We Need to Talk About Transport

 

The transition to zero-carbon is essential to the mitigation of climate change, but despite Paris Agreement commitments, transport emissions are still on the rise. The transition to clean forms of transport is a hot topic for the upcoming climate change conference COP26, which will take place in November 2021 in Glasgow.

Researchers agree that there are solutions to the transport problem, both simple and innovative, but we need to act fast. That much is clear from a local example; Bristol needs to reduce carbon dioxide emissions by 88%, to meet its ambitious net zero targets by 2030. For National Clean Air Day (17th June), I have been finding out about research on clean transport from experts at the Cabot Institute for the Environment at the University of Bristol.

Professor Martin Hurcombe, ‘Access and Active Leisure in a Time of Pandemic: Tales of Two Cities’

Self-proclaimed ‘MAMIL’ (middle-aged man in lycra), Professor Martin Hurcombe from the Modern Languages department is a keen cyclist, a passion he has integrated into his research. As an offshoot of his research in literary studies, Martin became fascinated by the French sports press and the way it represented cycling. As a result, he is currently writing a book exploring attitudes towards cycling from the late nineteenth century up to the present.

Martin is also working with the Brigstow Institute on an exciting project entitled ‘Access and Active Leisure in a Time of Pandemic: Tales of Two Cities’. This comparative study of Bristol and Bordeaux is exploring how the pandemic has highlighted longstanding issues around access to and enjoyment of urban spaces via active leisure. Both cities reflected profound inequalities, entrenched geographically, economically, socially and culturally, many of which originate in the cities’ parallel histories of empire, trade and industrialisation. Martin and his fellow researchers are investigating the ways in which the pandemic has heightened these structural inequalities, but also led to some positive re-shaping of the urban environment, from reduction of road traffic to a massive increase in cycling with recent government statistics show that cycling levels during lockdown rose by up to 300% on some days.

While the benefits of cycling are clear; a healthier population, decreased congestion and a cleaner urban environment, Martin laid out various key challenges faced in its promotion and uptake. These include the attitudes of drivers towards cyclists, infrastructural challenges and issues of safety.

Why is it important to conduct cultural, qualitative research in the transport sector?

To change attitudes, we need to take a broader cultural approach, not just an infrastructural one; issues of who has a ‘right’ to occupy the streets play out on a daily basis in how a cyclist or a runner feels and acts on the roads. Despite the challenges revealed by his public engagement research, Martin seemed determined that this kind of research will be valuable in ‘finding a way we can all share this space’. Research like this can be used to draw out diversity in active leisure and dispel the traditional image of the cyclist, to broaden it to include people of all sectors of society. Martin also recently worked on ‘Putting a Positive Spin on the Story of Cycling’ (PPS), that was developed with local charity Life Cycle.

We want to demonstrate that cycling was, and is, something for everybody.

Georgina de Courcy-Bower, E-scooters in Bristol

Georgina completed her Master’s in Environmental Policy and Management during the pandemic. Following the legislation of e-scooters in the UK on 4th July 2020, a change in law brought forward to reduce crowding on public transport as a result of COVID-19, she chose to write her dissertation on this new micro-mobility. Georgina explained that the Voi scooters, introduced to Bristol as part of a shared mobility pilot scheme in UK cities, were considered and promoted as a ‘last mile’ solution to fill gaps between transport links and homes or offices, in hopes to draw more people away from their cars and tackle congestion and air pollution – two key issues associated with the car-dominated transport system known to Bristol.

Georgina decided to investigate the viability of these e-scooters as a solution to sustainable urban transport in Bristol, by conducting a policy analysis to explore the successes and failures of implementation of e-scooters in cities around the world. Overall, e-scooters were found to be a positive alternative to cars. However, Georgina did come across certain roadblocks to their success in her research; for example, the lifecycle analysis of e-scooters shows that they still produce significant emissions, particularly compared to active travel, because of their production and dissemination.

Are e-scooters a viable part of the solution to sustainable transport?

 The most effective way to encourage a modal shift away from cars will be to reallocate space to all other road users, such as forms of public transport or active travel. She suggested that we need to begin ‘designing cities around people’, proffering the local example of Cotham Hill, where the road has been closed to through-traffic to allow restaurants and businesses to expand onto the street and create a safer space for pedestrians and cyclists. Georgina concluded that when e-scooters are paired with other ambitious policies, they are more likely to provide public benefit. However, e-scooters cannot act alone in decarbonising the transport system.

Understanding the city as a complex system and taking a more holistic approach to environmental transport sustainability is likely to be the most successful strategy.

Dr Colin Nolden, Riding Sunbeams

Dr Colin Nolden is the non-executive director of Community Energy South, an umbrella organisation for community energy groups. A member organisation pioneered the idea of connecting community-owned solar farms to the railway traction system, realising that it would be possible to repurpose existing solar PV technology to do so. This idea led to the formation of a spin-off company, now known as Riding Sunbeams.
The current railway system’s electricity is supplied through supply points to the national electricity grid. Therefore, decarbonisation of electrified railways currently hinges upon the decarbonisation of our electricity grid. Riding Sunbeams provides an alternative to this with huge rail decarbonisation potential; supplying renewable energy directly into railway electricity substations and overhead rail gantries, bypassing the grid entirely. This can be achieved without the need for costly electricity grid reinforcements. Network Rail seemed like the obvious choice to approach with Riding Sunbeams’ innovation, especially given that they are the UK’s biggest single electricity user.

What are the social benefits of renewable, community energy?

Colin was in charge of conducting a Social Impact Framework (SIF) for the project and found that there is great potential for positive social impacts; community energy groups that could be developing solar traction farms are strongly rooted in local communities, and provide local jobs, volunteering opportunities and reduce economic leakage from geographical areas. So far, Riding Sunbeams has successfully implemented one pilot project, in the summer of 2019, a solar array of just over 100 panels connected to the railway outside Aldershot station in the UK. Since April 2019, Riding Sunbeams have also been exploring the potential for integrating other clean energy technologies like wind power.
There has been significant support for the technology from the government and people championing it within Network Rail, and as a result Riding Sunbeams has procured funding from Innovate UK and the Department for Transport. Colin explained that the SIF demonstrated a variety of positive social impacts to community-owned traction supply that could tick a lot of the boxes Network Rail want to tick. Nevertheless, he concluded that

Despite good will and innovation, ‘it takes a long time to disentangle things and implement new systems.

Emilia Melville, Moving Bristol Forward’s Transport Manifesto

Researcher, Emilia Melville, is one member of the team behind Moving Bristol Forward’s Transport Manifesto and its vision for a better transport future for Bristol. Moving Bristol Forward is a collaboration between Zero West and Transport for Greater Bristol Alliance (TfGB). Emilia became involved through Zero West, a community interest company, whose mission is to get the west of England to zero carbon. Teamed up with TfGB, it was important to them that this project had a significant participatory element. As a result of consultations with the public, a manifesto was written that envisions a different future for our cities; one that integrates many voices and imagines streets not overcrowded by cars, but filled with active travellers and efficient, clean public transport. To read the Manifesto’s 8 key aims, click here. The goal is to gain endorsements from organisations and policymakers, along with support from the public.

How Bristol measures up to other cities in terms of moving towards clean transport?

There is a lot of good will, citing such schemes as Playing Out Bristol, a resident led movement restoring children’s freedom to play out in the streets and spaces where they live. However, Bristol faces many challenges, not least because of its heavy car-dependency. This is partly due to car-oriented planning and construction that happened in the 1960s. Commuters face issues such as a lack of connections between the outskirts and the centre, and not feeling safe on public transport or in active travel has been a recurring problem cited in public engagement sessions. The city lacks a combined transport authority, like TfL in London, that would allow for integrated ticketing, better-connected routes and an overall better coordination. Nevertheless, while the issues Bristol faces do require serious thinking about major urban planning changes, there have been examples of successful conversions in the past. Queen’s Square, now a beautiful and well-loved park, once had a dual carriageway and major bus route running through it! In 1999, the City Council made a successful grant application to restore it as a park as part of the Heritage Lottery Fund’s Urban Parks Programme.
Queens square, Bristol, before and after dual carriageway was removed to create the well-loved park it is today (Photo by Bristol Live).
To get behind the manifesto, you can write to your local representatives, share it on social media platforms or tell your friends and family about it.

My Thoughts on Our Talks About Transport

I asked Emilia what she would say to the person that does not believe in the power of the individual, for example, someone who thinks ‘it won’t make a difference if I ride my bike versus drive my car, so I’ll just drive’. She replied that, firstly, riding your bike is great! You inhale much less air pollution than someone in a car, can make eye contact with fellow road-users and get a good burst of exercise. She concluded that change needs to happen at different levels: it is important that we show policymakers that we want to see change, whether that be by writing to them to endorse the manifesto, or increasing the presence of active travellers in the streets. As Martin explained in our conversation, critical mass is key! The same can be said for using public transport; the higher the demand is for it, the more likely we are to see policy changes that increase investment in it, thus resulting in greater regularity and efficiency of services.
As the UK hosts COP26 for the first time, this is a key opportunity to galvanise efforts to achieve the UK’s legally-binding net zero emissions goal by 2050. Speaking with the four transport experts led me to these conclusions:
The Department for Transport needs to encourage the public to avoid journeys by car that can be taken by other means of transport.
• There is a need to shift necessary journeys to the most sustainable modes, and alongside this, clean up motorised journeys by transitioning to Zero Emissions Vehicles.
• Alternatives to private cars need to be made more readily available, accessible and attractive.
• Finally, we should build on the momentum of the shift towards active travel brought around by the pandemic, encourage a return to public and active transport and a shift away from motorised travel.
———————————–
This blog is written by Lucy Morris, Master’s by Research (MScR) student at Cabot Institute for the Environment. Lucy is currently researching ‘Why Framing Animals Matters: Representing Non-human Animals On-screen’ and produced this blog as part of a part-time role as communications assistant at the Cabot Institute.
Lucy Morris

 

 

Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

 

 

Hydrogen: where is low-carbon fuel most useful for decarbonisation?

Is hydrogen the lifeblood of a low-carbon future, or an overhyped distraction from real solutions? One thing is certain – the coal, oil and natural gas which currently power much of daily life must be phased out within coming decades. From the cars we drive to the energy that heats our homes, these fossil fuels are deeply embedded in society and the global economy. But is the best solution in all cases to swap them with hydrogen – a fuel which only produces water vapour, and not CO₂, when burned?

Answering that question are six experts in engineering, physics and chemistry.

Road and rail

Hu Li, Associate Professor of Energy Engineering, University of Leeds

Transport became the UK’s largest source of greenhouse gas emissions in 2016, contributing about 28% of the country’s total.

Replacing the internal combustion engines of passenger cars and light-duty vehicles with batteries could accelerate the process of decarbonising road transport, but electrification isn’t such a good option for heavy-duty vehicles such as lorries and buses. Compared to gasoline and diesel fuels, the energy density (measured in megajoules per kilogram) of a battery is just 1%. For a 40-tonne truck, just over four tonnes of lithium-ion battery cells are needed for a range of 800 kilometres, compared to just 220 kilograms of diesel.

With the UK government set to ban fossil fuel vehicles from 2035, hydrogen fuel cells could do much of the heavy lifting in decarbonising freight and public transport, where 80% of hydrogen demand in transport is likely to come from.

A fuel cell generates electricity through a chemical reaction between the stored hydrogen and oxygen, producing water and hot air as a byproduct. Vehicles powered by hydrogen fuel cells have a similar driving range and can be refuelled about as quickly as internal combustion engine vehicles, another reason they’re useful for long-haul and heavy-duty transport.

Hydrogen fuel can be transported as liquid or compressed gas by existing natural gas pipelines, which will save millions on infrastructure and speed up its deployment. Even existing internal combustion engines can use hydrogen, but there are problems with fuel injection, reduced power output, onboard storage and emissions of nitrogen oxides (NOₓ), which can react in the lower atmosphere to form ozone – a greenhouse gas. The goal should be to eventually replace internal combustion engines with hydrogen fuel cells in vehicles that are too large for lithium-ion batteries. But in the meantime, blending with other fuels or using a diesel-hydrogen hybrid could help lower emissions.

It’s very important to consider where the hydrogen comes from though. Hydrogen can be produced by splitting water with electricity in a process called electrolysis. If the electricity was generated by renewable sources such as solar and wind, the resulting fuel is called green hydrogen. It can be used in the form of compressed gas or liquid and converted to methane, methanol, ammonia and other synthetic liquid fuels.

But nearly all of the 27 terawatt-hours (TWh) of hydrogen currently used in the UK is produced by reforming fossil fuels, which generates nine tonnes of CO₂ for every tonne of hydrogen. This is currently the cheapest option, though some experts predict that green hydrogen will be cost-competitive by 2030. In the meantime, governments will need to ramp up the production of vehicles with hydrogen fuel cells and storage tanks and build lots of refuelling points.

Hydrogen can play a key role in decarbonising rail travel too, alongside other low-carbon fuels, such as biofuels. In the UK, 6,049 kilometres of mainline routes run on electricity – that’s 38% of the total. Trains powered by hydrogen fuel cells offer a zero-emission alternative to diesel trains.

The Coradia iLint, which entered commercial service in Germany in 2018, is the world’s first hydrogen-powered train. The UK recently launched mainline testing of its own hydrogen-powered train, though the UK trial aims to retrofit existing diesel trains rather than design and build entirely new ones.

Aviation

Valeska Ting, Professor of Smart Nanomaterials, University of Bristol

Of all of the sectors that we need to decarbonise, air travel is perhaps the most challenging. While cars and boats can realistically switch to batteries or hybrid technologies, the sheer weight of even the lightest batteries makes long-haul electric air travel tricky.

Single-seat concept planes such as the Solar Impulse generate their energy from the sun, but they can’t generate enough based on the efficiency of current solar cells alone so must also use batteries. Other alternatives include synthetic fuels or biofuels, but these could just defer or reduce carbon emissions, rather than eliminate them altogether, as a carbon-free fuel like green hydrogen could.

Hydrogen is extremely light and contains three times more energy per kilogram than jet fuel, which is why it’s traditionally used to power rockets. Companies including Airbus are already developing commercial zero-emission aircraft that run on hydrogen. This involves a radical redesign of their fleet to accommodate liquid hydrogen fuel tanks.

Three aeroplanes of different designs fly in formation.
An artist’s impression of what hydrogen-powered commercial flight might look like.
Airbus

There are some technical challenges though. Hydrogen is a gas at room temperature, so very low temperatures and special equipment are needed to store it as a liquid. That means more weight, and subsequently, more fuel. However, research we’re doing at the Bristol Composites Institute is helping with the design of lightweight aircraft components made out of composite materials. We’re also looking at nanoporous materials that behave like molecular sponges, spontaneously absorbing and storing hydrogen at high densities for onboard hydrogen storage in future aircraft designs.

France and Germany are investing billions in hydrogen-powered passenger aircraft. But while the development of these new aircraft by industry continues apace, international airports will also need to rapidly invest in infrastructure to store and deliver liquid hydrogen to refuel them. There’s a risk that fleets of hydrogen aeroplanes could take off before there’s a sufficient fuel supply chain to sustain them.

Heating

Tom Baxter, Honorary Senior Lecturer in Chemical Engineering, University of Aberdeen & Ernst Worrell, Professor of Energy, Resources and Technological Change, Utrecht University

If the All Party Parliamentary Group on Hydrogen’s recommendations are taken up, the UK government is likely to support hydrogen as a replacement fuel for heating buildings in its next white paper. The other option for decarbonising Britain’s gas heating network is electricity. So which is likely to be a better choice – a hydrogen boiler in every home or an electric heat pump?

First there’s the price of fuel to consider. When hydrogen is generated through electrolysis, between 30-40% of the original electric energy is lost. One kilowatt-hour (kWh) of electricity in a heat pump may generate 3-5 kWh of heat, while the same kWh of electricity gets you only 0.6-0.7 kWh of heat with a hydrogen-fuelled boiler. This means that generating enough hydrogen fuel to heat a home will require electricity generated from four times as many turbines and solar panels than a heat pump. Because heat pumps need so much less energy overall to supply the same amount of heat, the need for large amounts of stored green energy on standby is much less. Even reducing these losses with more advanced technology, hydrogen will remain relatively expensive, both in terms of energy and money.

So using hydrogen to heat homes isn’t cheap for consumers. Granted, there is a higher upfront cost for installing an electric heat pump. That could be a serious drawback for cash-strapped households, though heat pumps heat a property using around a quarter of the energy of hydrogen. In time, lower fuel bills would more than cover the installation cost.

A large fan unit sits outside an apartment building.
Heat pumps, like this one, are a better bet for decarbonising heating.
Klikkipetra/Shutterstock

Replacing natural gas with hydrogen in the UK’s heating network isn’t likely to be simple either. Per volume, the energy density of hydrogen gas is about one-third that of natural gas, so converting to hydrogen will not only require new boilers, but also investment in grids to increase how much fuel they can deliver. The very small size of hydrogen molecules mean they’re much more prone to leaking than natural gas molecules. Ensuring that the existing gas distribution system is fit for hydrogen could prove quite costly.

In high-density housing in inner cities, district heating systems – which distribute waste heat from power plants and factories into homes – could be a better bet in a warming climate, as, like heat pumps, they can cool homes as well as heat them.

Above all, this stresses the importance of energy efficiency, what the International Energy Agency calls the first fuel in buildings. Retrofitting buildings with insulation to make them energy efficient and switching boilers for heat pumps is the most promising route for the vast majority of buildings. Hydrogen should be reserved for applications where there are few or no alternatives. Space heating of homes and buildings, except for limited applications like in particularly old homes, is not one of them.

Electricity and energy storage

Petra de Jongh, Professor of Catalysts and Energy Storage Materials, Utrecht University

Fossil fuels have some features that seem impossible to beat. They’re packed full of energy, they’re easy to burn and they’re compatible with most engines and generators. Producing electricity using gas, oil, or coal is cheap, and offers complete certainty about, and control over, the amount of electricity you get at any point in time.

Meanwhile, how much wind or solar electricity we can generate isn’t something that we enjoy a lot of control over. It’s difficult to even adequately predict when the sun will shine or the wind will blow, so renewable power output fluctuates. Electricity grids can only tolerate a limited amount of fluctuation, so being able to store excess electricity for later is key to switching from fossil fuels.

Hydrogen seems ideally suited to meet this challenge. Compared to batteries, the storage capacity of hydrogen is unlimited – the electrolyser which produces it from water never fills up. Hydrogen can be converted back into electricity using a fuel cell too, though quite a bit of energy is lost in the process.

Unfortunately, hydrogen is the lightest gas and so it’s difficult to store and transport it. It can be liquefied or stored at very high pressures. But then there’s the cost – green hydrogen is still two to three times more expensive than that produced from natural gas, and the costs are even higher if an electrolyser is only used intermittently. Ideally, we could let hydrogen react with CO₂, either captured from the air or taken from flue gases, to produce renewable liquid fuels that are carbon-neutral, an option that we’re investigating at the Debye Institute at Utrecht University.

Heavy industry

Stephen Carr, Lecturer in Energy Physics, University of South Wales

Industry is the second most polluting sector in the UK after transport, accounting for 21% of the UK’s total carbon emissions. A large proportion of these emissions come from processes involving heat, whether it’s firing a kiln to very high temperatures to produce cement or generating steam to use in an oven making food. Most of this heat is currently generated using natural gas, which will need to be swapped out with a zero-carbon fuel, or electricity.

A worker in silver, protective gear stokes a furnace spewing molten metal.
Furnaces in the steel industry are generally powered by fossil fuels.
Rocharibeiro/Shutterstock

Let’s look in depth at one industry: ceramics manufacturing. Here, high-temperature direct heating is required, where the flame or hot gases touch the material being heated. Natural gas-fired burners are currently used for this. Biomass can generate zero-carbon heat, but biomass supplies are limited and aren’t best suited to use in direct heating. Using an electric kiln would be efficient, but it would entail an overhaul of existing equipment. Generating electricity has a comparably high cost too.

Swapping natural gas with hydrogen in burners could be cheaper overall, and would require only slight changes to equipment. The Committee on Climate Change, which advises the UK government, reports that 90 TWh of industrial fossil fuel energy per year (equivalent to the total annual consumption of Wales) could be replaced with hydrogen by 2040. Hydrogen will be the cheapest option in most cases, while for 15 TWh of industrial fossil fuel energy, hydrogen is the only suitable alternative.

Hydrogen is already used in industrial processes such as oil refining, where it’s used to react with and remove unwanted sulphur compounds. Since most hydrogen currently used in the UK is derived from fossil fuels, it will be necessary to ramp up renewable energy capacity to deliver truly green hydrogen before it can replace the high-carbon fuels powering industrial processes.

The same rule applies to each of these sectors – hydrogen is only as green as the process that produced it. Green hydrogen will be part of the solution in combination with other technologies and measures, including lithium-ion batteries, and energy efficiency. But the low-carbon fuel will be most useful in decarbonising the niches that are currently difficult for electrification to reach, such as heavy-duty vehicles and industrial furnaces.The Conversation

———————————-

This blog is written by Cabot Institute member Valeska Ting, Professor of Smart Nanomaterials, University of Bristol, Tom Baxter, Honorary Senior Lecturer in Chemical Engineering, University of Aberdeen; Ernst Worrell, Professor of Energy, Resources and Technological Change, Utrecht University; Hu Li, Associate Professor of Energy Engineering, University of Leeds; Petra E. de Jongh, Professor of Catalysts and Energy Storage Materials, Utrecht University; and Stephen Carr, Lecturer in Energy Physics, University of South Wales.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Skilling up for the clean energy transition: View from Skills Work on EnergyREV

“Green Jobs not Job Cuts” by John Englart (Takver) is licensed under CC BY-SA 2.0

A couple of weeks ago I attended the “Skilling Up for the Clean Energy Transition: Creating a Net Zero Workforce” IPPR discussion. Given that we had 1.5 hours to get input from 5 presenters and about 20 participants, it was not really possible to put many thoughts across. Hence, this blog. Using some of the questions set out at the IPPR discussion, I started to put together some answers based on our work from the EnergyREV Skills work group (so far). Seeing that there is quite a lot to say, I will focus here on only 3 questions set out at the IPPR meeting:

Question 1:  What are the main challenges and opportunities we face in the transition to net-zero?

Today an average person on Earth consumes 1.5 planets [1]. In other words, we need 1.5 planets worth of forests, seas, land, and other resources to produce what an average person consumes and be able to absorb the emissions and negative impacts of it. And this number varies between developing and developed countries (e.g., 1.1 for China and 4.1 for USA).

For the UK we will be looking at 2.5 planets per person! Transitioning to net-zero economy then implies drastic change to our everyday production and consumption structures, processes, and habits.

Such change cannot be accomplished by one stakeholder, by few regulatory changes, or legislations. A systemic change in the mindset of the whole country is needed: from school education, to university level training, from industrial and societal regulations and legislation, to societal values that drive the  kinds of companies that entrepreneurs want to run, and jobs that employees want to take, to the way that products and services are valued and consumed.

In considering this transition, we take a look at the energy sector, asking: how can we transition to renewables-based, local energy systems? Let us first clarify:

Why renewables-based? Because that is the only clean, continuously available energy source.

Why local? Because renewables are locally distributed and so should be harnessed where they are located. Moreover, wherever possible, the generated energy should be consumed where it is produced to avoid transmission losses as well as extensive costs of transmission infrastructures.

1.1 So what are the challenges in transitioning to renewables-based local energy systems?

1.1.1 Political landscape 

The most recent Global Talent Index Report (GETI) [2] based on 17,000 respondents from 162 countries has shown that, although there is an obvious skills shortage, the most worrying issue for the renewable energy sector is, in fact, the political landscape. A lack of subsidies is of huge concern to the renewable industry, significantly more so than to the conventional and better established non-renewable sectors. Similarly, stability of the policies is a key determinant for investment into the new technologies and renewables sector.

1.1.2 Transitional mindset

Provisioning the right political landscape requires a transitional mindset within the society.  Such a mindset would enable people to support the policies even though many of these would threaten to uproot their normal daily lives. This social support is essential not only for accepting the (potentially unpopular) policies, but also for taking an active role in the required change of daily practices (e.g., engaging with Demand-Response services, installation of own renewable generation and storage equipment, etc.) both as a consumer, and as a professional choosing to seek employment within the zero-emissions sector.  This (I think) is the biggest challenge of all, as it requires A change of mindset and lifestyle of the whole of the country’s population. All of this cannot be achieved without:

  • widespread ecological education: Such education should be provisioned to all of the citizens: from children to retired.
  • commitment of resources to enable and support the necessary changes: it will not be enough to explain to families that driving a car is harmful for the planet; the family should get access to an alternative viable transportation option, so that they are able to get to school and work on time. To give a few examples (for UK):
    • the transportation service would need to be improved (if it takes me 1 hour to walk to my work place and  1 hour if I take the bus, what is the point of the bus?);
    • work practices would have to be changed to support flexible start/end as well as working from home/alternative locations to reduce the need for peak-time transportation pressure;
    • change in hiring practices for jobs that require physical presence, would have to account for the workers’ ability to reach their workplace in carbon-neutral way;
    • change would be needed in pricing/taxation of products, ensuring that the cost of carbon is taken into consideration (a move which, if not prepared for carefully,  will undoubtedly be met with a lot of resistance from both producers and consumers)

Without such education and resource commitments the policies to aid decarbonisation are likely to create disruption and unrest, as recently seen with the ‘gilets jaunes’ in France. When president, E. Macron proposed a rise in tax on diesel and petrol without any transitional arrangements or subsidies for the alternative cleaner, electric vehicles, protesters took to the streets in violent clashes with the police [4].

1.1.3 Skills Shortage

Skills gap (or shortage) is a disequilibrium between the skills available from workers and those demanded of them by employers.

The skills shortage is a looming crisis that many in the renewable energy sector are also worried about: in accordance with GETI [2], 60% of respondents believe there is only 5 years to act before it hits. So what talent is lacking?

  • The discipline of Engineering was reported to be in highest need, 50% of which were  mechanical and electrical/E&I engineers – both 25% –  followed by R&D at 20% and project leadership following with 25%;
  • Lack of understanding of the system as a whole: how multiple energy generation methods can work together and complement each other;
  • Legal experts and policy makers in steering the path to change;
  • Implementation of effective and relevant training and education programmes;
  • Vision of how all of these factors come together.

Such a gap can cause structural unemployment whereby the unemployed workers lack the skills needed to get the jobs. The shocks in economic activity that can lead to structural unemployment in the area of low-carbon and localised energy systems can arise from three main drivers:

  • Firstly, as industries become more energy efficient and less polluting, the demand for occupations (such as drilling engineers) decreases whereas there is an increase in the demand for others, such as solar panel technicians. In some cases the occupations are relatively transferable. For example, an individual working on oil or gas drilling sites will be able to transition to the geo-thermal industry which relies on similar methods for heat extraction. The change in market behaviour can also be encouraged by consumer habits, for instance, through mass demand for greener energy which in turn causes the industry to adapt in order to meet the demands of their customer base.
  • Secondly, entirely new occupations can emerge as a result of developments in technology. Occupations are also limited by this factor since a technology may not be available in a certain country or relocation to an area where the occupation is vacant may not be a feasible option.
  • Thirdly, the introduction of regulation and environmental policy can force the industry to alter its structure. For example, policies may be put in place that ban certain materials or processes with negative environmental impacts [3].

The key risks to the sector, as a result of skills shortages, include decreased efficiency, loss of business and reduced productivity. These consequences will trigger a negative feedback loop since it is likely that there will be less incentive to work in the given industry if it is seen as a failing one.

How could the skills shortage be addressed?  

The required skilled workers can be:

  • Attracted from other industries with transferable skills (e.g.,  increasing need for the geo-thermal energy drill operators can be filled by attracting such operators from the shrinking oil and gas industry)
  • Provisioning training: however, the length of a training course may cause long lead times and it is also necessary to incentivise individuals into enrolling in the training programmes in the first place.
    • One way to speed up this process is for companies to offer apprenticeships and teach workers the skills or training ‘on-the-job’.
    • Another option is to establish partnerships between employers and educational institutions, providing timely input on the expected types of training and shortages expected ahead of time, allowing for the training to be provisioned ahead.
  • Clearer career progression, with demonstrated career pathways and specialisation opportunities.
  • Increased remuneration and benefits packages, motivating the individuals to invest into (re-)training.

Improved societal image of clean jobs:  As shown in the recent Talent Index Report [2] , remuneration was one of the least common reasons for the young people choosing to work in the renewables sector. A possible explanation could be that for the 25-34 year olds the concern for the climate is more apparent. Hence, they may enter the sector as they wish to take action against global warming rather than for gaining “job perks”. Thus satisfaction from work that contributes to the social good could become a major motivator in its own right.

Question 2: What is the role of government, employers and trade unions in securing a skills system fit for a decarbonised future?

Our recent review of the factors that affect skills shortages [8] revealed a picture presented in Figure 1 below. Here the factors most frequently noted as affecting skills shortages are:

  1. policy and regulation (e.g., feed-in tariff which increased demand for solar installers);
  2. technology (such as automation);
  3. change in markets due to competitiveness;
  4. education (e.g., education may be of a low standard or not up-to-date); and
  5. mass changes in consumption habits (which can shift demand away from certain goods and services and towards others, which in turn increases the demand at many stages of the value chain).

Factors mentioned which are noted as of mid-range impact are:

  1. physical changes in the environment as we are seeing with the climate crisis;
  2. number  of training  providers which  may also reflect a regional shortage;
  3. job  incentives such as wages or location;
  4. demographics, i.e., in localities where younger generations relocate or where women have lower levels of participation;
  5. funding towards skills and training or R&D;
  6. social awareness for the benefit of low-carbon alternatives;
  7. structural change;
  8. labour market information whereby individuals do not know which skills  they need;
  9. the number of graduates in the necessary area (or generally) may be low; and
  10. business  model changes which cause disturbances on company-level.
Figure 1: Factors affecting skill shortages (source [8]).

2.1 Government

From bans on harmful products to the introduction of a carbon tax, the government has an extraordinarily influential power in promoting a smooth transition to low carbon and more localised energy systems through legislative prohibitions as well as by providing both incentives and disincentives. This is clearly shown in Figure 2 that illustrates the success of encouraging installations of solar panels through the introduction of the Feed-in Tariff in 2010. The growth in the number of installations post April 2016 could partly reflect the rush to set up projects before further reductions in subsidies take effect. Nonetheless, this example of a positive incentive for participation in cleaner production methods should be learnt from to support the transition.

Figure 2: Quarterly breakdown of number of installations and total installed capacity accredited under the Feed-in Tariff. Figure obtained from [5]

The tools that the government has at its disposal include:

  • Policy and regulation:
    • Ban on harmful industrial practices and products (including unpriced carbon emissions);
    • Carbon taxation;
    • Technology regulation (e.g., clear regulation on use of blockchain, acceptance of peer-to-peer energy trading, regulation of self-generation and storage, all of which will drive investment into specific technologies and enable business models);
    • Change in markets due to competitiveness by taxation, e.g., taxing fossil fuel-based vehicles to cross-subsidise the electric ones, allow continuous supplier switching for energy consumption, etc.;
    • Change the value system in economics: move away from economic growth and GDP as progress indicators to Happiness Index, Job Satisfaction, Clean Environment and alike. This will change the business models that companies use;
    • Price-based impact on consumption habits, e.g., price is cost of carbon in meat and diary products.
  • Education:
    • Public education for mindset transition through media and information which affects social awareness for the benefit of low-carbon alternatives, as well as ensure up-to date content provision;
    • Change the value system in education: school and educational curriculum review to introduce the values of environmental protection, social and personal sustainability, and provide inspirational examples of successful life not as for those who become “rich and famous” but of those who contribute to environment and society. This will both affect social awareness for the benefit of low-carbon alternatives and support change in consumption habits as well as encourage younger employees and women to get engaged with the low-carbon sector.
  • Investment:
    • Support transition with investment into infrastructure support (provide funding towards skills and training or R&D);
    • Provide re-training opportunities (through funding towards skills and training or R&D);
    • Invest into areas with high energy potential (e.g., off-shore wind, wave and tidal to get the locations attractive for families, and so workers, affecting the demographic factors).

2.2 Industry Leaders:

The tools that the industry has at its disposal are:

  • Lead by example: e.g., in renewable energy the leaders who can encourage the mindset transition are the large corporations such as Google, Apple and Facebook who are all in a race to operate on 100% renewable energy in their worldwide facilities [6] . This action is committing to investment in training and R&D, as well as technology adoption and fostering increased social awareness.
  • On-the-job training: education programmes at workplace to help to provide an adequately skilled workforce within their companies and in the wider industry. This directly relates to workers’ education and investment into skills and R&D.
  • Communication and collaboration with educational institutions and government to warn about the expected skills shortages and help train skilled employees ahead, which promotes better education and training, as well as provides clear information about the labour market to the students in schools and universities.
  • Adopt innovative business models driven by new technology and new values (e.g., social enterprises, environmentally-focused businesses, etc.).
  • Develop standards across industry: provide clear professional progression routes and job incentives, e.g., current lack of installers for heat pumps leads to plumbers with boiler installation experience being recruited for these jobs, yet these plumbers have to continue boiler maintenance to retain plumber licences.

2.3 Trade Unions:

The tools that the trade unions have at their disposal are:

  • Support career transitions:
    • Work with the management of the energy systems organisations to set transition targets and provide training for workers in transitioning to the new energy systems;
    • Work with the universities and other training organisations to develop training provision for workers in transitioning to the new energy systems;
  • Support quality assurance:
    • Lobby to accept standards and certification for new energy jobs (like heat pump installers);
    • De-risk hiring in new professions by ensuring employers are meeting their minimum obligations;
  • Hold Industry accountable:
    • by integrating the zero-carbon targets into the set of legal obligations for which the unions monitor breaches.

2.4 Others:

It should be noted that other stakeholders are also very influential, though are not discussed here due to space and time constraints. To name a few such stakeholders:

  • Individuals
  • Communities
    • Local Communities
    • Religious Groups
    • Youth Groups
    • Lobby Groups
  • Activists, etc

Question 3: What are the improvements that can be made to the skills system to overcome these challenges?

In a recent study [7]  we invited 34 researchers and practitioners from across the UK’s energy systems to discuss the current state of the skills gap with regards to the localised renewables-based energy systems in the UK. The participants talked about various examples of the current skills shortages, their causes and ways to observe and measure them. The results of the said study are presented in Table 1 below.

Table 1: Skills Shortages: Examples, Contributing Factors & Metrics (source [7])

Question 2 above already discusses what some key stakeholders can and should do to address the factors (as noted in Figure 1) underpinng skills shortages. There is no need to repeat all that has been note in response to Question 2, but only to highlight that the factors listed in Table 1 directly link up with the broader categories of factors noted in Figure 1. Thus, many of the factors noted in this table can also be addressed through tools discussed in Question 2.

Additionally, having carried out a mapping of stakeholders within the local energy systems [9], we identified the below 35 (non exhaustive) categories, all of which must be consulted when working towards a viable zero-carbon energy system provision. Thus, a solution that takes a whole systems perspective is unavoidable!

List of Stakeholder Categories to be considered in transition to clean energy systems (note, this is a non-exhaustive list):

  1. Building retrofitting
  2. Energy storage
  3. Transmission and Distribution
  4. Transport – EVs
  5. Transport – public
  6. Heating – heat pumps + geo-thermal
  7. Heating – solar thermal
  8. Heating – heat networks
  9. Heating – CHP
  10. Cooling – refrigeration
  11. Cooling – CCHP
  12. Biomass – waste to power
  13. Biomass – waste to heat
  14. Waste heat to power
  15. Wind energy
  16. Solar PV
  17. Marine energy
  18. Hydropower
  19. Hydrogen fuel and fuel cells
  20. Community energy
  21. Power plants
  22. Oil & gas
  23. Materials and components
  24. Financial services
  25. Reclamation, Reuse & Recycling (+ Waste management)
  26. Energy Efficiency
  27. Data Analytics & IoT
  28. Environmental Protection Groups
  29. Policy/Legal services
  30. Demand-side services
  31. Societal engagement & user behaviour
  32. Local government
  33. Government initiatives/departments
  34. Academia
  35. Non-academic training

 References

[1] Tim de Chant, data from Global Footprint Network. URL: https://www.footprintnetwork.org

[2] Airswift and Energy Jobline, “The Global Energy Talent Index Report 2019,” 2019.

[3] O. Striestska-Ilina, C. Hofmann, D. H. Mercedes, and J. Shinyoung, “Skills for Green Jobs: A Global View: Synthesis Report Based on 21 Country Studies,” International Labour Organization, 2011.

[4] A. France-Presse, “Extinction rebellion goes global in run-up to week of international civil disobedience,” The Guardian, 2018. [On- line]. Available: https://www.theguardian.com/world/2018/dec/30/paris-police-fire-tear-gas-yellow-vest-gilet-jaunes-protesters

[5] Ofgem, “FIT quarterly breakdown,” 2018. [Online]. Available: https://www.ofgem.gov.uk/environmental-programmes/fit/contacts-guidance-and-resources/public-reports-and-data-fit/feed-tariffs-quarterly-statistics#thumbchart-c4831688853446394-n91793

[6] A. Moodie, “Google, apple, facebook towards 100% renewable energy target,” The Guardian, 2016. [Online]. Available: https://www.theguardian.com/sustainable- business/2016/dec/06/google-renewable-energy-target-solar-wind-power

[7] Yael Zekaria, Ruzanna Chitchyan: Exploring Future Skills Shortage in the Transition to Localised and Low-Carbon Energy Systems. ICT4S 2019. URL: http://ceur-ws.org/Vol-2382/ICT4S2019_paper_34.pdf

[8] “Literature Review of Skill Shortage Assessment Models”, EnergyREV Project Report. Yael Zekaria, Ruzanna Chitchyan, Sept. 2019.

[9] “Report on Stakeholder Groups”, Yael Zekaria, Ruzanna Chitchyan, 9 July 2019

————————————–

This blog is written by Cabot Institute member Dr Ruzanna Chitchyan, at the University of Bristol. Ruzanna is a senior lecturer in Software Engineering and an EPSRC fellow on Living with Environmental Change. She works on software and requirements engineering for sustainability.

Capturing the value of community energy

Energise Sussex Coast and South East London Community Energy are set to benefit from a new business collaboration led by Colin Nolden and supported by PhD students Peter Thomas and Daniela Rossade. This is funded by the Economic and Social Research Council with match funding provided by Community Energy South from SGN. In total, £80,000 has been made available from the Economic and Social Research Council Impact Accelerator Account to launch six new Accelerating Business Collaborations involving the Universities of Bath, Exeter and Bristol. This funding aims to increase capacity and capability of early career researchers and PhD students to collaborate with the private sector. Match funding from SGN (formerly Scotia Gas Network) provided by Community Energy South for this particular project will free up time and allow Energise Sussex Coast and South East London Community Energy to provide the necessary company data and co-develop appropriate data analysis and management methodologies.

The Capturing the value of community energy project evolved out of the Bristol Poverty Institute (BPI) interdisciplinary webinar on Energy and Fuel Poverty and Sustainable Solutions on 14 May 2020. At this event Colin highlighted the difficulty of establishing self-sustaining fuel-poverty alleviation business models, despite huge savings on energy bills and invaluable support for some of the most marginalised segments of society. Peter also presented his PhD project, which investigates the energy needs and priorities of refugee communities. With the help of Ruth Welters from Research and Enterprise Development and Lauren Winch from BPI, Colin built up his team and concretised his project for this successful grant application.

The two business collaborators Energise Sussex Coast (ESC) and South East London Community Energy (SELCE) are non-profit social enterprises that seek to act co-operatively to tackle the climate crisis and energy injustice through community owned renewable energy and energy savings schemes. Both have won multiple awards for their approach to energy generation, energy saving and fuel poverty alleviation.

However, both are also highly dependent on grants from energy companies such as SGN with complicated and highly variable reporting procedures. This business collaboration will involve the analysis of their company data (eight years for ESC, ten years for SELCE) to take stock of what fuel poverty advice and energy saving action works and what does not, and to grasp any multiplier effects associated with engaging in renewable energy trading activities alongside more charitable fuel poverty alleviation work.

Benefits for ESC and SELCE include the co-production of a database to help them establish what has and has not worked in the past, and where to target their efforts moving forward. This is particularly relevant in the context of future fuel-poverty alleviation funding bids. With a better understanding of what works, they will be able to write better bids and target their advice more effectively, thus improving the efficiency of the sector more broadly.

 

It will also help identify new value streams, such as those resulting from lower energy bills. Rather than creating dependents, this provides the foundation for business model innovation through consortium building and economies of scale where possible, while improving targeted face-to-face advice where necessary. It will also explore socially distant approaches where face-to-face advice and engagement is no longer possible.

With a better understanding how and where value is created, ESC and SLECE, together with other non-profit enterprises, can establish a platform cooperative while creating self-renewing databases which enable more targeted energy saving and fuel poverty advice in future. Such data also facilitates application for larger pots of money such as Horizon2020, and the establishment of a fuel poverty ecosystem in partnership with local authorities and other organisations capable of empowering people instead of creating dependents. This additional reporting will capture a wider range of value and codify it to be submitted as written evidence to the Cabinet Office and Treasury at national level, while also acting as a dynamic database for inclusive economy institutions and community energy organisations at regional and local level.

People

Dr Colin Nolden is a Vice-Chancellor’s Fellow based on the Law School, University of Bristol, researching sustainable energy governance at the intersection of demand, mobility, communities, and climate change. Alongside his appointment at the University of Bristol, Colin works as a Researcher at the Environmental Change Institute, University of Oxford. He is also a non-executive director of Community Energy South and a member of the Cabot Institute for the Environment.

Peter Thomas is a University of Bristol Engineering PhD student and member of the Cabot Institute for the Environment investigating access to energy in humanitarian relief by combining insights from engineering, social sciences, and anthropology.

Daniela Rossade is a University of Bristol Engineering PhD student investigating the transition to renewable energy on the remote island of Saint Helena and the influence of renewable microgrids on electricity access and energy poverty.

Partner Companies

Energise Sussex Coast Ltd

South East London Community Energy Ltd

Community Energy South

Contact

For more information on the project contact: Dr Colin Nolden colin.nolden@bristol.ac.uk

——————————

This blog is written by Dr Colin Nolden, Vice-Chancellor’s Fellow, University of Bristol Law School and Cabot Institute for the Environment.

Colin Nolden

Energy use and demand in a (post) COVID-19 world

Keeping tabs on energy use is crucial for any individual, organisation or energy network. Energy usage affects our bills, what we choose to power (or not) and how we think about saving energy for a more sustainable future for our planet. We no longer want to rely on polluting fossil fuels for energy, we need cleaner and more sustainable solutions, and both technologies and behaviours need to be in the mix.

It seems the COVID-19 crisis may be a good time to evaluate our energy usage, especially since we assume that we are using less energy because we’re not all doing/consuming as much. We brought together a bunch of our researchers from different disciplines across the University of Bristol to have a group think about how we might change our energy usage and demand during and post COVID-19. Here’s a summary of what was discussed.

Has COVID-19 reduced our energy supply and demand?

You may have noticed in the previous paragraph that I mentioned that we assume that we are using less energy during this COVID-19 crisis. We’re not travelling or commuting as much; we’re not in our work buildings using lots of energy for heating, cooling, lighting, making cups of coffee; and for those of us who work in offices, we’re not all sat around computers all day, especially those that have been furloughed. So what actually is the collective impact of our reduced transport, cessation of business and working from home, doing to our energy supply and demand?

John Brenton, the University of Bristol’s Sustainability Manager spoke on the University’s experience during lockdown. During this COVID-19 crisis so far, UK electricity consumption has fallen by 19% and this percentage reduction has also been seen at the University of Bristol too. Thing is, when there is reduced demand for electricity, fossil fuels become cheaper. It makes us ask the question, could this be a disincentive to investing in renewables? John also pointed out that COVID-19 has shrunk further an already shrinking energy market (which was already shrinking due to energy saving).

Even though electricity consumption has gone down by almost 20%, we are still emitting greenhouse gases, though not so much from our commute to school and work, but with the data we are using, now that a lot of us are home all day. Professor Chris Preist, Professor of Sustainability & Computer Systems, Department of Computer Science, said if we continue to embrace these new ways of working, we are going to replace the traffic jam with the data centre. Of global emissions today, 2% to 3% are made up through input of digital technology. Though the direct emissions of Information and Communications Technology (ICT) are an issue and need to be addressed, they have a different impact than aviation. Digital tech is more egalitarian and a little technology is used by more people, than the much fewer privileged people who fly for example.

The systemic changes in society to homeworking can also increase our emissions far more than the digital tech itself, for example, people tend to live further away from work if they are allowed to work from home. Who needs to live in the city when you don’t have an office any more or you don’t have to come in to work very often? You may as well live where you want. You could even live abroad, but those few times you may need to come into the office, you would be travelling further and if abroad you may still have to fly in which would mean that your emissions would be huge, even though you are no longer commuting all year.

Are there positive changes and how might these be continued post-COVID-19?

Chris shared that most people and companies are now considering remote working as standard post-lockdown, which will reduce commuting and potentially improve emissions. Two thirds of UK adults will work from home more often and the benefits of this are that when people do go into work, they will likely be hot desking, this means companies will require less space and can reduce carbon emissions. Working from home will lead to a reduction of traffic on the roads.

We are video conferencing so much more, in fact Netflix agreed to reduce the resolution of their programmes in order to provide more capacity for home working and the ensuing video calls. But how does videoconferencing compare to our cars? One hour of video conferencing is equivalent to driving 500 metres in your car.

COVID-19 has also shown that a dramatic change in policy can be rapidly put in place, so this can be relevant in replicating for rolling out sustainability and energy initiatives.

What are the implications for social justice?

Dr Ed Atkins, who works on environmental and energy policy, politics and governance in the School of Geographical Sciences, spoke on the politics of a just transition. Changes to energy grids have been driven by collapsing demand and a lack of profitability in fossil fuels. Any investment post-COVID-19 will shape the infrastructure of the future, whether it will be clean or fossil intensive. Unfortunately many economic actors are using the COVID-19 crisis to roll back environmental regulations and stimulate investment by the taxpayer into fossil-intensive industry and economic policies.

Although many politicians are calling for a green recovery, which is positive, none of the current policies incorporate a just transition. A just transition would include job guarantee schemes and a rapid investment into green infrastructure as well as social justice and equity. A just transition would also account for the fact that not everyone can work from home, not everyone has a comfortable home to work in or the technology required to do so.

So what do we need to consider? Caroline Bird, who studies the cross-sectoral issues of environmental sustainability and energy in the Department of Computer Science, said that homeworking doesn’t work for everyone and often doesn’t work for the poorly paid. It doesn’t work well for the most vulnerable or least resilient in our society and community support is often needed here. We need to consider how we will educate everyone for a low carbon future. The government needs to take up the mantle and lead and pay for this. Policy change is possible, but we need to consider loss of interest and changing messages from the government that can lead to confusion.

We also need to consider rapid action to reduce the impact of COVID-19 and rapid action to reduce economic harm. But this is where the justice side of things is not well considered.

Can we imagine radical transformations as we emerge from lockdown?

Professor Dale Southerton, Professor in Sociology of Consumption and Organisation, in the Department of Management, initially raised some provocative questions: what has changed and what has remained and/or endured during COVID-19? And respectively, what will endure post-COVID-19? What has become the ‘new normal’ with regards to energy usage and consumption? Our routines and habits underpin our new normality and these routines and habits constitute demand – which is in opposition to how economists define demand. But how do the norms/normality come to be?

For example, how did the fridge freezer in our kitchen become normal? Because of the fridge freezer, it changed the design of our kitchens, we changed how we shopped, moving from small and regular local shopping trips to big weekly shops at supermarkets, all because we could store more fresh food. This drove us to embrace cars much more, as we needed the boot space to transport our fresh goods home and supermarkets were placed outside of local shopping areas so cars were needed to access them. All this together moves to the ‘normality’.

So then, what radical transformations have occurred during the COVID-19 pandemic? We’ve seen more of us move to homeworking, with face to face interactions taking place via video call. Our food distribution systems have changed somewhat away from going regularly to the supermarket or dining out to buying produce online and receiving deliveries, and embracing takeaway culture much more. In a relatively short period of time we have re-imagined how to work and made it happen. However, the material infrastructure and cultural and social elements still need to evolve and change (which includes how the changes might affect our mental health, how we discipline our time at home, etc).

Caroline said that there are lots of other things we could be doing to decarbonise our energy use during and post-COVID-19, such as:

  • Creating good staff with good knowledge. To do that we need to support their mental health, give them education and development opportunities, and strengthen the fragility of the supply chain they might work in.
  • Educating everyone about low carbon and energy efficiency. To do this we need to consider what skills are needed, which of those are transferable, which skills will take more time to develop and what training programmes are needed for individuals.
  • Developing policies which don’t allow resistance from developers, or poor workmanship of properties, which can have co-benefits to health and social justice. A better planned housing estate, home and national infrastructure will improve social justice and energy savings enormously.
The only thing stopping us is bureaucracy and policy. It’s up to us to challenge the pre-COVID-19 status quo and demand fairer and cleaner energy. You can do this by writing to your local MP, share information on social media and with your friends and take part in activism. We could have a positive new future if we get it right.


Follow the speakers on Twitter:
Dr Ed Atkins @edatkins_ 
Caroline Bird @CarolineB293
Professor Chris Preist @ChrisPreist
John Brenton @UoBris_Sust
—————————–
This blog was written by Amanda Woodman-Hardy, Cabot Institute Coordinator @Enviro_Mand. With thanks to Ruzanna Chitchyan for chairing the discussion panel and taking the notes.
Amanda Woodman-Hardy

Cooking with electricity in Nepal

PhD student Will Clements tells us how switching from cooking with biomass to cooking with electricity is saving time and saving lives in Nepal.

Sustainable Development Goal 7 calls for affordable reliable access to modern energy. However, around 3 billion people still use biomass for cooking. Smoky kitchens – indoor air pollution due to biomass cooking emissions – account for the premature deaths of around 4 million people every year. The burden of firewood collection almost always falls on women and girls, who must often travel long distances exposed to the risk of physical and sexual violence. The gravity of the problem is clear.

Wood stove in a household in Simli, a remote rural community in western Nepal. Credit: KAPEG/PEEDA

Electric cooking is a safe, clean alternative which reduces greenhouse gas emissions and frees up time so that women and girls can work, study and spend more time doing what they want.

In Nepal, many off-grid rural communities are powered by micro-hydropower (MHP) mini-grids, which are capable of providing electricity to hundreds or thousands of households, but often operate close to full capacity at peak times and are subject to brownouts and blackouts.

A project to investigate electric cooking in Nepali mini-grids was implemented in the summer of 2018 by a collaboration between Kathmandu Alternative Power and Energy Group (KAPEG), People Energy and Environment Development Association (PEEDA) and the University of Bristol in a rural village called Simli in Western Nepal. Data on what, when and how ten families cooked was recorded for a month, at first with their wood-burning stoves, and then with electric hobs after they had received training on how to use them.

A typical MHP plant in the remote village of Ektappa, Ilam in Nepal. Credit: Sam Williamson

When cooked with firewood, a typical meal of dal and rice required an average of 12 kWh of energy for five people, which is around the energy consumption of a typical kettle if used continuously for six hours! On the other hand, when cooked on the induction hobs this figure was just 0.5 kWh, around a third of the energy consumed when you have a hot shower for 10 minutes.

However, even at this high efficiency, there was insufficient spare power in the mini-grid for all the participants to cook at the same time, so they experienced power cuts which led to undercooked food and hungry families.

Many participants reverted to their wood stoves when the electricity supply failed them, and this with only ten of 450 households in the village trying to cook with electricity. The project highlighted the key challenge – how can hundreds of families cook with electricity on mini-grids with limited power?

In April 2019, the £39.8 million DFID funded Modern Energy Cooking Services (MECS) programme launched. The MECS Challenge Fund supported the Nepal and Bristol collaboration to investigate off-grid MHP cooking in Nepal further.

A study participant using a pressure cooker on an induction hob. Credit: KAPEG/PEEDA

A study participant using a pressure cooker on an induction hob. Credit: KAPEG/PEEDA
The project expands on the previous project by refining data collection methods to obtain high quality data on both Nepali cooking practices and MHP behaviour, understanding and assessing the potential and effect of electric cooking on Nepali MHP mini-grids, and using the collected data to investigate how batteries could be used to enable the cooking load to be averaged throughout the day so that many more families can cook with electricity on limited power grids.

MHP differs greatly from solar PV and wind power in that it produces constant power throughout the day and night, providing an unexplored prospect for electric cooking. Furthermore, this 24/7 nature of MHP means that there is a lot of unused energy generated during the night and off-peak periods which could be used for cooking, if it could be stored. Therefore, battery-powered cooking is at the forefront of this project.

Testing induction hobs in the MHP powerhouse. Credit: KAPEG/PEEDA

Collected data will be used to facilitate a design methodology for a battery electric cooking system for future projects, evaluating size, location and distribution of storage, as well as required changes to the mini-grid infrastructure.

Furthermore, a battery cooking laboratory is being set up in the PEEDA office in Kathmandu to investigate the technical challenges of cooking Nepali meals from batteries.

The baseline phase – where participants’ usual cooking is recorded for two weeks – is already complete and preparations for the transition phase are underway where electric stoves are given to participants and they are trained on how to cook with them.

We will be heading to Kathmandu to help with the preparations, and the team will shortly begin the next phase in Tari, Solukhumbu, Eastern Nepal.

The project will continue the journey towards enabling widespread adoption of electric cooking in Nepali MHP mini-grids, the wider Nepali national grid and grids of all sizes across the world.

————————————-
This blog is written by Will Clements and has been republished from the Faculty of Engineering blog. View the original blog. Will studied Engineering Design at Bristol University and, after volunteering with Balloon Ventures as part of the International Citizen Service, returned for a PhD with the Electrical Energy Management Research Group supervised by Caboteer Dr Sam Williamson. Will is working to enable widespread adoption of electric cooking in developing communities, focusing on mini-grids in Nepal.

The opinions expressed in this blog are those of the author and do not necessarily reflect the official policy or position of UKAid.

Will Clements

 

Are we all invested in climate crisis? USS, Shell and us

Angeline M. Barrett is one of the CIRE staff on strike this week. In this article, she takes a closer look at how the USS pension is invested.


This week, academic and some professional services staff at the University of Bristol will be on strike. The industrial action relates, amongst other demands, to the terms of our pension benefits and contributions. Bristol is the first UK University to declare a climate emergency and the School of Education has developed its own Climate Strategy. Yet, our pension fund, USS, holds substantial shares in the fossil fuel industry. Let us use the time on the picket lines to build a climate Ethics for USS campaign.

USS investments in fossil fuels

According to the USS 2019 annual report, 40.9% of the Pension fund’s £64.7 billion assets, what is known as its implemented portfolio, is invested in private equities (i.e. shares in private companies). Its website lists the top 100 equity investments (as of 31 March). Number one on the list is Royal Dutch Shell plc with equities valued at £538 million. Shell is the sixth largest extractor of fossil fuels in the world by volume. In total, I recognised eight of the listed companies as being in the business of exploration and extraction of fossil fuels:

  • Royal Dutch Shell plc
  • Glencore plc (coal mining)
  • Lundin Petroleum
  • Occidental Petroleum Corp.
  • Pioneer Natural Resources Co.
  • EOG Resources Co. (formerly part of Enron Oil and Gas)
  • Petroleo Brasileiro SA (known as Petrobas)
  • Lukoil PJSC ADR (A Russian multinational)

 

1 Breakdown of USS Retirement Income Builder as of 31 March 2019 (USS 2019a)

The Guardian recently ran a series of articles on the world’s largest corporate polluters. Shell and Petrobas both appear on the list of 20 firms, which between them have been calculated to have contributed to 35% of all energy-related carbon dioxide and methane in our atmosphere since 1965, according to research by the Climate Accountability Institute led by Heede (Taylor & Watts, 2019; Heede, 2019a). 1965 was taken as the start point because by then the oil giants already knew about that carbon emissions could lead to climate change (Bannerjee et al., 2016). When approached to respond to Heede’s research, Shell claimed:

“… we fully support the Paris agreement and the need for society to transition to a lower-carbon future. We have already invested billions of dollars in a range of low-carbon technologies, … . Addressing a challenge as big as climate change requires a truly collaborative, society-wide approach. We’re committed to playing our part, by addressing our own emissions and helping customers to reduce theirs.” (Taylor 2019).

Shell is investing in renewables. In 2018-19, it invested $1-$2billon on renewables, around  4-6% of its $25-$30bn annual investment (The Guardian, 2019). In this respect, the two European oil giants, Shell and BP are doing much more than US, Saudi, Russian and other oil companies (Watts, 2019). However, Shell is also planning to increase production of crude oil and gas by a colossal 38% between 2018 and 2030 (Watts, Ambrose and Vaugh 2019). Future plans include fracking for gas and oil in land belonging to the Mapuche indigenous people in the Neuquén province of Argentina (Bnamericas, 2019The Guardian, 2019; Goñi, 2019). Local groups have complained about thousands of tonnes of toxic waste dumped on their land by Shell’s subcontractor, Treater Neuquén S.A. (Raine, 2019). Petrobas is not investing in renewables but claims that through the use of new carbon capture technologies, it can expand production with no change to its carbon footprint (Taylor 2019). Certainly, it is expanding production. This month it purchased exploration and production rights for two deep water oilfields off the coast of Argentina, opening the way for the world’s biggest expansion of offshore oil and gas exploration (Petrobas, 2019; The Guardian, 2019). Despite all the rhetoric around support for the Paris Climate Agreement, the rate at which oil and gas is pouring into global markets is accelerating not slowing. For Shell, Petrobas, Pioneer Natural Resources, EOG and Lukoil, exploration and exploitation of new oilfields is their main business activity.

Fossil fuel companies can present themselves as progressively green because of the way that responsibility for carbon emissions is accounted, including by the United Nations. Only the greenhouse gases produced in the process of extraction, refining and transportation are attributed to the oil companies. Like other fossil fuel companies, Shell and Petrobas accept no responsibility for the emissions produced when their customers burn the oil or gas they have extracted from the ground. By contrast, Heede’s research (2019a) attributes to the oil giants responsibility for all the carbon dioxide and methane associated with the gas and oil they extract, including that produced when it is burned by consumers.

It is disingenuous for Shell to point the finger at the rest of society. For decades the petroleum companies have spent millions on influencing public opinion and politicians. Shell is reported to be spending over £50 million per annum branding itself as a company that supports action against climate change (Laville, 2019a). A recently released report by Corporate Europe Observatory, Food & Water Europe, Friends of the Earth Europe and Greenpeace claims that Shell spent €35.6 million between 2010 and 2018  just on lobbying EU officials (Laville, 2019b). State-owned Petrobas’ entanglements with Brazilian politicians is even more problematic. The company has been embroiled in political corruption scandals, involving two Brazilian presidents, Lula and Rousseff, as well as a number of other high-level politicians (Chapman, 2018). Last year, Petrobas settled a lawsuit with investors in the US by agreeing to pay-outs of £2.2 billion as recompense for profits illegally siphoned off through bribes and kickbacks.

Investor influence

The current climate crisis demands immediate and drastic action. The Guardian’s environmental editor, Jonathon Watts (2019) points out that this will not come about through an accumulation of individual consumer decisions but requires turning off the flow of fossil fuels at source by phasing out extraction. The argument goes that as long as fossil fuels continue to flow into global markets, carbon-dependent industries will continue to grow. Whilst as individuals, we can and should change our behaviour, the burden of responsibility does need to shift towards the companies, which for fifty years have profited enormously from fossil fuels, whilst in full knowledge of the potential impact on climate. As Naomi Klein observed, naming another oil giant:

A lot of environmentalist discourse has been about erasing responsibility: “We’re all in this together… We’re all equally responsible.” Well, no – you, me and Exxon (Mobil) are not all in this together. The idea we’re all guilty is demobilising because it prevents us directing our anger at the institutions most responsible. (Forrest, 2014)

Yet, when it comes to Royal Dutch Shell, it appears that we are all in it together not just through consuming fossil fuel consumption but in benefiting from the profits. Investors play a key role in enabling their business and companies are under obligation to generate and to pay dividends to shareholders. Shell, therefore, can only make a dramatic change in direction in its longstanding business model with support from shareholders. USS is probably the largest pension fund in the UK, in terms of assets, so its corporate influence is substantial, particularly within UK. USS claims leadership within the sector in respect to its response to climate change. So, how is USS using its influence as a shareholder?

USS summarises its overarching strategy as:

Using our scale and expertise to deliver secure futures for our members, support for universities and being a force for positive change in the UK and broader economy. (USS, 2019a: 9)

In an article (Russell, 2018) on fossil fuel divestment, the Head of Responsible Investment, explains that due to its legal responsibilities, the first part of this strategy has to take precedence over the second. Delivering secure futures for us, its members, trumps positive change. USS, Russell explains, has a legal obligation to deliver on its primary objective of delivering dividends on their investments to meet the defined benefits for members.  This we are told, rules out divesting for ethical reasons alone and requires the fund to maintain a “balanced portfolio” – presumably a balance between ethical and unethical investments. As an example of what this means in practice, Russell points to £800 million (1.2 % of its total assets) of renewable energy assets held by USS. USS has been proactive not only in securing but making it possible to hold these types of assets. It created and wholly owns as a subsidiary L1 Renewables, a platform from which it has loaned £500 million to fund renewable energy technology.

Investing in clean energy is just one half of the USS responsible investment strategy. The fund also seeks to use its stake in companies “to promote positive boardroom action on ESG [Environmental, Social and Governance] and ethical issues” (Russell, 2018).  To exemplify this kind of action, this year’s annual report (USS 2019a) explains how USS collaborated with other pension funds to engage with Shell, leading to a commitment from the company to reduce carbon emissions by 50% by 2050. This is presumably a 50% cut in the roughly 10% of emissions that come from the extraction, refining and transportation of oil and gas; a gain for the planet that will be dwarfed by the increase in emissions at the point of consumption associated with Shell’s planned 35% increase in output by the much earlier date of 2030.

In another success story (USS, 2019b), we are told that a resolution they proposed to three UK-listed mining conglomerates (Glencore, Rio Tinto and Anglo-American) related to how they “were managing the transition to a 2 degree world”. These were, in each case, “supported by an overwhelmingly majority” of shareholders and board members. This exemplifies the risk management discourse, which typifies asset managers’ response to climate change:

As a long-term investor USS wants to be able to assess how companies are managing climate change and the risks it poses to their business. (USS, 2019b)

Risk management needs to be informed by data. So USS, also encourages companies to report on carbon emissions and their plans to respond to climate change.

What about us? What can we do?

USS’ climate change leadership represents a shift within but not a rejection of the neoliberal profit-led logic of capitalist global markets that has been key driver of climate crisis in the first place. The kind of logic that places the security of profits over ethics. The School of Education’s mission includes a commitment to promote social justice. The Centre for Comparative and International Research in Education is concerned with issues of social, environmental and epistemic justice in education. The part of the pension fund that is invested in the environmental destruction of Mapuche people’s land runs completely counter to the whole purpose and value-orientation of our professional work and research. The gains that USS and its collaborators have made in the Climate Agreement 100+ project arguably amount to little more than window-dressing, playing into Shell’s green-washing strategy. USS talks of managing the risk of ‘stranded assets’, but not the risks to lives and livelihoods associated with climate catastrophe. Stranding shale and deep-water reserves is precisely what we need to do fast. For humanity and the planet, they are not assets but threats to security.  The prospect of a near future in which carbon emissions from fossil fuels increase by 35% is one to fill us with dread and foreboding. Certainly, not one on which to place a bet. What logic can there be to betting on a future in which we have no wish to live, or to bequeath to our children?

So as we are members of USS and the money they invest is ours, what can we do? If you earn over £55,000 or pay top-ups on your benefits you can unilaterally withdraw the defined contribution part of your pension from fossil fuels, tobacco, the arms trade, gambling and pornography. Just log into ‘My USS’ and select the ‘Ethical Lifestyle’ option from the ‘Do it for me’ section (Jennings 2018).

For the rest of us and the larger ‘defined benefit’ part of the pension, the only way to bring change is through collective action. USS has responded to such action in the past. The reason that USS is a national leader in responsible investment is because of the demands of its members.  USS first adopted a responsible investment policy 20 years ago following a two-year Ethics for USS campaign, involving university staff and students (Fair Pensions n.d.). In 2014, it published a detailed response to recommendations of a report by ShareAction on Ethical Investment because UCU demanded a response. Another Ethics for USS campaign ran from 2014 to 2016, focused on divesting from companies with any involvement in banned weapons (ShareAction 2016). USS participates in global investor initiatives in IIGCC and the Climate Action 100+. It has a large in-house responsible investment team. USS communicates its actions on climate change through its website because it knows its members care deeply about such matters, although much of the information is frustratingly vague. Our Union is represented by three appointees on its (entirely white) 12-member, although one is currently suspended after asking awkward questions around deficit calculations (UCU, 2019).

With greater levels of awareness of climate change and following University of Bristol’s declaration of a climate emergency, here and now seems an apt point to launch another Ethics for USS campaign with a focus on climate. Industrial action brings us together in different ways that can build solidarity. One of UCU’s planned actions is participation in the climate strike on Friday 29 November. So, let us use the next week to join up the dots between pension investments and climate change. Let us build a collective campaign to demand a broader, deeper, more robust responsible investment strategy. Let us tell USS that we appreciate their efforts over the last five years to constructively engage with companies such as Shell and Glencore but they do not go far enough. Over the next five years, the urgency of climate change requires complete divestment from all companies that persist in expanding production of oil, gas and coal. Let us insist that USS engages more closely with its members to explain and be accountable for their investment choices. Let us insist that they engage with the expertise of research institutes such as Bristol’s Cabot Institute for the Environment. Let us through sustained collective campaigning attempt to break down the gulf in values between the investment sector, where unethical investments are justifiable, and the HE sector, where ethical scrutiny is unavoidable.

If anyone working for USS is reading this, what are your plans for Friday? Do pop down to a climate demonstration, it will be a great way to get to know us better.

References

Bannerjee, N., Cushman Jr., J.H., Hasemyer, D. and Song, L. (2016) CO2’s Role in Global Warming Has Been on the Oil Industry’s Radar Since the 1960s. Inside Climate News, 13 April 2016.

Bnamericas (2019) Neuquén and Shell review security in Sierras Blancas after shooting. Bnamericas, 11 June 2019.

Chapman, B. (2018) Petrobas agrees to pay $3bn to settle US lawsuit over corruption scandal. Independent, 3 January 2018.

FairPensions (n.d.) Our history.

Forrest, A. (2014) Naomi Klein: “A 3-day week will help to save life on Earth”. The Big Issue, 28 October 2014.

Goñi, U. (2019) Indigenous Mapuche pay high price for Argentina’s fracking dream. The Guardian, 14 October 2019.

Guardian, The (2019) What do we know about the top 20 global polluters? The Guardian, 9 October 2019.

Heede, R. (2019a) Carbon Majors: Update of Top Twenty companies 1965-2017. Press Release. Snowmass, Colorado: Climate Accountability Institute. 9 October 2019.

Jennings, N. (2018) Pensions: Invest in our future, not the past. Climate & Environment at Imperial, 3 September 2018.

Laville, S. (2019a) Top oil firms spending millions lobbying to block climate change policies, says report. The Guardian, 22 March 2019.

Laville, S. (2019b) Fossil fuel big five ‘spent €251m lobbying EU’ since 2010. The Guardian, 24 October 2019.

Petrobas (2019) We acquire Búzios and Itapu fields on the Transfer of Rights surplus bidding round. Petrobas, 6 November 2019.

Raine, J. (2019) Argentina: toxic waste from fracking in Patagonia. Latin American Bureau, 11 March 2019.

Russell, D. (2018) The Divestment Debate. London: University Superannuation Scheme.

ShareAction (2016) Ethics for USS. Campaign Briefing, November 2016.

Taylor, M. (2019) Climate emergency: what the oil, coal and gas giants say. The Guardian, 10 October 2019.

Taylor, M. & Watts, J. (2019) Revealed: the 20 firms behind a third of all carbon emissions. The Guardian, 9 October 2019.

UCU (2019) UCU comment on sacking of USS board member Jane Hutton. UCU news, 11 October 2019.

USS (2019a) Reports and accounts for year ended 31 March 2019. London: University Superannuation Scheme.

USS (2019b) Climate Change. London: University Superannuation Scheme.

Watts, J. (2019) Naming and shaming the polluters. The Guardian, Today in Focus Podcast. 18 October 2019.

Watts, J., Ambrose, J. and Vaughan, A. (2019) Oil firms to pour extra 7m barrels per day into markets, data shows. The Guardian, 10 October 2019.

———————
This blog was written by Dr. Angeline M. Barrett (angeline.barrett@bristol.ac.uk) from the University of Bristol School of Education. This blog was reposted with kind permission from CIREView the original blog.

Angeline Barrett

 

Uncomfortable home truths: Why Britain urgently needs a low carbon heat strategy



A new report backed by MPs and launched by Minister for Climate Change Lord Duncan on 15 October 2019, calls for an urgent Green Heat Roadmap by 2020 to scale low carbon heating technologies and help Britain’s homeowners access the advice they need to take smarter greener choices on heating their homes.  The year-long study by UK think-tank Policy Connect warns that the UK will miss its 2050 net-zero climate target “unless radical changes in housing policy, energy policy and climate policy are prioritised”. Dr Colin Nolden was at the launch on behalf of the Cabot Institute for the Environment and blogs here on the most interesting highlights of the report and questions raised.

———————————-

Policy Connect had invited a range of industry, policy, academic and civil society representatives to the launch of their Uncomfortable Home Truths report. The keynote, no less than Lord Duncan of Springbank, Minister for Climate Change, and the high-level panel consisting of Maxine Frerk, Grid Edge Policy (Chair), Alan Brown MP, House of Commons (SNP), Dr Alan Whitehead MP, House of Commons (Labour), Dhara Vyas, Citizens Advice, Adam Turk, BAXI Heating (sponsor) and Mike Foster, EUA (Energy & Utilities Alliance), (sponsor), had been briefed to answer tough questions from the crowd given the UK’s poor track record in the area of heat and home decarbonisation.

The event started with an introduction by Jonathan Shaw, Chief Executive of Policy Connect, who introduced the panel and officially launched the report. Uncomfortable Home Truths is the third report of the Future Gas Series, the first two of which focused on low-carbon gas options. This last report of the series shifts the focus from particular technologies and vectors towards heating, households and consumers. Jonathan subsequently introduced the keynote speaker Lord Duncan of Springbank, Minister for Climate Change.

Lord Duncan supported the publication of this report as timely and relevant especially in relation to the heat policy roadmap that government intends to publish in 2020. He stressed the importance of a cultural shift which needs to take place to start addressing the issue of heat at household and consumer level. He was adamant that the government was aligning its policies and strategies with its zero-carbon target according to the Committee on Climate Change and guided by science and policy. In this context he bemoaned the drive by some country representatives to put into question the targets of the Paris Agreement on Climate Change which he had witnessed as the UK’s key representative at the run-up to COP25 in Chile. The 2020 roadmap will report on the decisions which will need to be taken in homes and in technology networks, ranging from heat pumps to hydrogen and low-carbon electricity to support their decarbonisation. It requires cross-party support while depending on more research and learning from successful examples in other European countries.

Although Lord Duncan suggested that ‘it’s easier to decarbonise a power plant than a terraced house’, he told the audience to take encouragement from the fuel shift from coal towards gas starting half a century ago. But in this context he once again stressed the cultural shift which needs to go hand-in-hand with government commitment and technological progression, using the example of TV-chefs shunning electric hobs as an indication of our cultural affinity for gas. As long as heating and cooking are framed around fossil fuels, there is little space in the cultural imagination to encourage a shift towards more sustainable energy sources.

“The example of TV-chefs shunning electric hobs is an indication of our cultural affinity for gas”. Image source.

Among the questions following the keynote, one quizzed Lord Duncan about the process and politics of outsourcing carbon emissions. Lord Duncan stressed his support of Border Carbon Adjustments compliant with EU and global carbon policy ‘in lock-step with our partners’ to ensure that carbon emissions are not simply exported, which appears to support the carbon club concept. Another question targeted the UK’s favourable regulatory environment that has been created around gas, which has resulted in the EU’s lowest gas prices, while electricity prices are highest in Europe, due, among other things, to Climate Change Levies, which do not apply to gas, increasing by 46% on 1 April 2019. Lord Duncan pointed towards the ongoing review of policies ahead of the publication of the 2020 heat roadmap which will hopefully take a more vector- and technology-neutral approach. A subsequent rebuttal by a Committee on Climate Change (CCC) representative stressed the CCCs recommendation to balance policy cost between gas and electricity as on average only 20,000 heat pumps are sold in the UK every year (compared to 7 times as many in Sweden) yet the Renewable Heat Incentive is about to be terminated without an adequate replacement to support the diffusion of low-carbon electric heating technologies.

Lord Duncan stressed the need to create a simple ‘road’ which does not fall with changes in policy and once again emphasized the need for a cross-party road to support the creation of a low-carbon heating pathway. A UKERC representative asked about the government approach to real-world data as opposed to modelling exercises and their support for collaborative research projects as both modelling and competitive approaches have failed, especially in relation to Carbon Capture and Storage. Lord Duncan responded that the UK is already collaborating with Denmark and Norway on CCS and that more money is being invested into scalable and replicable demonstrators.

Following an admission wrapped in metaphors that a change in government might be around the corner and that roadmaps need to outlast such changes, Lord Duncan departed to make way for Joanna Furtado, lead author of the Policy Connect report. She gave a very concise overview of the main findings and recommendations in the report:

  • The 80% 2050 carbon emission reduction target relative to 1990 already required over 20,000 households to switch to low-carbon heating every week between 2025 and 2050. The zero-carbon target requires even more rapid decarbonisation yet the most successful policy constellations to date have only succeeded in encouraging 2,000 households to switch to low-carbon heating every week.
  • This emphasizes the importance of households and citizens but many barriers to their engagement persist such as privacy issues, disruption associated with implementation, uncertainly, low priority, lack of awareness and confusion around best approaches, opportunities, regulations and support.
  • Despite the focus on households, large-scale rollout also requires the development of supply chains so at-scale demonstrations need to go hand-in-hand with protection and engagement of households by increasing the visibility of successful approaches. Community-led and local approaches have an important role to play but better monitoring is required to differentiate between more and less successful approaches.
  • Protection needs to be changed to facilitate the inclusion of innovative technologies which are rarely covered while installers need to be trained to build confidence in their installations.
  • Regional intermediaries, such as those in Scotland and Wales, need to be established to coordinate these efforts locally while at national level a central delivery body such as the one established for the 2020 Olympics in London needs to coordinate the actions of the regional intermediaries.
  • Ultimately, social aspects are critical to the delivery of low-carbon heat, ranging from the central delivery body through regional intermediaries down to households and citizens.

 

Image source.

Chaired by Maxine Frerk of Grid Edge Policy, the panel discussion kicked off with Alan Brown who stressed the urgency of the heating decarbonisation issue as encapsulated by Greta Thunberg and Extinction Rebellion and the need to operationalize the climate emergency into actions. He called for innovation in the gas grid in line with cautions Health and Safety Regulation alterations. Costs also need to be socialised to ensure that the low-carbon transition does not increase fuel poverty. His final point stressed the need reorganize government to make climate change and decarbonisation a number 1 priority.

Dr Alan Whitehead, who has been involved with the APPCCG from the beginning, emphasized how discussions around heat decarbonisation have progressed significantly in recent years and especially since the publication of the first report of this series. He suggested that the newest report writes the government roadmap for them. In relation to the wider context of decarbonising heat, Alan Whitehead encouraged a mainstreaming of heating literacy similar to the growing awareness of plastic. He also stressed how far the UK is lagging behind compared to other countries and this will be reflected in upcoming policies and roadmaps. As his final point Alan Whitehead cautioned that the low-intrusion option of gas-boiler upgrades from biomethane to hydrogen ignores the fact that greater change is necessary for the achievement of the zero-carbon target although he conceded that customer acceptance of gas engineer intervention appears to be high.

Dhara Vyas presented Citizens Advice perspective by stressing the importance of the citizen-consumer focus. Their research has revealed a lack of understanding among landlords and tenants of the rules and regulations that govern heat. She suggested that engagement with the public from the outset is essential to protect consumers as people are not sufficiently engaged with heating and energy in general. Even for experts it is very difficult to navigate all aspects of energy due to the high transaction costs associated with engagement to enable a transition on the scale required by government targets.

Finally, representatives of the two sponsors BAXI and the Energy & Utility Alliance made a rallying call for the transition of the gas grid towards hydrogen. Adam Turk emphasized the need to legislate and innovate appropriately to ensure that the 84% of households that are connected to the gas grid can receive upgrades to their boilers to make them hydrogen ready. Similarly, Mike Foster suggested that such an upgrade now takes less than 1 hour and that the gas industry already engages around 2 million consumers a year. Both suggested that the gas industry is well placed to put consumers at the heart of action. They were supported by several members of the audience who pointed towards the 150,000 trained gas service engineers and the ongoing distribution infrastructure upgrades towards plastic piping which facilitate a transition towards hydrogen. Other members of the audience, on the other hand, placed more emphasis on energy efficiency and the question of trust.

Sponsorship of the Institution of Gas Engineers & Managers, EUC (Energy & Utility Alliance) and BAXI Heating was evident in the title Future Gas Series and support for hydrogen and ‘minimal homeowner disruption’ boiler conversion to support this vector shift among members of the audience was evident. Nevertheless, several panel members, members of the audience and, above all, Lord Duncan of Springbank, stressed the need to consider a wider range of options to achieve the zero-carbon target. Electrification and heat pumps in particular were the most prominent among these options. Energy efficiency and reductions in energy demand, as is usual at such events, barely received a mention. I guess it’s difficult to cut a ribbon when there’s less of something as opposed to something new and shiny?

———————————————-
This blog is written by Dr Colin Nolden, Vice-Chancellor’s Fellow, University of Bristol Law School and Cabot Institute for the Environment.

Colin Nolden

Tackling the climate crisis with energy transitions

Aerospace Engineering student Kieran Tait recently returned from a transformative journey through Western Canada, representing the University at the Energy Transitions summer school at the University of Alberta. A timely topic following the recent declaration of climate emergency here at the university.

Kieran underneath a glacier in Lake Louise, Banff National Park.

Throughout the two weeks, we endured a 40-hour lecture series, in which world-leading industry experts and researchers presented to us the current state of energy, the outlook for the future and an insight into different types of energy systems and their relative merits. This was superbly rounded off with insightful field trips including a tour around a wind farm and a hydroelectric dam, which really helped to contextualise the lectures.

The course was coordinated by the Worldwide Universities network, in which 21 representatives from 13 universities worldwide came together to study the practicalities of decarbonising society. The network brought a diversity of cultures and study areas together, which really shed light on the interconnectedness of the energy crisis and the need for mass mobilisation of society to focus minds on the solutions to the single biggest existential crisis humanity has ever faced. Climate breakdown.

The impending breakdown of our climate is an issue faced by every living being on Earth: no matter your nationality, race, gender, beliefs or background, the impacts of a warming world will completely transform your standard of living in the coming decades unless drastic steps are taken in the next 18 months to transition away from our current overconsuming, unsustainable way of life.

If we fail to meet this objective, we can expect unprecedented weather events, resulting in scarcity of basic human resources such as land, food and water, mass migration in the hundreds of millions and potentially the collapse of civilisation as we know it. Worse still, we can expect all of this as early as 2050 if action is not taken immediately. The seemingly impossible task imposed on our current generation is unparalleled in scale and complexity. It will require a collaboration among all disciplines and every nation on earth to achieve the sort of far reaching and functional solutions required to give us the best chance of limiting the warming trajectory preventing us from passing the point of no return.

Visiting the TransAlta wind farm in Pincher Creek, known as the Wind Capital of Canada.

The course in Energy Transitions provided me with the fundamental knowledge required to propose a logical working plan to phase out the current destructive energy policy and replace it with a more sustainable alternative. This included an overview of current climate science and projections for the future global energy mix, followed by an insight into a variety of energy production methods, including traditional fossil based systems such as coal, oil and gas and renewable types such as wind, solar, hydro, marine, geothermal, nuclear, biomass and hydrogen fuel cells.

The science behind each technology was explained thoroughly and the social, environmental and political implications associated with each type were also discussed. Also carbon sequestration methods such as Carbon Capture, Utilisation and Storage and land reclamation were explained to us in great depth, as it is clear that we need to not only reduce emissions to zero, but also begin to remove emissions that already exist in the atmosphere if we are to maximise our chances of staying below 1.5 degrees Celsius.

Alongside lectures, we also got the chance to go to Pincher Creek, a town in southern Alberta which is home to a large number of wind farm projects, making use of the region’s windy climate. We got the chance to visit a wind farm and go inside a turbine and we were also shown around a hydroelectric dam, bringing to life the concepts studied in lectures. Further to this we visited Waterton Lakes national park to experience some of the natural beauty Canada has to offer.

The group outside the house of the University’s founder Alexander Rutherford, before a ceremonial dinner.

When we returned, it was back to work as we all were tasked with presenting to the rest of the group, a proposal for energy transition solutions throughout different areas of the world. My team and I were given the job of proposing an EU wide energy transition plan. A timely subject following the newly appointed European Commissioner’s calls for a climate-neutral Europe by 2050. This task involved reviewing current policy and future goals, developing a sustainable infrastructure plan which would sufficiently meet increasing demand and discussing the issues associated with this transition.

Working with students from Spain, Ghana and Brazil led to some contrasting opinions and views on various subject matters, however the overwhelming consensus was that the transition had to phase out fossil fuels as soon as possible, acknowledging the need to sacrifice living standards in order to allow this rapid transition to happen. It is reassuring to know that despite our cultural differences, we all share the same view that action must be taken immediately, and we must undergo a process of degrowth to cut further emissions and keep temperature rises to a minimum to avert catastrophic climate change.

All in all, this course excelled at bringing like-minded inquisitive individuals together from a diversity of cultures and backgrounds to discuss the most pressing technological, political and ethical challenge humanity has ever faced. It’s admittedly a very frightening time to be a young person, but its undeniable that the times ahead present humanity with a chance to reach a new age in technological and cognitive ability and will allow for multi-national cooperation like the world has never seen before. I would like to thank the Worldwide Universities Network, the University of Alberta and everybody involved for making this incredible experience a possibility!

——————————
This blog is written by University of Bristol engineering student Kieran Tait. It’s fantastic to hear Kieran’s passion and enthusiasm for combating the climate crisis we are facing through engineering and renewable energy solutions. This is something that the University is highly committed to and this year world-leading renewable energy expert Andrew Garrad will be joining the Faculty as a visiting professor to enhance our teaching of sustainable energy not only to our engineering undergraduates but to students across the University. This blog has been reposted with kind permission from Kieran and the Faculty of Engineering blog. View the original post.