Seasonal Worker visa route encounters problems

apples and plums

Radio 4 interview with Dr Lydia Medland

Following the Home Office revocation of the license of one of the seasonal agricultural worker recruitment operators, Dr Lydia Medland spoke to BBC farming today on 20th February 2023 about the scheme (listen here).

The UK Seasonal Worker visa route allows workers to come from around the world to work for up to six months. There are (or were) seven ‘operators’ of the scheme. These are licenced by the government as the recruiters and sponsors of the workers and are responsible for both enforcement of the scheme requirements, particularly ensuring that workers go home at the end of their stay, and for worker protection.

The UK has had some form of seasonal worker migration scheme since the end of World War II, but the current scheme dates from 2019, when following Brexit, EU workers no longer had access to the UK labour market, and UK fruit and vegetable growers and food producers had to look elsewhere to fill seasonal labour vacancies.

At the end of 2021, Dr Medland and Dr Scott (University of Gloucestershire) wrote a briefing outlining problems in the design of the scheme recommending major changes including a guaranteed minimum income, and for workers to have full access to public services.

In her interview with Radio 4 on 20th February Dr Medland spoke of her concerns that the same companies are responsible for ensuring workers’ return as are responsible for preventing their exploitation, saying that with ‘…outsourcing to for-profit businesses of this dual very important role, it isn’t surprising that something has gone wrong, I think the UK should go back to the drawing board on this scheme.’ Academic research has found (see for example Costello and Freedland, 2014) that where there is an interaction between protection of workers and enforcement of migration law, the enforcement role takes precedence. This leaves workers vulnerable to exploitation because they fear the same organisations and laws that are also meant to protect them.

Radio 4 put these comments to the Home Office who said, ‘The seasonal workers route has been running for three years and each year there have been improvements.’ However, the increasing scrutiny of the scheme by researchers, NGOs and journalists may be having some impact because on 23rd February 2023 Mark Spencer, the Farming Minister announced that Seasonal Workers coming to the UK on the scheme would be guaranteed 32 hours a week of work. This is in response to reports that workers are returning in debt because of there is less work than originally expected.

Whilst the Seasonal Workers visa route is no longer officially a ‘pilot’ it has only been renewed until the end of 2024 and it remains open to significant review. This policy is part of the focus of the ‘Working for 5 a day’ project because seasonal migrant workers are a vital part of the labour force that ensures consumers have access to fruit and vegetables. We will continue to follow this policy development and its changing context.

——————————-

This blog was written by and has been reposted with kind permission from Cabot Institute for the Environment member Dr Lydia MedlandView the original blog.

Lydia Medland
Dr Lydia Medland

Detectable impacts of Climate Change in the UK; a new review for the next Climate Change Risk Assessment

2022 was another year of “unprecedented” weather. Provisional figures indicate that it was the warmest so far recorded, with almost every month hotter than average. Much of the country had a notably mild New Year, despite the cold snap in mid-December. This was preceded by the third warmest autumn on record, and that by a scorching summer, with the hottest day ever recorded in July. But summer’s heat waves were also accompanied by a rise in the number of daily deaths across the country. People around the world are becoming increasingly more aware of events like these, and their impact in the UK is particularly concerning amidst the ongoing cost-of-living, energy, and NHS crises.

Aerial view of the Wennington wildfire, London, 19 July 2022. Source: Harrison Healey, Wikimedia Commons (CC BY 3.0).

Ahead of the Fourth UK Climate Change Risk Assessment (CCRA4), the Climate Change Committee (CCC) are asking what we know about the impact of past and present climate change on natural and human systems here in the UK specifically. At the global level, the 2021 IPCC sixth assessment working group I (AR6 WGI) report concluded: “It is unequivocal that human influence has warmed the atmosphere, ocean and land.” This single sentence has been informed by decades of research by people at the cutting edge of climate science, and the evidence to support it has grown stronger in every IPCC report since they began. The report goes on to say: “Human-induced climate change is already affecting many weather and climate extremes in every region across the globe.” In last year’s follow-up AR6 WGII report on impacts, adaptation, and vulnerability, an extensive assessment of the science led to the conclusion that the magnitude and proliferation of extremes caused by human-induced climate change were having widespread, adverse impacts on both nature and people. Last summer’s heatwaves, and the concurrent dangers to health, homes, and the environment, were a graphic illustration of the nature of such human-induced impacts.

The study of impacts that informed this conclusion is the remit of climate scientists who specialise in “detection and attribution”. This is about looking at what is changing around us and being able to pinpoint the cause(s) – and particularly, whether human-induced climate change is at the root. To inform CCRA4, the CCC have commissioned a joint Bristol and Exeter University team to conduct a comprehensive review of the detection and attribution of climate change in the UK. The first part will cover the detection and attribution of weather and climate changes in the UK, relevant to specific “Climate Impact Drivers”. The second will cover attribution of impacts on societal, infrastructural, economic, and biodiversity sectors. We aim to find out what studies have been done so far, where the gaps are, and whether they can be filled, or if they would require substantial new methodological or data advances. We aim to identify variables which are key drivers of multiple impacts, and, importantly, where further attribution analysis is needed – especially when the impacts are critical for UK risk.

Detection and attribution is a rapidly evolving field, with focus only relatively recently moving from meteorological attribution (e.g., weather extremes) to impact attribution (e.g., consequences for humans and ecosystems). Our systematic review of the literature and final report will be key to tying it all together, especially with the UK focus required by the CCC. But to be able to present the most up-to-date findings, and thus make informed recommendations, we need to ensure that we have considered all relevant studies. So, if you, or someone you know, has published on this topic – whether UK specific or not – we’d like to know about it! Help shape and inform the next UK Climate Change Risk Assessment.

————————-

This blog was written by Regan Mudhar, Professor Dann Mitchell (University of Bristol), Professor Richard Betts and Professor Peter Stott (University of Exeter/UK Met Office).

Labour’s Great British Energy is a good start – here’s how to make it work for everyone

In a packed auditorium in Liverpool, Labour leader Keir Starmer stood at a plinth emblazoned with the words “A Fairer, Greener Future”. It was the key theme of this year’s party conference and is evident in Starmer’s landmark policy announcement: the creation of a new publicly-owned energy company, Great British Energy.

The company would effectively be a start-up to grow British renewables. So while Great British Energy is not nationalisation of the electricity sector (or of any one energy company), it would represent a new and different sort of organisation positioned to fund new projects while working to remove the hurdles faced by new wind and solar projects.

This follows calls from various organisations for a new way of generating and providing electricity. For many, the scale of action needed to both reach net zero and address energy poverty is incompatible with the current model of doing things, which focuses on paying shareholders and avoiding riskier investments.

Like EDF in France or Vattenfall in Sweden, Great British Energy would be state-owned. But it would be independent, making its own investment decisions and working closely with private energy companies.

Being backed by the government, the new company can take on riskier investments. This might be in bigger projects or in new, innovative technologies such as tidal energy. Rather than paying shareholders, the profit that this company makes can then be reinvested in new projects, or for cutting bills or insulating homes.

Great British Energy is one part of a broader approach that Labour has put forward, including measures on energy efficiency and an £8 billion national wealth fund to help decarbonise industry.

The public supports public energy

Despite some concerns about how these policies might be sold on the doorstep, there is public support. Polling in May 2022 showed that 60% of UK voters support bringing energy companies into public ownership – and such patterns of support have remained relatively constant.

Popular campaigns have called for nationalising the sector. Others have highlighted how the current system prioritises shareholders over addressing energy poverty.

Offshore wind farm viewed from a beach
Renewable energy has become a national security issue for the UK.
Colin Ward/Shutterstock

When Labour raised a similar policy in the 2019 election, it was treated as foolish by much of the media. Yet Russia’s invasion of Ukraine and its aggressive use of disruptions to its natural gas exports to Europe as a political weapon have changed energy politics in Europe.

Those calling for the expansion of renewable energy used to highlight how they were greener and cheaper than fossil fuels. Events in 2022 have now made renewables the basis for energy security too.

Who makes decisions, and who benefits from them?

While this policy pledges a different type of energy company, being state-owned does not make any organisation inherently “good”. For instance, EDF in France has been caught spying on Greenpeace. Elsewhere, Vattenfall has sold off its coal power stations rather than replacing them with renewables, merely shifting emissions on to somebody else’s balance sheet.

Addressing these issues requires a reflection on who is making decisions. The proposed national wealth fund would include co-investments with private companies. But who would be involved in directing these investments and who might benefit from them?

Hydrogen energy was mentioned in several speeches at Labour’s conference, and the industry’s lobbyists were reported to have been active and hosted meetings. However, recent work has shown that any move to use hydrogen for home heating is likely unviable.

Elsewhere at the conference, climate campaigners accusing Drax, the biggest emitter in the UK, of environmental racism were reportedly removed from a meeting on net zero and green jobs.

A national energy company must also wrestle with where new renewable energy projects, which tend to demand large tracts of land, will be built and who might suffer from the impacts. Compensation payments in the UK have rewarded unfair patterns of land ownership and the monopolisation of land by the rich and the powerful.

In the UK, a small number of landowners stand to gain financially from the expansion of onshore wind, while offshore wind power is permitted by the crown estate which owns the seabed.

Wind turbines in field
Wind and solar farms can use lots of land.
Traceyaphotos2/Shutterstock

Those living nearby often receive limited compensation. In Scotland, communities living near onshore wind turbines get 0.6% of the value of electricity generated.

This does very little to address regional issues of inequality or exclusion. Community-owned projects have a better track record, providing up to 34 times the financial benefits of those built by private energy companies.

Great British Energy is a policy that many voters will support. While there remain questions about the forms it might take and how it might change the energy sector, it represents an opportunity to generate and use energy differently – as long as it is part of a broader, just energy transition.

These policies are coming at a time of spirallling energy costs and energy poverty for millions, and any national energy company must make addressing this a priority. Labour’s energy efficiency plans show that the party is intent on doing so. The cheapest electricity is the electricity that we don’t use, after all.

It is also politically savvy: some of the areas worst affected by energy prices are in marginal seats. A national energy company playing a central role in funding and directing renewable schemes would allow them to be better targeted, would allow funding for unprofitable projects, and any financial returns could be used to further support families and communities.

But there is still room for Labour to be more ambitious. Great British Energy could be the first step towards an inclusive energy transition, but we must think about what comes next.The Conversation

——————————-

This blog is written by Cabot Institute for the Environment member Dr Ed Atkins, Senior Lecturer, School of Geographical Sciences, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Ed Atkins

 

 

Bristol Mock COP Negotiations – Mobilising Imaginations for Ambitious Outcomes

Screenshot of Mock COP26 hosts and facilitators (Master’s students)

On 30 March, Jack Nicholls, Emilia Melville and Camille Straatman from the Cabot Institute for the Environment hosted an online simulation of the COP26 that will happen in Glasgow in November this year. It was set to be in equal measures a playful exercise of the imagination, and deep dive into the acronym-filled world of global climate politics. Students from 11 school groups would represent various state and non-state actors, and 12 Master’s students would facilitate the negotiations, myself included.

It was the first public engagement exercise of its kind for a University in the COP26 Universities Network,  an experimental activity that hoped to lead to a replicable blueprint for other Universities could follow. So, whilst it was all carefully planned, some questions lingered after the training pre-session for facilitators, which would go unanswered until the students appeared on screen the following day:

How will the school groups engage with the exercise? What will they say relative to what we think the real negotiations will be like, and how will they navigate representing actors with values that don’t align with their own? What kind of knowledge and insights will they bring to debates on a broad range of climate resolutions? How might their votes and outcomes differ from those emerging from the real thing in November?

My preparation for facilitating the group of ‘UK delegates’ consisted of re-reading Boris Johnson’s ‘10 point plan for a green industrial revolution’ and the information Cabot Institute members have shared about financing a green transition. The briefing letter we’d received from the ‘PM’ staunchly asserted our actor aims: to protect home economic interests and industries, green or not, avoid any aid obligations to other countries that may hinder our progress towards achieving our own ambitious climate goals, proving that we are indeed on track to achieve these, and convincing others to follow our lead.

The first thing I asked the group once we’d arrived in our breakout room was whether or not they were ready to put their floppy blonde wigs on, eliciting an amusing collective groan. But, they’d done their research on climate action in the UK, and it showed. Students were clearly up to date on climate action in Bristol, updating me on the upcoming diesel ban in Bristol’s Clean Air Zone, which was passed last month and will be implemented in October. This was great for framing the UK’s ambitious Net Zero Emissions (NZE) goals in terms of their impact at city level and on our own lives.

Their background knowledge of issues like nature conservation, sustainable agriculture, and the refugee crisis meant that they took a more progressive stance on some resolutions than one might expect from our conservative government to do so in November. For example, whilst protecting natural assets in the British countryside is often positioned as simply a point of national pride, and agricultural reform hasn’t been a priority. When one student told us that there are only ‘60 growing seasons left in the UK,’ in our current intensive agricultural model, a shocking number that I hadn’t heard before, they decided to vote strongly for a sustainable agriculture transition.

I prompted them to consider the economic concerns that may shape discussions with the International Monetary Fund (IMF) and the USA in the upcoming rounds, like the Green Industrial Revolution, job security and funding for achieving UK’s ambitious NZE goals. I almost didn’t want the group to step into the more pro-economic and nationalistic agenda they’d been briefed with but was as amused and impressed as the rest when our spokesperson and many of the others dazzled us with compelling impressions of the leaders they represented.

Despite their dramatic flair and feel for the roles, all groups demonstrated an open-minded ambition that I hope we are fortunate enough to find amongst the attendees of the COP26 Blue Zone.

The IMF was represented by two Master’s students, Lucy and Tilly, who had stepped in when one school couldn’t make it to the negotiations. They lobbied hard. But we met consensus on pretty much all the resolutions: a combination of their assertiveness, the UK group’s willingness to be flexible, and their own values meant that resolutions previously not outlined as top priorities (like climate refugee protection) were seriously considered. Their reservations on this resolution, due to needs for job security in a just transition, as well as pre-existing population density, were met with deliberations on ‘why not, then, commit to welcoming as many refugees as we can? If all countries collaborated on this resolution, wouldn’t the ‘burden’ be reduced? So, why not?’ 

Thanks to a successful first round, we had the IMF’s support for resolutions on phasing out coal and non-electric vehicles to mobilise against the USA, who we anticipated might be hesitant to make bold fossil-fuel energy and vehicle phase outs. Spurred by the decisive negotiating they’d witnessed, the UK took the front foot in their following negotiations, securing agreements in both.

Unlike in the pre-arranged 1st and 2nd rounds, the groups got to list which groups they wanted to meet with in the 3rd round. The UK were hoping for Brazil, or Shell. But a ‘wildcard’ meant that the group were surprised to meet with the International Working Group Indigenous Affairs (IWGIA) and had to think on their feet. IWIGIA were lobbying for votes to amend the resolution on protecting nature and biodiversity so that Indigenous peoples living on areas designated as protected would be in charge of their management. The UK group voted against this amendment, deciding that the UK’s stance would probably be that top-down governance is necessary to reach ambitious climate goals. In my opinion, the best outcome was that Indigenous people’s rights to agency in decision-making on unceded, threatened lands was brought to the fore. I was very happy to see that the students could discuss decolonising the climate movement on the fly like that.

Throughout the negotiations, the UK shelved the staunchly independent rhetoric in their briefing letter about avoiding other countries’ climate burdens as they realised as a group that interdependence was at the heart of most of the issues they discussed. Whilst decisive action from the UK might spur other countries to follow suit, our futures also depend on reaching consensus with them.

Before we had started, I’d thought I could anticipate what role the student’s imaginations would play: getting into character and arguing in line with the actor’s values. But, the group showed me that their imaginations were fit for different purposes: for interrogating why not vote for best case scenario outcomes, and for thinking through problems-as-solutions. For example, the UK may not yet have a strong stance on biodiversity, nature and sustainable agriculture, and our climate obligations seem to represent a point of national pride rather than our collective planetary futures. But, amongst these ‘delegates,’ the intra-group discussions sounded a bit like ‘why not walk away from COP26 with strong commitments to reinvent our food systems, and to protect our wildlife? Wouldn’t these be positive outcomes and proud new communication points for the UK?’

It wasn’t just the ability to debate – not to be downplayed amongst this informed, passionate and articulate group – but to listen, and situate themselves in the perspectives of the groups with whom they were negotiating, that led to agreements for addressing collective problems. What I had assumed would be rapid-fire negotiation rounds seemed to become a crash-course in consensus decision making, a skill I’m sure they’ll go on to hone.

In the debrief session, students were asked if they had participated in any peaceful protests or intended to in future. It’s fair to say that a new spirit of rebellion is rising amongst the nation’s teens, who are increasingly realising their stakes, power, and responsibility in shaping the future. But, what’s missing from most of these demonstrations is inclusion of manifestations of what this future could be, look like, and feel like. Activities like the Mock COP provide a momentary glimpse at the world they chant is possible when they do take to the street. One in which global leaders are open-minded, co-operative and ambitious, and agreements between them are shared wins.

Of course, meeting consensus is just the first step. There’s a difference between promoting and delivering on climate targets, and our leaders must be held accountable. Meaningful youth engagement exercises like this might be a good starting point for ensuring that outcomes of the real COP26 are in line with young people’s visions of sustainable, viable futures. Because, what we hold global leaders accountable to is up to us. And our youth are natural visionaries. That much is clear.

As Donella Meadows, co-author of Limits to Growth asks, ‘who’s idea of reality forces us to “be realistic”? The UK group’s vision of the best-case scenario always took up the centre of the virtual negotiation rooms they entered, rather than the behemoth of brokenness that usually takes up this space and stalls our leaders. If we are to learn something from this Mock COP and the youth voice for climate action more broadly, it’s that “being realistic” about our planetary future does not contradict committing to the best possible outcomes. Quite the opposite, and our leaders need to do both this November.

As COP26 approaches, it’s important that young people are able to engage and to have some insight as to what is happening in the negotiations. A Mock COP is an excellent way to do just that.  Jack Nicholls and Emilia Melville have designed and run a Mock COP26 event for school students ages 16+ which can be run online or in person in the lead up to COP26.  If you would like to run a Mock COP in your university, with local state schools, please join the training session on Tuesday 30 June at 2pm. Register here

—————————–

This blog is written by Dora Young, Master’s by Research (MScR) student at Cabot Institute for the Environment.

Dora Young is an MScR student and human geographer developing participatory mapping methodologies for environmentally just, inclusive ecological management strategies in Bristol. She is interested in how human lives intersect with urban nature, both in policy and in everyday landscapes facing climate and ecological crises, and reads and writes about these themes in her spare time.

 

 

 

 

Interested in postgraduate study? The Cabot Institute runs a unique Master’s by Research programme that offers a blend of in-depth research on a range of Global Environmental Challenges, with interdisciplinary cohort building and training. Find out more.

A ‘fresh’ start: Exploring the social dimensions of the food systems that supply Bristol

A chard seedling attempting to grow on Lydia’s patio garden

For many years now, I have been researching work in food production ‘out there’: beyond the reach of a day trip and in languages that are not my own. I found the Moroccan tomato so interesting that I wrote a thesis on it. Now though, I want to know what’s occurring closer to home. What of the food produced in the UK? Who is working in the fields? Who is taking the risk that the supermarkets will buy their produce or not? Who is footing the bill, personally, socially, emotionally, for keeping the food coming into cities despite Covid 19, and despite Brexit? After farm work was recognised as ‘essential’ during the pandemic, have workers gained status, or simply more health and safety challenges?

It is to these questions that I am now turning. I want to know who is working to feed Bristol and how they are getting on. More specifically, I want to know about fruit and veg; that food group that we all eat. Vegan, vegetarian, meat eater or flexitarian; we all eat some fruit and veg. Even if it is highly processed into a form with higher ‘added value’: perhaps a smoothie or the filling in a pre-prepared lasagne. What’s more, the UK government want us to eat a specific quantity: five portions a day. Scientists also estimate that if everyone in the UK ate these recommended portions, then our average carbon emissions would go down because fruit and veg have, in many (but not all) ways, a lower impact on ecosystems than other food groups.

How workers and farmers are getting on isn’t just important in its own right, but it also affects food security overall. This is particularly so in regards to exactly those foods which we need more of in this stressful, challenging climate, when it is all too easy to reach for the beer, or the chocolate or the ice cream. Not that I want to get into the business of identifying good and bad foods, they all feed us. Nevertheless, dealing with the coronavirus epidemic and the news that obesity is a major risk factor in suffering badly from the virus, brings fruit and veg into the policy arena again. In the new plan to tackle growing rates of obesity, adverts for fast food will be curtailed before 9pm and there will be a ban on ‘buy one get one free’ offers on sugary and fatty foods, with new encouragement for shops to promote fruit and vegetables. Yet while the focus is on consumers and their needs, the availability of fresh ingredients for this pro-health recipe goes unquestioned. OK, apples do grow on trees, but they must still be picked.

Some people will have seen other news stories. Of crops rotting in the fields last autumn, of seasonal workers flown to the UK from Romania and Bulgaria in the middle of a pandemic, working when everyone else is asked to stay at home. Putting their own lives at risk when white collar workers are ushered inside. More stories, of a lack of seasonal workers and of British workers signing up when for a long time such work has fallen disproportionately to migrant and European workers [1]. These stories alter as we draw back from the pandemic and its outbreaks, through Brexit, and prior to Brexit. Yet the question of who feeds us and how, at what costs and taking on what risks, remains for many of us, out of sight and out of mind.

So this is my new project, and I start this week. In my kitchen, because we’re in a pandemic and that’s where I have a garden table standing in as a desk. I do want to reach out though. So, if you are, or know a farmer or worker in this sector, please get in touch, I would love to listen to your experiences and your challenges. Or even come and see them. I’ve taken flights and chased questions about food to places that look like they will produce answers, simply through their seductive difference to my own normality. Now I am interested in the everyday difficulties in the details faced by farmers and workers in the UK. I’m not looking for heroes and villains, but simply for people who work in the food system.

To be specific, my project focuses on the conventional (not organic) side of the sector. This is simply because it feeds the majority of our country and the city I live in. That could be those who produce vegetables that end up in packaging branded with union jacks, but which otherwise, are just normal. Just simple apples, or tomatoes, or cucumbers, with lots of plastic and stickers, or none at all. I want to consider conventional scale production as close to home as possible and marvel at its successes, struggles and contradictions. Considering ONS data and recent analysis we can observe that only 1-2% of workers in the UK works in agriculture, yet nearly 50% of food consumed in the UK is produced here [2]. How is this done? At what cost? Who is helping and making sacrifices so that the apples keep coming and the carrots arrive fresh and looking perfect.

1. See, Scott, S. (2013), Labour, Migration and the Spatial Fix: Evidence from the UK Food Industry. Antipode, 45: 1090-1109. doi:10.1111/anti.12023

2. The estimate depends on the interpretation of data and could be considered as much as 60%, see, Lang, T. (2020). Feeding Britain: Our Food Problems and what to Do about Them. Pelican. p., 26

———————-

This blog was written by Cabot Institute for the Environment member Dr Lydia Medland, it was originally published on her blog Eating Research and has been re-published here with her permission.  Lydia has a Postdoctoral Fellowship from the British Academy to research food systems in the UK. 

 

Dr Lydia Medland

 

UK science policy in a changing Arctic: The Arctic Circle Assembly 2019

Arctic Circle – the largest international gathering on Arctic issues. Image by Kate Hendry

The Arctic is one of the most rapidly changing regions on Earth. Its lands and oceans are undergoing unprecedented transitions, from permafrost melting to sea ice thinning, and its people are vulnerable to the knock-on effects of climate change.

At the same time, Arctic governments (state, regional and local) are looking towards the future of economic development, broadened participation and connectivity, and improved health and education. All of these socioeconomic and environmental challenges are going on against the background of a complex governance structure and heightened geopolitical pressures.

Harpa, Reykjavik, the location of the Arctic Circle Assembly

Unlike the Antarctic, there is no one treaty or agreement that underpins Arctic governance, which is instead reliant on the Arctic Council and a plethora of bilateral and multilateral agreements.

The Arctic Circle is a not-for-profit organisation that forms the largest “network of international dialogue and cooperation on the future of the Arctic”, with the ambitious aim to promote open discussion between state and non-state players, including the private sector, universities, think tanks, environmental and conservation associations, Indigenous communities, and interested members of the public.

L-R: Henry Burgess, Head of the UK Arctic Office; Rosa Degerman, UK Science and Innovation Network in Finland; and Tatiana Iakovleva UK Science and Innovation Network in Russia

As part of a PolicyBristol project, joint with the UK Arctic Office (under the Natural Environment Research Council) and UK Science and Innovation, I was fortunate to attend the Arctic Circle Assembly in Reykjavik this October. I was thrust into a steep learning curve of Arctic governance and policy strategies from representatives of governments (from Arctic states, to non-Arctic countries such as Switzerland, Singapore and Japan), devolved authorities (including the first ever panel discussion with Greenland’s first generation of representative diplomats, and the announcement of Scotland’s Arctic policy document), and NGOs.

All of these policy announcements and discussions were focused around the dual themes of sustainable development and environmental protection, with the ever present shadow of rapid climatic change.

Private sector representatives with an interest in the Arctic included companies promoting their climate change solutions, from renewables to climate altering technologies (or geoengineering), from manipulating glaciers, to restoring Arctic sea ice, to fixing carbon dioxide in rocks.

There were also powerful and inspiring talks from Indigenous peoples’ representatives, emphasising the desire for self-determination (“Nothing about us without us”) and the essential need to co-produce strategies towards sustainable development and scientific endeavours, embracing full collaboration with Indigenous rights holders and respecting their cultural heritage.

And scientists can play their part. The IPPC special report on the oceans and cryosphere in a changing climate (SROCC published in September 2019) brought together thousands of peer-reviewed publications across natural and social sciences, highlighting the current threats to the polar regions. The SROCC featured heavily in the Assembly – mentioned by most policy makers’ presentations – and a focus of a dedicated discussion session with the leading authors of the polar regions chapter.

However, one of the challenges faced by the report authors was the limitation within the IPCC framework of using only peer-reviewed materials. The vast majority of Indigenous Knowledge (IK) is not written in peer-reviewed journal articles, leaving us with the question of how these vital approaches can be incorporated in the future.

The changing Arctic will have profound impacts not only on the ecosystems and communities of the Arctic states, but will be felt globally through climate teleconnections and an growing global economy. The solutions to climatic change are complex, and need multiple strategies, unified international cooperation, co-production with local communities, evidence-based policy decisions, and scientific diplomacy.

However, different stakeholders and rights holders have different governance structure and different priorities. Forums such as the Arctic Circle Assembly can start to bring everyone together to the debating table, but there is still a need to make sure that the good intentions are followed through with substantive action.

——————————–
This blog was written by Cabot Institute member Kate Hendry, an Associate Professor in Geochemistry at the University of Bristol, School of Earth Sciences, and member of the UK Arctic and Antarctic Partnership. With thanks to Henry Burgess (UK Arctic Office) and Michael Meredith (British Antarctic Survey). This blog was republished with kind permission from PolicyBristol. View the original blog.

The muddy debate: Is the Severn Estuary biologically productive?

Severn Bridge by Philippa Long

Traditionally, the Severn Estuary has been mistaken for an expansive, featureless landscape, dominated by fast-flowing muddy waters that prevent any pelagic biological activity. Although the latter could be true in terms of phytoplankton development, new research has shed light on the vital role that the benthic algal system has on controlling nutrient dynamics in the estuary.

Estuaries form at the margins between the land and the sea. The complex movement and mixing of freshwater and seawater governed by the tide, along with the trapping and recycling of continentally supplied nutrients and sediment, makes estuaries some of the most ecologically viable ecosystems in the world, in line with the biological productivity of coral reefs and tropical rainforests.

The Severn, the largest of 133 estuaries in the UK, has a mosaic distribution of intertidal mudflats, saltmarshes and wetlands, making it a unique habitat for a wide range of species. Alongside nationally scarce plant species, important wildfowl, wader populations and migratory European birds inhabit and refuel in the biologically-rich banks of the estuary. The estuarine waters are also home to over 100 fish species that use the estuary as a nursery, supporting many of the UK’s commercial fish stocks. With such a wide socio-ecological and economic importance, it is clear why the Severn was designated a Special Area of Conservation in 2009.

However, it’s less obvious as to why it has been over two decades since there have been systematic sampling studies in the Severn. Reviews have come and gone during this time, widely associated with renewable energy projects such as the Severn Barrage, but have often repeated findings from the 1990s. Furthermore, any commercially driven studies and their findings are often not disclosed to researchers or the public. This has left, in many aspects, knowledge of the Severn and its current ecosystem condition in a state of limbo. One aspect that’s often overlooked in many hydrological systems and is often overshadowed by carbon, nitrogen and phosphorus, is the element silicon, which may be one of the most important nutrients in the Severn’s environment.

Sand Bay by Holly Welsby

Why is silicon important?

Dissolved silicon is an important nutrient in aquatic environments, and is essential to siliceous organisms, for example, photosynthetic diatoms, which use dissolved silicon to form their shells (or frustules) made from biogenic silica. Diatoms are broadly categorised as ‘centric’ (round), usually occupying the surface oceans, and ‘pennate’ (long and thin), inhabiting coastal and seafloor environments, including sea ice, and intertidal mudflats such as those in the Severn Estuary.

Despite their small size, diatoms are an important group in supporting most food webs, and due to their abundance, contribute close to half of all surface ocean productivity! Diatoms are a key factor in affecting climate change due to this high productivity, as they remove the greenhouse gas carbon dioxide out of the atmosphere and export the organic carbon from the surface ocean to the seafloor when they die. Dissolved silicon and biogenic silica have been widely used to study marine silicon cycles but the impact that diatoms may have on estuarine cycles, and the potential influence on river silicon inputs to the ocean, has only recently come to light.

Silicon cycling in the Severn Estuary: new research

After the receding of the tide, large intertidal mudflats form along the shores of the Severn Estuary, which has the second largest tidal range in the world! These nutrient-rich intertidal mudflats are inhabited by pennate diatoms that live in microbial mats, called biofilms, on the mudflat surface. These biofilms, which are visible to the naked eye (the golden-brown shimmer that can be observed on the mudflats at low tide), are low in biodiversity but high in diatom abundance. Biofilms are an important food source to many mud-dwelling creatures, such as estuarine ragworm and laver spire snails, and migratory visitors such as the whimbrel and ringed plover. These ‘sticky’ mats also contribute to sediment stabilization, through the production of an organic rich network around sediment grains, and control nutrient fluxes to the overlying water.

Biofilm on the intertidal mudflats of the Severn by Holly Welsby

Compared to the well-studied carbon, nitrogen and phosphorus cycles, the importance of silicon in the Severn Estuary is less well understood. New research that has been carried out at the University of Bristol has aimed to tackle this gap, with an in-depth, seasonal study of silicon cycling along the Severn river-estuary-marine continuum. Each season in 2016, the surface and bottom waters of the Severn were sampled aboard Cardiff University’s research vessel.

It was found that the strong tidal forces and seasonal river flow fluctuations controlled dissolved silicon and other associated nutrients. In line with previous studies, the high mud water content – referred to as turbidity – limited water column primary productivity by blocking out light. This meant that there was minimal biogenic silica production in the water column itself. Instead, biogenic silica depended on the suspended particulate matter, and displayed seasonal cycles associated with benthic biogenic silica production by the diatom biofilms on the mudflats. In other words, the suspended sediment in the Severn not only originated from the rivers discharging into the estuary, but also from the erosion of the intertidal mudflats. This erosion of the mudflats in this high energy system, led to the suspension of the diatom biofilms, and so increased the biogenic silica concentrations in the water column.

This research has shown that since the 1990s reports, diatom biofilm biomass (i.e. their presence) has increased on the mudflats. These diatoms were also efficient at photosynthesis, resulting in a high potential to cycle silicon. These biofilms break up and reform rapidly between tides meaning that a large amount of silica is shuttled from the mudflats to the water column every day. This benthic biogenic silica export, which is transported further compared to dissolved silicon, could dissolve and replenish the Celtic Sea, with the dissolved silicon ready to be used by plankton that supports our commercial fish stocks.

Severn River in winter by Tim Gregory

Looking ahead

The Severn Estuary – in all its natural wonders – is a valuable resource in terms of renewable energy, tourism and business. Many of us also call it home. But what does the future hold for these diatom biofilms on the mudflats of the Severn Estuary? In many ways, their prospects are low. With extreme weather events, erosion and coastal squeezing causing a loss to our mudflat and saltmarsh habitats, influx of microplastics and associated toxins, alongside proposals for large construction projects that may alter sediment/nutrient loadings and deposition patterns, the future of these biofilms hangs is in the balance. But based on recent findings, these diatoms are tolerant to the mudflats harsh environmental conditions, which suggests they have the capability to adapt to these adverse conditions. Diatoms are a miraculous species, and their benefits to the estuary is not fully recognised.

We are beginning to understand that there is a limit to the degree that we can modify our environment, but if we could only assign an economic value to this biologically productive system, perhaps the benthic diatoms future on the Severn Estuary mudflats could be aided.

————————————-
This blog has been written by Cabot Institute member Holly Welsby, from the School of Earth Sciences at the University of Bristol.

Is benchmarking the best route to water efficiency in the UK’s irrigated agriculture?

Irrigation pump. Image credit Wikimedia Commons.

From August 2015 to January 2016, I was lucky enough to enjoy an ESRC-funded placement at the Environment Agency. Located within the Water Resources Team, my time here was spent writing a number of independent reports on behalf of the agency. This blog is a short personal reflection of one of these reports, which you can find here. All views within this work are my own and do not represent any views, plans or policies of the Environment Agency. 

Approximately 71% of UK land (17.4 million hectares) is used for agriculture – with 9.3 million hectares (70%) of land in England used for such operations. The benefits of this land use are well-known – providing close to 50% of the UK’s food consumption.  Irrigated agriculture forms an important fulcrum within this sector, as well as contributing extensively to the rural economy. In eastern England alone, it is estimated that 50,000 jobs depend upon irrigated agriculture – with the sector reported to contribute close to £3 billion annually to the region’s economy.
It is estimated that only 1-2% of the water abstracted from rivers and groundwater in England is consumed by irrigation. When compared to the figures from other nations, this use of water by agriculture is relatively low.  In the USA, agricultural operations account for approximately 80-90% of national consumptive water use. In Australia, water usage by irrigation over 2013/14 totalled 10,730 gigalitres (Gl) – 92% of the total agricultural water usage in that period (11,561 Gl).
However, the median prediction of nine forecasts of future demand in the UK’s agricultural sector has projected a 101% increase in demand between today and 2050. In this country, irrigation’s water usage is often concentrated during the driest periods and in the catchments where resources are at their most constrained. Agriculture uses the most water in the regions where water stress is most obvious: such as East Anglia. The result is that, in some dry summers, agricultural irrigation may become the largest abstractor of water in these vulnerable catchments.
With climate change creating a degree of uncertainty surrounding future water availability across the country, it has become a necessity for policy and research to explore which routes can provide the greatest efficiency gains for agricultural resilience. A 2015 survey by the National Farmers Union  found that many farmers lack confidence in securing long term access to water for production – with only a third of those surveyed feeling confident about water availability in five years’ time. In light of this decreasing availability, the need to reduce water demand within this sector has never been more apparent.
Evidence from research and the agricultural practice across the globe provides us with a number of possible routes. Improved on-farm management practice, the use of trickle irrigation, the use of treated wastewater for irrigation and the building of reservoirs point to a potential reduction in water usage.
Yet, something stands in the way of the implementation of these schemes and policies that support them: People. The adoption of new practices tends to be determined by a number of social factors – depending on the farm and the farmer. As farmers are the agents within this change, it is important to understand the characteristics that often guide their decision-making process and actions in a socio-ecological context.
Let’s remember, there is no such thing as your ‘average farmer’. Homogeneity is not a word that British agriculture is particularly aware of. As a result, efforts to increase water use efficiency need to understand how certain characteristics influence the potential for action. Wheeler et al. have found a number of characteristics that can influence adaptation strategies. For example, a farmer with a greater belief in the presence of climate change is more likely to adopt mitigating or adaptive measures. Importantly, this can also be linked to more-demographic factors. As Islam et al. have argued, risk scepticism can be the result of a number of factors (such as: age, economic status, education, environmental and economic values) and that these can be linked to the birth cohort effect.
This is not to say that all farmers of a certain age are climate-sceptics but it does point to an important understanding of demography as a factor in the adoption of innovative measures. Wheeler et al. went on to cite variables of environment values, commercial orientation, perceptions of risk and the presence of an identified farm successor as potentially directing change in practice . Research by Stephenson has shown that farmers who adopt new technologies tend to be younger and more educated, have higher incomes, larger farm operations and are more engaged with primary sources of information.
Yet, there is one social pressure that future policy must take into account – friendly, neighbourly competition. Keeping up with the Joneses. Not wanting Farmer Giles down the lane knowing that you overuse water in an increasingly water-scarce future. This can be harnessed within a system of benchmarking. Benchmarking involves the publication of individual farm’s water use, irrigation characteristics and efficiency and farming practice. Although data is supplied anonymously, individual farmers will be able to see how they measure up against their neighbours, competitors and others elsewhere.
Benchmarking is used in other agricultural sub-sectors. A 2010 survey found that 24% of farmers from different sectors used benchmarking in their management processes. This is particularly evident in the dairy sector, where both commercial and public organisations use the methods as a way to understand individual farm performance – an important example of this would be DairyCo’s Milkbench+ initiative. In 2004, over 950,000 hectares of irrigated land in Australia, 385,000 hectares in China and 330, 000 hectares in Mexico were subjected to benchmarking processes as a mean to gauge their environmental, operational and financial characteristics.

The result is that irrigators would have the means to compare how they are performing relative to other growers – allowing the answering of important questions of ‘How well am I doing?’ ‘How much better could I do?’ and ‘How do I do it?’ Furthermore, this route can be perceived as limiting the potential for ‘free-riding’ behaviour within a catchment as well emphasise the communal nature of these vulnerable resources. We’ve all seen ‘Keeping up with the Joneses’ result in increased consumption – benchmarking provides us with an important route to use this socialised nudging for good.

————————————————————–

This blog is written by Cabot Institute member Ed Atkins, a PhD student at the University of Bristol who studies water scarcity and environmental conflict.

 

Ed Atkins

How the UK government is tackling climate change – a good plan or on course for disaster?

Steve Smith, a researcher working for the government’s independent advisors, the Committee on Climate Change (CCC), came to visit the Cabot Institute on 7 February 2014.  His talk was about whether the UK is on course for tackling climate change, or rather, the UK is on course for meeting its 2050 target of 80% reduction in carbon emissions.  It was a real eye opener.  Here I summarise the talk and the main points made by Steve.  All figures taken from Steve’s talk.
 
Background
 
The CCC consists of several high profile board members, including Lord Deben, Sir Brian Hoskins, and Lord Krebs amongst others.  As a group, their role on the mitigation side is to independently advise the government on UK emission targets.  The UK is legally bound to meet the 2050 target of 80% reduction of CO2 emissions below 1990 levels.  Being legally bound to this commitment means the government has to meet this target.  Steve wasn’t quite sure what the implications would be if the UK government broke the law by not meeting the emissions target by 2050. [Update: the EU has now agreed to a 40% reduction in emissions by 2030].
 
Extreme weather events will become
more common
The current risk of impacts from climate change are set out in the latest IPCC reports.  It is agreed that 2 degrees of warming will exacerbate current climate-related impacts such as increased risk of floods, drought, food insecurity, human displacement, plant and animal disease, etc but that technological advances and human resilience should be able to live with this. Beyond 4 degrees rise many systems will just not be able to adapt – a blunt warning if there ever was one.
 
The current 2050 target of 80% reduction of emissions keeps it in line with a 2 degree warming scenario. This equates to approximately 20 – 24 GT CO2 Kyoto emissions by 2050, which itself implies that each person living on the planet in 2050 will only contribute 2 tonnes of CO2 per year.  This is a similar figure to 6000 miles in your car (an easy annual commuting amount).  Steve pointed out that the total emissions from electricity in 2010 were almost the same amount as total emissions that will be allowed in 2050.  This is not a joke, we will have to meet these targets and we will have to severely cut our carbon emissions.  So what I want to know is what’s the plan?
 
What is the government doing?
 
It seems the government does have a plan and it has had a plan for a few years now.  A long and winding road sort of plan (it stretches 40 years and Steve also admitted that the plan is likely to change over that time period), but it’s a plan nonetheless with a hopeful outcome. Currently the government looks at reducing CO2 emissions by implementing cost effective measures across the economy.  Examples include increased implementation of electrification and Carbon Capture and Storage (CCS) within industry, and district heating and air source heat pumps for buildings.
 
Nuclear power could
help decarbonise the UK
Looking at one of these key measures in more detail, electrification, it is vitally important to not only increase reliance on electricity as a power source (rather than gas or oil) but also to decarbonise electricity production, producing a win-win situation.  The government aims to do this in steps.  The first step is the decarbonisation of base load electricity production into the 2020s.  Base load electricity is the minimum amount of power made to meet minimum demands from users.  Increasing nuclear power could play a big part in this transition.  From the 2020s onwards, the government will aim to decarbonise peak electricity, the stuff that’s needed on-demand like when we switch on our kettles during an ad-break.  The timescales do seem quite long but it takes around 9 years to build a nuclear power station, so put it in perspective the timings aren’t actually that long.  However it is questionable whether we can actually wait until 2050 to become decarbonised for fear of hitting that 4 degree global temperature rise in the meantime. 
 
Decarbonising electricity is one of the most useful things the government can do especially as most fossil fuel driven machines can be electrified – including our cars.  Steve admitted there was one area that was proving difficult to decarbonise – the aviation and shipping sector.  The CCC are still working out how to make this area more efficient as it is a really difficult sector to change.
 
What are the costs to the UK economy?
 
The CCC estimates that the resource cost of reducing CO2 from all sectors would amount to 0.5% GDP.  If there was a scenario in the future of high fuel prices, this cost would drop to 0.1% GDP, but if fuel prices came down we would pay more – around 0.8% GDP. Rather interestingly, 0.6% of costs of reducing CO2 fall in the power sector. So should the government put up the cost of fuel to reduce the resource cost to the UK as a whole?  It’s not as clear cut as that.  Fuel poverty and economic competitiveness are huge issues which need to be carefully considered before any price hikes.
 
The CCC is confident that all government projections will be wrong by 2050. To counter this the CCC have come up with some bottom up scenarios – Max (decarbonise everything), Stretch (optimistic carbon reduction but not ideal), Barrier (the most likely scenario but the worst for CO2 savings).  By mixing and matching these scenarios across all sectors as appropriate, multiple scenarios have been created and it is from these multiple scenarios that the CCC can keep resource cost below 1% GDP for the UK.  
 
How are we doing so far?
 
We’re doing well to decarbonise our cars.
Image by Danrok, Wikimedia Commons
From the first period 2008 – 2012, the first carbon budget was met. Greenhouse gas emissions were reduced.  However, the main cause of this has been attributed to the recession and only 1% of emission reduction was from low carbon energy measures
 
The good news is that the UK is ahead of schedule on the decarbonisation of cars. However we are falling behind on non-traded emissions such as cavity insulation. We are looking like we will be on target for the second budget (2013 – 2017) but not budgets 3 (2018 – 2022) or 4 (2023 – 2027).  If the UK is to meet these targets then the government needs to improve future policies and speed up the rate of change to a decarbonised society.
 
Shale gas – a game changer?
 
The USA has kicked heavy emission coal off the system by investing heavily in shale gas (aka fracking) and in doing so has radically (and unwittingly) changed its climate policy.  Steve questioned whether shale gas could be a game changer in the UK.  Rather interestingly, it seems that not much extra gas will be produced in the UK by 2035 if shale gas was put into the mix.  UK gas demand turns out to be significantly higher than what the UK can actually produce (including that from shale). Questions then arise, for example, if you are offsetting imports of gas where are those imports coming from? How are they being transported?  What amount of CO2 is being released in the process of transportation? 
 
Methane leakage from shale gas is also a problem.  The CCC have found that methane leakage from shale gas would be more beneficial to decarbonisation due to the overall emissions from shale gas being less than the amount of emissions from current transportation of Liquified Natural Gas (which has a much smaller amount of methane leakage and larger amount of emissions overall). Any reduction is better than no reduction and the government thinks that a well regulated shale gas industry could help the UK reach those decarbonisation targets.
 
A healthy low carbon diet
 
Image by Richard Croft, Wikimedia Commons
Decarbonising the UK is going to be tough but there are net benefits from doing so.  One of these net benefits is health.  Although it is difficult to quantify the health impact of all CO2 emission reducing methods, we can quantify those such as reducing congestion, improving air quality, and getting people on their bikes doing more exercise.
 
A question was asked of Steve at the end of the talk…why are we not efficient in all of these sectors already?  Steve responded that people don’t act entirely rationally, that decarbonisation takes time to filter into people’s mindsets and that subsidies for the wrong sorts of fuels does not help.
 
So should the government do more to embed a low carbon mindset into its people and industry? Or should we be educating ourselves and personally reducing our own carbon emissions (the non-traded emissions)?  Should we just demand more of our government, put the pressure on the policy makers and inspire current and future generations to do more and be more in a low carbon world? The CCC and the government doesn’t have all the answers.  It’s up to research institutions, like the Cabot Institute, to put their collective heads together to develop solutions to help decarbonise society and to engineer new low carbon technologies, with support from government and industry.   
 
The UK has become a lot more efficient since the 2050 targets were introduced, the government is legally bound to meet these targets so it is serious about the job in hand, and as a result its policies have been changing to reduce emissions.  The government just has to ensure it continues to act on the CCC’s recommendations.   

View the slides from Steve’s talk.
 
This blog was written by Amanda Woodman-Hardy, Cabot Institute Administrator, University of Bristol.

Follow @Enviro_Mand

Amanda Woodman-Hardy