, they can create both a plastic and a chemical hazard to the environment.

It’s well known that plastic breaks down extremely slowly and persists for centuries in landfill. And if plastic-containing wipes are released into the environment – either through littering or via the sewerage system – they can pose a number of hazards.

The plastic problem

When wet wipes reach the environment – including soil, rivers and the ocean – they generate microplastic pollution in the form of microfibers. Microfibers are one of the most prevalent types of plastic pollution in the aquatic environment and affect ecosystems as well as potentially human health through their introduction into the food chain.

The problem has been exacerbated by these “flushable” wipes. One study identified seven different types of plastics as potential components of flushable wipes – meaning that they still risk being a source of microplastic pollution. Recent work has confirmed that wet wipes (along with sanitary products) are an underestimated source of white microfibers found in the marine environment.

Data on the environmental impact of the associated chemicals is lacking, but this is something my research group is currently working on. What is known though is that plastics have the ability to absorb other contaminants such as metals and pesticides as well as pathogens. And this provides a way for pollution to be transported large distances through the environment.

Flushable wipe going down the toilet.
Are flushable wipes really flushable?
Shutterstock/nito

Driven by environmental concerns as well as impending legislation, many plastic-free wipe products are now available or being developed. But even products made from natural fibres can still pose a problem to sewerage systems and so safe disposal – in a bin – is key.

The scientific evidence surrounding the environmental effects of bio-based plastics (plastics made from non-petroleum sources such as corn or potato starch) is also lacking, so caution is needed when thinking about simply switching from petroleum-based to bio-based plastics.

With this in mind, reusable washable products are a great alternative to disposables and have a much smaller environmental footprint. They are particularly handy around the home when washing is convenient.

That said, there will remain a market for disposables, but manufacturers should have to clearly label what the wipes are made from so that consumers can make a more informed choice.The Conversation


This blog is written by Cabot Institute for the Environment member Dr Charlotte Lloyd, Royal Society Dorothy Hodgkin Research Fellow and Lecturer in Environmental Chemistry, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Charlotte Lloyd
Dr Charlotte Lloyd