World Water Day: Water scarcity challenges under climate change in East African drylands

Climate change presents great challenges for dryland regions, especially in communities where socioeconomic livelihoods are tied to the consistency of seasonal rainfall. In the dryland regions of East Africa, drought is a major threat to rainfed agriculture and to drinking water supplies, and regional climate is projected to increase drought frequency and severity.

Since 2000 alone East Africa has been struck by 10 droughts, which generated three severe famines affecting millions of people in the region. Although there is often consensus about the growing regional threat posed by drought, there is a major disconnect between the climate science (meteorological drought) and assessments of usable water resources (hydrological drought) that support livelihoods.

Affected communities need straightforward answers to a practical set of questions: How will regional climate change affect soil moisture required to grow crops or the water table in wells that provide precious drinking water in a parched landscape? How will the water stores change season by season and over coming decades? Furthermore, what adaptation strategies are available to address this challenge?

Through a series of funded projects, we have been working at better understanding how climate and climate change translates into useable water in the ground in East African dryland regions, and how people use and access relevant information to make livelihood decisions towards adaptation. We have developed an interdisciplinary team comprised of dryland hydrologists, climatologists, hydrometeorologists, computer scientists, pastoralist experts, and social scientists (both in the UK and Kenya, Somalia and Ethiopia) to develop a holistic perspective on both the physical and social aspects of drought. We are developing new regional modelling tools that convert past and future rainfall trends into soil moisture and groundwater. These models will underpin a new mobile phone app that aims to deliver forecasts of crop yields and soil moisture to remote agro-pastoralists. Simultaneously we are working with drought-affected communities in Kenya and Ethiopia to better understand barriers and opportunities for improving resilience to climate change, information use, and feasible adaptation strategies.

We hope that through these research endeavours we can contribute to improved climate adaptation efforts in these dryland regions and to long-term societal resilience to climate change.

Read more about Katerina’s work.

———————————-
This blog is written by Dr Katerina Michaelides, Head of Dryland Research Group at the School of Geographical Sciences and Cabot Institute for the Environment, University of Bristol.

Katerina Michaelides

World Water Day: How can research and technology reduce water use in agriculture?

Record breaking temperatures in 2018 led to drought in many European countries. Image credit Wikimedia Domain Mimikry11.

World Water Day draws attention to the global water crisis and addresses why so many people are being left behind when it comes to having access to safe water. The UN estimates that globally 80% of people who have to use unsafe and unprotected water sources live in rural areas. This can leave households, schools, workplaces and farms struggling to survive. On farms water is vital for the production of food and is used in a huge range of processes, including irrigation and watering livestock. In this blogpost I will lightly review the current issues around water in agriculture and highlight some exciting research projects that may offer potential solutions.

What is the water crisis?

The UN Sustainable Development Goal 6 is to ensure that all people have access to sustainable, safe water by 2030. Unfortunately, we’re a long way off achieving this goal as a recent report from UNICEF/WHO estimates that there are currently 2.1 billion people living without access to safe water in their homes and workplaces. Another report estimates that 71% of the global population experiences severe water scarcity during at least one month of the year. In recent years we have seen water risks increase, with severe droughts in Africa, China, Europe, India and the US. In sub-Saharan Africa, the number of record breaking dry months increased by 50% from 1980 to 2013. Unfortunately droughts, floods and rising sea levels are predicted to continue and become more unpredictable under climate change scenario models and as the global population continues to grow, there will be increasing demands on water supplies. Increases in water scarcity are likely to lead to increases in political and economic instability, conflict and migration.

Why is water important to agriculture?

In agriculture, water is vital for growing crops and sustaining livestock. Farmers use water to irrigate, apply pesticides and fertilizer and protect from heat and frost. This heavy reliance means that when water supplies run out, farmers are unable to effectively maintain their crops and livestock, leading to food insecurity. Drought stress can result in yield losses of 64% in rice, 50% in chickpea, 18 – 32% in potato. Drought has particularly devastating effects in tropical and sub-tropical regions, where climate change is predicted to have the biggest impact.

The amount of water it takes to produce food and drink products is pretty shocking. Beef production in particular is associated with high levels of water usage. It is estimated that the global average water footprint of a 150g beef burger is 2350 litres; despite producing just 5% of the world’s food calories, beef production is reported to create 40% of the water scarcity burden. Although there are big variations in the environmental impacts of beef farming, with grassland fed, rotational systems being less intensive than grain fed herds on deforested land.

Where does water used for agriculture come from?

The water that is used in agriculture comes from a range of sources, including surface and ground water supplies, rivers and streams, open canals, ponds, reservoirs and municipal systems. Globally, the FAO estimates that agriculture accounts for 70% of freshwater withdrawals, which is predominately used for irrigation. In many areas the high level of groundwater used for irrigation is unsustainable, leading to depletion. For instance, the OECD estimates that groundwater supplies 60% of India’s agricultural water needs but groundwater sources are suffering from depletion and pollution in 60% of states. A big problem is that irrigation is often highly inefficient; in the US the FAO estimates that the amount of irrigated water that is actually used by plants is only 56%. Large amounts of energy are also needed to withdraw, treat and supply agricultural water, leading to significant greenhouse gas (GHG) emissions.

What happens to agricultural water after use?

As well as depleting freshwater supplies, agriculture can also pollute them, with runoff containing large quantities of nutrients, antibiotics, growth hormones and other chemicals. This in turn has big affects on human health through contamination of surface and ground water with heavy metals, nitrate and pathogens and in the environment; it can cause algal blooms, dead zones and acidification of waterways. Combined these issues mean that better management of water in agriculture has huge potential for improving sustainability, climate resilience and food security, whilst reducing emissions and pollution.

What are the potential solutions?

Thankfully there are many innovative projects that are working to improve issues around water in agriculture. Below are a few examples that I find particularly promising.

How can technology help?

To reduce water wastage on farms, agri-technology is being developed whereby multiple wireless sensors detect soil moisture and evapotranspiration. The sensors feed this information to a cloud-based system that automatically determines precisely how much water to use in different parts of the field, leading to increased yields and saving water. Farmers can get water management recommendations via a smartphone app and the information automatically instructs irrigation systems. At a larger scale, these data systems can feed into a regional crop water demand model to inform decision-making on agricultural policies and management practices, and to provide early warnings of potential flood and drought risks.

Sensor that detects leaf moisture levels. Image credit: Wikimedia Domain Massimiliano Lincetto

Irrigation systems are also being made more efficient; one study found that simply changing from surface sprinklers to drip irrigation that applies water directly to plant roots through low-pressure piping, reduced non-beneficial water wastage by 76%, while maintaining yield production. In arid areas these systems can be used for a technique called partial root drying, whereby water is supplied to alternate side of the roots, the water stressed side then sends signals to close stomatal pores which reduces water lost through evapotranspiration.

These efficient precision irrigation systems are becoming cheaper and easier for farmers to use. However in tropical and sub-tropical areas, the technology can be difficult to apply smallholder farming, where there is often insufficient Internet connectivity, expertise, capital investment, and supply of energy and water. Several precision agriculture projects are working to overcome these challenges to promote efficient use of irrigation water, including in the semi-arid Pavagada region of India, the Gash Delta region of Sudan and São Paulo, Brazil. In Nepal, a Water Resources Information System has been established that collects data to inform river management, whereas in Bangladesh hundreds of solar-fuelled irrigation pumps have been installed that simultaneously reduce reliance on fossil fuels and reduce GHG emissions.

Hydroponic systems whereby plants are grown in water containing nutrients are becoming increasingly popular; the global market for hydroponics is projected to reach £325 million by 2020. Compared with land-based agriculture, hydroponics uses less land; causes less pollution and soil erosion and so these systems are less vulnerable to climate change. Critically they also reduce water use; once the initial water requirements are met, the closed-system recycles water and there is less evapotranspiration. The adoption of these systems is predicted to occur predominately in water stressed regions of the Middle East and Africa and in highly urbanised countries such as Israel, Japan and the Netherlands.

How can researching traditional approaches help?

It’s not just about agri-tech; there are relatively simple, traditional ways to tackle water issues in agriculture. To protect against drought, farmers can harvest and store rainwater during heavy downpours by building ponds and storage reservoirs. To reduce water wastage, farmers can improve the ability of soil to absorb and hold water through reducing tillage and using rotational livestock grazing, compost, mulch and cover crops. Wetlands, grasslands and riparian buffers can be managed to protect against floods, prevent waterlogging of crops and improve water quality. Increasingly these traditional methods valued and research is being done to optimise them. For instance a novel forage grass hybrid has been developed that is more resilient to water stress and can reduce runoff by 43 – 51% compared with conventional grass cultivars.

A small-scale farmer in Kenya who is harvest rainwater. Image credit: Wikimedia Domain Timothy Mburu.

How can crop and livestock breeding help?

In the past, crop and livestock varieties have been selected for high productivity. However, these varieties are often severely affected by changes in climate and extreme weather events such as drought and require high levels of water and nutrients. To improve resilience and sustainability, breeders increasingly need to also select for stress responses and resource use efficiency. In crops, drought resilience and water use efficiency is influenced by many traits, including root and shoot architecture, stomatal density and thickness of the waxy cuticle that covers leaves and reduces evapotranspiration. The complexity of these traits makes breeding crops for drought resilience challenging, as many different groups of genes need to be selected for. To deal with this, the International Rice Research Institute’s Green Super Rice project has been crossing high-yielding parent lines with hundreds of diverse varieties to produce new high-yielding varieties that require less water, fertilisers and pesticides. These varieties are now being delivered to farmers in countries across Asia and Africa. Similarly, climate change resilience is also vital for current and future livestock farming. Projects run by Professor Eileen Wall (SRUC) have identified novel traits and genes associated with drought and heat resilience in UK and African dairy cattle, which can be incorporated into breeding programmes.

What are the incentives?

Although these projects might sound promising, without incentives to drive their uptake it may take a long time for real impacts to come to fruition. Unfortunately, in some countries such as India there can be a lack of monetary incentives that would effectively enable farmers to take up new water management technology and practices. In the EU, the Common Agricultural Policy (CAP) has allocated funds to support farmers in complying with ‘greening rules’ that improve sustainability, preserve ecosystems and efficient use of natural resources, including water. Farmers across the EU receive CAP payments for environmentally friendly farming practices, such as crop diversification and maintaining permanent grassland.

In many European countries, there is increasing consumer demand for sustainably farmed food products. This is driving large and small manufacturers to seek out sustainable suppliers and so farmers are incentivised to improve the sustainability of their farming practices so that they can be certified.  For instance the Sustainable Farming Assurance Programme requires farmers to follow good agricultural and environmental protection practices, including sustainable water use. In the coming years, more food products are likely to have water foot print labels that provide the consumer with information on the amount of water used during production and processing. This places considerable power in the hands of the consumer and large manufacturers are responding. For instance, by 2020 Kellogg has pledged to buy ten priority ingredients (corn, wheat, rice, potatoes, sugar and cocoa) only from farms that prioritise protecting water supplies, as well as using fertilizers safely, reducing emissions, and improving soil health. And Pepsico has created sustainable agriculture sourcing programmes that aim to help farmers improve water and soil resource management, protect water supplies, minimise emissions and improve soil health.

What can we do?

There are ways to take responsibility for reducing our own water footprints, including reducing meat and animal production consumption, reducing food wastage and buying sustainably farmed products. Finally, we can all get involved with communicating and promoting the importance of water in agriculture so that more people are aware of the issues. Head to the World Water Day website to find out about resources and events that may be happening near you.

——————————
This blog is written by Caboteer Dr Katie Tomlinson, who recently completed her PhD at the University of Bristol on cassava brown streak disease. Katie is now an Innovation and Skills manager at the BBSRC and is running the Sustainable Agriculture Research and Innovation Club. Views presented in this blog are her own. You can follow Katie on Twitter: @KatieTomlinson4.

Dr Katie Tomlinson

 

Will July’s heat become the new normal?

Saddleworth Moor fire near Stalybridge, England, 2018.  Image credit: NASA

For the past month, Europe has experienced a significant heatwave, with both high temperatures and low levels of rainfall, especially in the North. Over this period, we’ve seen a rise in heat-related deaths in major cities, wildfires in Greece, Spain and Portugal, and a distinct ‘browning’ of the European landscape visible from space.

As we sit sweltering in our offices, the question on everyone’s lips seems to be “are we going to keep experiencing heatwaves like this as the climate changes?” or, to put it another way, “Is this heat the new norm?”

Leo Hickman, Ed Hawkins, and others, have spurred a great deal of social media interest with posts highlighting how climate events that are currently considered ‘extreme’, will at some point be called ‘typical’ as the climate evolves.

As part of a two-year project on how future climate impacts different sectors (www.happimip.org), my colleagues and I have been developing complex computer simulations to explore our current climate as well as possible future climates. Specifically, we’re comparing what the world will look like if we meet the targets set out in the Paris agreement: to limit the global average temperature rise to a maximum of 2.0 degrees warming above pre-industrial levels but with the ambition of limiting warming to 1.5 degrees.

The world is already around 1 degree warmer on average than pre-industrial levels, and the evidence to date shows that every 0.5 degree of additional warming will make a significant difference to the weather we experience in the future.

So, we’ve been able to take those simulations and ask the question: What’s the probability of us experiencing European temperatures like July 2018 again if:

  1. We don’t emit any further greenhouse gases and things stay as they are (1 degree above pre-industrial levels).
  2. Greenhouse gas emissions are aggressively reduced, restricting global average temperature rise to 1.5 degrees above pre-industrial levels.
  3. Greenhouse gas emissions are reduced to a lesser extent, restricting global average temperature rise by 2 degrees above pre-industrial levels.

What we’ve found is that European heat of at least the temperatures we have experienced this July are likely to re-occur about once every 5-6 years, on average, in our current climate. While this seems often, remember we have already experienced 1C of global increase in temperature. We’ve also considered the temperature over the whole of Europe, not just focusing on the more extreme parts of the heatwave. If we considered only the hottest regions, this would push our current temperature re-occurrence times closer to 10-20 years. However, using this Europe-wide definition of the current heat event, we find that in the 1.5C future world, temperatures at least this high would occur every other year, and in a 2C world, four out of five summers would likely have heat events that are at least as hot as our current one. Worryingly, our current greenhouse gas emission trajectory is leading us closer to 3C, so urgent and coordinated action is still needed from our politicians around the world.

Our climate models are not perfect, and they cannot capture all aspects of the current heatwave, especially concerning the large-scale weather pattern that ‘blocked’ the cooler air from ending our current heatwave. These deficiencies increase the uncertainty in our future projections, but we still trust the ball-park figures.

Whilst these results are not peer-reviewed, and should be considered as preliminary findings, it is clear that the current increased heat experienced over Europe has a significant impact on society, and that there will be even more significant impacts if we were to begin experiencing these conditions as much as our analysis suggests.

Cutting our emissions now will save us a hell of a headache later.

—————————–
This blog is written by Dr Dann Mitchell (@ClimateDann) and Peter Uhe from the University of Bristol Geographical Sciences department and the Cabot Institute for the Environment.

Dann Mitchell

Why is there a difficult absence of water demand forecasting in the UK?

Image credit: Ralf Roletschek, permission from – Marcela auf Commons.
From August 2015 to January 2016, I was lucky enough to enjoy an ESRC-funded placement at the Environment Agency. Located within the Water Resources Team, my time here was spent writing a number of independent reports on the behalf of the agency. This blog is a short personal reflection of one of these reports, which you can find here. All views within this work are my own and do not represent any views, plans or policies of the Environment Agency.
 
In a world away from Melanie Phillips and David Bellamy, it is widely accepted that the twinned-spectres of climate change and population growth will likely affect levels of water availability in England and Wales, whilst also exposing the geographic imbalance of water supply-demand dynamics within the country. The Environment Agency has utilised a number of socioeconomic scenarios to predict total demand to change at some point between 15% decrease (if the nation undergoes a transition towards sustainability) to a 35% increase (in a scenario of continued and uncontrolled demand for the resource).
 
It is within this context that the need to understand future patterns of water demand has become essential for the future resilience of the nation’s water. The Labour government’s Future Water strategy (signed-off by Hilary Benn) 2008 set a national target of reducing household water consumption by 13%. This plan was further incentivised by Ofwat’s scheme to reward companies that reduce annual household demand by one litre of water per property, per day in the period 2010/11-2014/15.
 
What does our future household water use look like? Whilst per capita consumption will decrease, the number of people using the water grid will increase: resulting in a growth of overall demand. 22 predictions related to public water supply projected a median change of +0.89%. However there are additional complexities: as certain uses of water will decrease, others will increase; as appliances become more water efficient, they will be more likely to be used; and as one business closes, another may join the grid. It is this complexity that creates a great deal of uncertainty in gauging the future water demand of the sector.
Image credit: Nicole-Koehler
But, there exists a problem. Whilst the legally-mandated water management plans of the public water suppliers provide us with a wealth of forecasts of the future water usage within our homes, there exists a lack of available information on the current use of water within many other sectors and how such usage may shift and transform in the years between today and 2050.
 
This report lays out an extensive review of available literature on the current and future demand of a number of sectors within the UK. It found nine studies of the agricultural sector – with a median projection of 101% increase in water usage. Three studies of the energy sector projected a median decrease of 2% on a 2015 baseline. But, it also found some gaps that restrict our understandings of future water demand.
 
Want to find out how much water is used in the construction sector? Tough, no chance. The mining and quarrying sector – ready your Freedom of Information request. Want to calculate the future water footprints of our food and drink – prepare to meet that brick wall. If such information is available, it is not in the public domain. Without having a publicly-available baseline, how can we even dream of predicting what our future demand may be?
Crop irrigation.  Image credit: Rennett Stowe.
Water is not just turning on the shower in the morning or boiling the kettle at the commercial break. It is present in our food, our energy and our infrastructure. As a result, it is of the utmost importance that we look to gauge the water use of sectors. Yet, in this regard, we are blind. Although there do exist academic studies and research into the future water demand of the agricultural and energy sectors, this has proved limited and relatively inconclusive, due to the nature of the studies. Furthermore, there is an absence of any such work conducted across the manufacturing and industrial sectors (with the exception of the food and drink industry). This limitation of information makes providing a confident summary of what the water demands of many of these sectors will look like in 2050 highly difficult.
 
Yes, the key areas of missing research identified in this document do not necessarily equal a lack of information within these sectors – just that such information is either not publicly available or is very difficult to find. It would be unwise to believe that the sectors in question have no understanding of what the future may hold, regarding their water demand. But, in a world of the interdependencies of the food, energy and manufacturing sectors with water usage – it is important for research to know how this nation’s water is used, where it is used and how this demand can be met and/or decreased in an increasingly uncertain future. The food and drink sector is heavily linked to the agricultural sector; the power industry is linked to decisions made within the extractive industries (such as those surrounding fracking); and all are linked to mains water supply and direct abstraction.
 

These interdependencies and lack of information provide future water demand with even greater uncertainty. Whilst carbon emissions are monitored and water quality is policed, there continues to be a lack of transparency of how certain sectors are using this nation’s water. If this continues in a world that will increasingly be formed of policy and environmental trade-offs, there is a realistic danger that any potential water crisis may be much worse than we expect. 

————————————————————–

This blog is written by Cabot Institute member Ed Atkins, a PhD student at the University of Bristol who studies water scarcity and environmental conflict.

Ed Atkins

Read part two of this blog series Is benchmarking the best route to water efficiency in the UK’s irrigated agriculture?

Troubled waters

Water seems like the simplest of molecules, but its complexities have enabled all life on Earth. Its high specific heat capacity allowed early aquatic life to survive extreme temperature fluctuations, its ability to dissolve a wide range of compounds means it is used as a solvent for cellular compounds, and its powerful cohesive properties allow tree sap and blood to move upwards, against the flow of gravity.

ITV science correspondent Alok Jha discussed the incredible properties of water this week as part of a Cabot Institute and Festival of Ideas talk at The Watershed, Bristol.  This was part of a promotional tour for his new book, The Water Book. He amazed the audience with where our oceans came from (ice-covered rocks pelting the Earth during the Late Heavy Bombardment), the strange properties of ice (a bizarre solid that floats on its liquid), and the possibility of water and life on other planets.

It was really the universal importance of water that struck me though. As Alok discussed, water is absolutely essential not just for life, but also to enable every aspect of our lives. Its unique properties make it a critical component of almost everything we make and do. In addition to household uses like showers and toilets, the UK uses a lot of water in manufacturing, agriculture and mining, amongst other things. One report suggested that the average person’s life requires 3400 litres of water a day in the UK, with a total global requirement of four trillion litres a year.

Water is scarce

Around 2.7 billion people are affected by water scarcity worldwide. Rivers are drying up or becoming too polluted to use, climate change is altering patterns of weather around the world and mismanagement of precious sources of fresh water has led to the prediction that by 2025, two thirds of the world’s population may face water shortages.

You only have to read the news to see the warning signs.Agriculture is a huge business in California, using 80% of the freshwater to raise livestock and grow two thirds of the USA’s fruits and nuts. California’s climate makes it ideal for growing a range of crops, assuming they can be irrigated. A recent NY Times article revealed that it takes 15.3 gallons of water to produce just 16 almonds, 1.4 gallons of water for two olives, and a whopping 42.5 gallons of water to grow three mandarin oranges. As Alok commented, the state is literally shipping its freshwater to the rest of the world as food. California is currently in its fourth year of drought, and strict laws banning water wasting have been put into place.

Last week, Californian farmers in the deltas of the Sacramento and San Joaquin rivers volunteered to use 25% less water, in a bid to avoid even harsher restrictions being imposed by the state government. These reductions came after uproar from Californian citizens, for whom water wastage was already illegal.

Water conflict

 

Image credit: Katie Tegtmeyer. Image used under:CC BY 2.0

In Brazil, São Paulo has been suffering through the worst drought in more than 80 years. The water supply has been restricted to just six hours per day, but millions of citizens have also had several days without running water. Tensions are beginning to rise, with protests, looting and outbreaks of violence in the city of Itu. The Guardian reported one resident as saying: “We spent four days without water, and we saw what it was like. We saw people behave like animals in our building, so imagine 20 million people”.

Imagine billions.

Crown Prince General Sheikh Mohammed bin Zayed al-Nahyan of Abu Dhabi has declared water is now more important for his people than oil. Egypt has vowed to stop Ethiopia’s construction of a dam on the Nile at “any cost”. Burma, Thailand, Laos, Cambodia and Vietnam look poised to suffer from China’s continued damming of the Mekong River. Water is predicted to be used as leverage, or as the target of terrorist attacks in the future. Paul Reig, Word Resources Institute, stated,

“Water is likely to cause the most conflict in areas where new demands for energy and food production will compete with the water required for basic domestic needs of a rapidly growing population”.

What can we do about this? It’s a problem almost as complex as the molecule itself, and I certainly don’t have the knowledge or expertise required to answer. Alok suggested that the value of water could be added into the final price of our products and services, to make people aware of how much they are consuming and to think twice before wasting it.

Whatever happens, we’re going to need massive global action on a range of issues. We need to use less water to grow our food and manufacture the items we use daily, we need to prevent shared resources being selfishly used, and we need better management systems in place to prevent further pollution or loss of freshwater. Only then will we be better prepared to face uncertainties of the future and ensure everyone has enough to drink.
————————————-

This blog is written by Cabot Institute member Sarah Jose, Biological Sciences, University of Bristol.

Sarah Jose

 

The uncertain world

J.G Ballard’s The Drowned World
taken from fantasticalandrewfox.com

Over the next 18 months, in collaboration with Bristol Green Capital 2015 artists, civic leaders and innovative thinkers, the Cabot Institute will be participating in  a series of activities in which we examine how human actions are making our planet a much more uncertain place to live.

Fifty years ago, between 1962 and 1966, J. G. Ballard wrote a trio of seminal environmental disaster novels: The Drowned World, The Burning World and The Crystal World.  These novels remain signposts to our future, the challenges we might face and the way people respond to rapid and unexpected change to their environment. In that spirit and coinciding with the Bristol Green Capital 2015, we introduce The Uncertain World, a world in which profound uncertainty becomes as much of a challenge to society as warming and rising sea levels.

For the past twenty years, the University of Bristol has been exploring how to better understand, mitigate and live with environmental uncertainty, with the Cabot Institute serving as the focus for that effort since its founding in 2010.  Uncertainty is the oft-forgotten but arguably most challenging aspect of mankind’s centuries-long impact on the environment.  We live our lives informed by the power of experience: our own as well as the collective experience of our families, communities and wider society. When my father started dairy farming he sought advice from my mother’s grandfather, our neighbours, and the grizzled veterans at the Middlefield auction house. Experience helps us make intelligent decisions, plan strategically and anticipate challenges.

Similarly, our weather projections, water management and hazard planning are also based on experience: tens to hundreds of years of observation inform our predictions of future floods, drought, hurricanes and heat waves. These records – this experience  – can help us make sensible decisions about where to live, build and farm.

Now, however, we are changing our environment and our climate, such that the lessons of the past have less relevance to the planning of our future.  In fact, many aspects of environmental change are unprecedented not only in human experience but in Earth history. As we change our climate, the great wealth of knowledge generated from human experience is losing capital every day.

The Uncertain World is not one of which we have no knowledge – we have high confidence that temperatures and sea level will rise, although there is uncertainty in the magnitude and speed of change. Nor should we view The Uncertain World with existential fear – we know that warm worlds have existed in the past.  These were not inhospitable and most evidence from the past suggests that a climate ‘apocalypse’ resulting in an uninhabitable planet is unlikely.

Nonetheless, increasing uncertainty arising from human-induced changes to our global environment should cause deep concern.  Crucial details of our climate remain difficult to predict, and it undermines our ability to plan for our future. We do not know whether many regions of the world will become wetter or dryer. This uncertainty propagates and multiplies through complex systems: how do we make sensible predictions of coastal flood risk when there is uncertainty in sea level rise estimates, rainfall patterns and the global warming that will impact both?  We can make predictions even in such complex systems, but the predictions will inevitably come with a degree of uncertainty, a probabilistic prediction.  How do we apply such predictions to decision making? Where can we build new homes, where do we build flood defences to protect existing ones, and where do we abandon land to the sea?

Perhaps most worrying, the consequences of these rapid changes on biological and chemical systems, and the people dependent upon them, are very poorly understood. For example, the synergistic impact of warmer temperatures, more acidic waters, and more silt-choked coastal waters on coral reefs and other marine ecosystems is very difficult to predict. This is particularly concerning given that more than 2.6 billion people  depend on the oceans as their primary source of protein. Similarly, warming of Arctic permafrost could promote the growth of CO2-sequestering plants or the release of warming-accelerating methane – or both. Warm worlds with very high levels of carbon dioxide did exist in the past and these do provide some insight  into the response of the Earth system, but we are accelerating into this new world at a rate that is unprecedented in Earth history, creating additional layers of uncertainty.

During late 2014 and 2015, the Cabot Institute will host a variety of events and collaborate with a variety of partners across Bristol and beyond to explore this Uncertain World and how we can live in it. How do we better explain uncertainty and what are the ‘logical’ decisions to make when faced with uncertainty? One of our first events will explore how uncertainty in climate change predictions should motivate us to action: the more uncertain our predictions the more we should employ mitigation rather than adaptation strategies. Future events will explore how past lessons from Earth history help us better understand potential future scenarios; how future scenario planning can inform the decisions we make today; and most importantly, how we build the necessary flexibility into social structures to thrive in this Uncertain World.

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.

Prof Rich Pancost

Will global food security be affected by climate change?

The Intergovernmental Panel on Climate Change (IPCC) has just released an important report outlining the evidence for past and future climate change. Unfortunately it confirms our fears; climate change is occurring at an unprecedented rate and humans have been the dominant cause since the 1950s. Atmospheric carbon dioxide (CO₂) has reached the highest level for the past 800,000 years, which has contributed to the increased temperatures and extreme weather we have already started to see.

As a plant scientist, I’m interested in the complicated effects that increased temperatures, carbon dioxide and changes in rainfall will have on global food security. Professor David Lobell and Dr Sharon Gourdji wrote about some of the possible effects of climate change on crop yield last year, summarised below alongside IPCC data.

Increased CO₂

Plants produce their food in a process called photosynthesis, which uses the energy of the sun to combine CO₂ and water into sugars (food) and oxygen (a rather useful waste product). The IPCC reports that we have already increased atmospheric CO₂ levels by 40% since pre-industrial times, which means it is at the highest concentration for almost a million years. Much of this has accumulated in the atmosphere (terrible for global warming) or been absorbed into the ocean (causing ocean acidification) however it may be good news for plants.

Lobell and Gourdji wrote that higher rates of photosynthesis are likely to increase growth rates and yields of many crop plants. Unfortunately, rapid growth can actually reduce the yields of grain crops like wheat, rice and maize. The plants mature too quickly and do not have enough time to move the carbohydrates that we eat into their grains. 

High temperatures

The IPCC predicts that by the end of the 21st century, temperatures will be 1.5C to 4.5C higher than they were at the start of it. There will be longer and more frequent heat waves and cold weather will become less common.

Extremely high temperatures can directly damage plants, however even a small increase in temperature can impact yields. High temperatures means plants can photosynthesise and grow more quickly, which can either improve or shrink yields depending on the crop species (see above). Lobell and Gourdji noted that milder spring and autumn seasons would extend the growing period for plants into previously frosty times of year allowing new growth periods to be exploited, although heat waves in the summer may be problematic.

 
Image credit: IPCC AR5 executive summary
 

Flooding and droughts

In the future, dry regions will become drier whilst rainy places will get wetter. The IPCC predicts that monsoon areas will expand and increase flooding, but droughts will become longer and more intense in other regions.

In flooded areas, waterlogged soils could prevent planting and damage those crops already established. Drought conditions mean that plants close the pores on the leaves (stomata) to prevent water loss, however this means that carbon dioxide cannot enter the leaves for photosynthesis and growth will stop. This may be partly counteracted by the increased carbon dioxide in the air, allowing plants to take in more CO₂ without fully opening their stomata, reducing further water loss and maintaining growth.

 
Image credit: IPCC AR5 executive summary
 

These factors (temperature, CO₂ levels and water availability) interact to complicate matters further. High carbon dioxide levels may mean plants need fewer stomata, which would reduce the amount of water they lose to the air. On the other hand, higher temperatures and/or increased rainfall may mean that crop diseases spread more quickly and reduce yields.

Overall Lobell and Gourdji state that climate change is unlikely to result in a net decline in global crop yields, although there will likely be regional losses that devastate local communities. They argue that climate change may prevent the increases in crop yields required to support the growing global population however.

The effect of climate change on global crop yields is extremely complex and difficult to predict, however floods, drought and extreme temperatures will mean that its impact on global food security (“when all people at all times have access to sufficient, safe, nutritious food to maintain a healthy and active life”) will almost certainly be devastating.

On the basis of the IPCC report and the predicted impact of climate change on all aspects of our planet, not just food security, it is critical that we act quickly to prevent temperature and CO₂ levels rising any further.  

 

This blog is written by Sarah Jose, Biological Sciences, University of Bristol

You can follow Sarah on Twitter @JoseSci

Sarah Jose