University of Bristol welcomes five Met Office Research Scientists as part of the new Met Office Academic Partnership

 

Image Credit: Federico Respini on Unsplash

In spring of 2020 the University of Bristol joined a prestigious alliance of the Met Office and six University Research Institutes that brings together expertise in weather and climate science.  The exciting, new Bristol Met Office Academic Partnership (MOAP) is focussed on the theme of “weather and climate hazards for decision making.” The aim is to align research interests through combining the Met Office world-leading ability in weather forecasting and the hazard and impact modelling expertise we have at Bristol.

A core part of the MOAP is to embed Met Office expertise within the University and to develop cross-disciplinary research in our key theme areas. We are, therefore, delighted to announce five new part-time Joint Bristol – Met Office Faculty members of staff who began working with us at the beginning of April.

Our Joint MOAP Chair based at the Met Office, Professor Chris Hewitt commented:

“We were delighted to welcome the University of Bristol to the Met Office Academic Partnership last year, and are excited that there will be five new joint faculty positions for Met Office scientists to cement the collaboration with the University’s experts working on research topics of mutual interest.”

The collaborative research will come under four interchangeable, themes:

  • Weather, climate and environmental hazards (e.g. volcanic hazards, heat waves, storms).
  • Impact and risk-based predictions.
  • Resilience to hazards and weather.
  • Climate services for making decisions.

The theme areas are co-led by eight University of Bristol researchers from Earth Sciences, Geographical Sciences and Civil Engineering and eight Met Office scientists. The new positions will work closely with the theme co-leads and have been strategically placed across the University Faculties to enhance collaboration and develop new research opportunities, particularly in the lead up to COP26.

University of Bristol-based MOAP Joint Chair, Dr Dann Mitchell says:

“We are really excited with the new joint faculty positions starting at Bristol. They represent the full spectrum of our partnership with the Met Office, from fundamental science for weather and climate hazards, to end user engagement. They will sit across three of our faculties and help solidify cross-disciplinary links between weather and climate, and the impacts on society, such as through health and hydrological modelling.”

The Faculty of Science welcomes three of the appointments: Dr Lizzie Kendon, a Science Manager and Met Office Fellow looking at high impact weather events using very high-resolution climate models, Dr Matt Palmer who leads the team at the Met Office who research sea level and ocean heat content and Dr Joseph Daron a Science Manager for International Climate Services at the Met Office.

The Faculty of Engineering welcomes our fourth appointment Dr Fai Fung who is the UK Climate Projections Climate Services Manager.. Our fifth appointment, Dr Dan Bernie, is the Science Manager for the UK Climate Resilience Team at the Met Office and is welcomed by the Faculty of Health Sciences. With regular MOAP meetings underway and events such as the CMIP6 Data Hackathon now open for applications we are excited to begin working with our new colleagues to develop a strong, collaborative relationship between Bristol and the Met Office.

The new appointments will work closely with The Cabot Institute for the Environment, Jean Golding Institute and Elizabeth Blackwell Institute to deliver cutting-edge research in weather and climate science

For further enquiries about the MOAP we can be contacted at bris-moap-coordinator@bristol.ac.uk.

———————————

This blog is written by Dr Emma Stone (Bristol MOAP Project Manager).

Emma’s role as MOAP project Manager, previously with a background in climate science, is to assist with and coordinate MOAP-related activities working alongside the MOAP Joint Chairs, Research Advisory Panel and theme co-leads to identify potential research opportunities between the University and the Met Office and see these through to development. Emma is a key point of contact for internal and external researchers, collaborators, funders and support staff.

Dr Emma Stone

 

 

 

 

 

Image at start of article credit: Federico Respini on Unsplash

World Water Day: Climate change and flash floods in Small Island Developing States

Pluvial flash flooding (otherwise known as flash flooding caused by rain) is a major hazard globally, but a particularly acute problem for Small Island Developing States (SIDS). Many SIDS experience extreme rainfall events associated with tropical cyclones (often referred to as hurricanes) which trigger excess surface water runoff and lead to pluvial flash flooding.

Following record-breaking hurricanes in the Caribbean such as Hurricane Maria in 2017 and Hurricane Dorian in 2019, the severe risk facing SIDS has been reaffirmed and labelled by many as a sign of the ‘new normal’ due to rising global temperatures under climate change. Nonetheless, in the Disaster Risk Reduction community there is a limited understanding of both current tropical-cyclone induced flood hazard and how this might change under different climate change scenarios, which inhibits attempts to build adaptive capacity and resilience to these events.

As part of the first year of my PhD research, I am applying rainfall data that has been produced by Emily Vosper and Dr Dann Mitchell in the University of Bristol BRIDGE group using a tropical cyclone rainfall model. This model uses climate model data to simulate a large number of tropical cyclone events in the Caribbean, which are used to understand how the statistics of tropical cyclone-induced rainfall might change under the 1.5C and 2C Paris Agreement scenarios. This rainfall data will be input into the hydrodynamic model LISFLOOD-FP to simulate pluvial flash flooding associated with hurricanes in Puerto Rico.

Investigating changes in flood hazard associated with different rainfall scenarios will help us to understand how flash flooding, associated with hurricanes, emerges under current conditions and how this might change under future climate change in Puerto Rico. Paired with data identifying exposure and vulnerability, my research hopes to provide some insight into how flood risk related to hurricanes could be estimated, and how resilience could be improved under future climate change.

————————————-
This blog is written by Cabot Institute member Leanne Archer, School of Geographical Sciences,  University of Bristol.
Leanne Archer

Community volcano monitoring: The first weeks at Volcan de Fuego


Volcan de Fuego (Volcano of Fire) is an active volcano close to the Guatemalan city of Antigua. The volcano is one of the most active volcanoes in central America with a lively history of life-threatening eruptions.  It is thought that around 60,000 people are currently at risk from the volcano.

Monitoring the volcano is challenging with a limited availability of resources in the developing country. Bristol volcanology PhD student Emma Liu and colleagues are currently in Guatemala implementing a novel program to monitor ash fall from the volcano using community involvement. Volcanic ash is a hazard to human health, as well as to aviation. Additionally it holds vital clues into the activity of the volcano that can help us to understand past eruptions and predict what it may do in the future.  Once ash falls to the ground it is easily blown or washed away meaning lots of valuable information is lost in the hours and days after an eruption. Collecting ash as it falls can be challenging over a large area so Emma is roping in the local population to help.

Her cleverly designed ‘ashmeters’ are made almost entirely from recycled plastic bottles and are being installed in the gardens of local schools and houses around the volcano.  The components are easily replaceable and can be found locally. The ash falls into the meters and can be then collected and bagged by the residents. So far the meters have been installed in nine locations all around the volcano allowing Emma and her team to sample ash from almost any possible type of eruption.  As well as being indispensible from a scientific perspective, Emma hopes the scheme will help to improve the relationship between scientists and the volcano’s residents as she explains; ‘By engaging local communities directly in volcano monitoring, we hope to improve the two-way dialogue between scientists and residents, thereby increasing resilience to ash hazards’.

The scheme so far has been a great success, with the ashmeters being welcomed into people’s homes and attached to roofs and fencepost. Within a week of the ashmeters being deployed, they were tested by a large eruption on the 1 March 2016. Three ashmeters were installed during this eruption, all of which successfully collected ash. The Bristol volcanologists have now been able collect the ash which will be brought back to the University of Bristol for analysis.  The Bristol group will remain out in Guatemala for another few weeks in the hope they will able to distribute more ashmeters and gather more vital information for the management of volcanic hazard in the area. Emma received funding from the Bristol Cabot Institute Innovation Fund to set up this project.

——————————————————————–

This blog is written by Cabot Institute member Keri McNamara, a PhD student in the School of Earth Sciences at the University of Bristol.

Implementing volcanic hazard assessment operationally

Following the 2010 eruption of the Eyjafjallajökull volcano in Iceland, the National Risk Register now lists volcanic hazards at the highest priority level. Volcanic hazard assessment draws together scientific knowledge of volcanic processes, observational evidence and statistical modelling to assess and forecast hazard and risk. Researchers at the University of Bristol have been central to the development of local, regional and global volcanic risk modelling over recent decades. One aspect of ongoing research is to develop a strategy for devising and implementing hazard assessments in an operational environment, to provide decision support during a volcanic crisis.

Cabot Professor Willy Aspinall
demonstrating the application of
Expert Elicitation in volcanic
hazard modelling at the OTVHA
workshop, Vienna, April 2014

Last week, I organised a workshop on Operational Techniques for Volcanic Hazard Assessment. The 2-day workshop, held in Vienna, Austria and supported by the European Geosciences Union and the Cabot Institute, brought together researchers from 11 institutions in eight countries to explore current practice in methods applied to operational and near-real time volcanic hazard assessment.  I was assisted in organising by Dr Jacopo Selva of INGV in Bolognia and speakers included Cabot Institute members Professor Willy Aspinall and Dr Thea Hincks, Dr Richard Luckett of the British Geological Survey and Dr Laura Sandri, of INGV, Italy.

There is a real gap between our ability to monitor and understand volcanic processes and our capacity to implement that understanding in a way that is useful operationally. In this workshop, we were able to bring together some of the leading researchers from around the world to explore how different tools and techniques are deployed. Better integration of these tools is essential for volcanic hazard forecasting to be useful for risk management.

The workshop involved discussion sessions and practical demonstrations of tools for real-time monitoring alerts, the use of expert judgment, Bayesian event tree scenario modelling and Bayesian belief network inference tools.  Dr Mike Burton from INGV Pisa, who took part in the workshop, said,

“It’s really important for volcanologists to engage with how our science can be adapted and incorporated in hazard assessments. The OTVHA workshop was a really useful exercise in exploring how our knowledge and uncertainty can be assimilated for real time decision support.”

Monitoring a volcano in Ethiopia

My research in Bristol concerns the interface between volcano monitoring data and hazard scenario models and I felt the workshop was a great success.  A few groups have developed approaches to modelling volcanic hazard and risk. This workshop provided a great forum for detailed discussion of how these tools and techniques can be combined and compared.  As scientists, we need to understand how to optimise and communicate our model output to be useful for decision makers.

Developing tools that are both scientifically and legally defensible is a major challenge in natural hazard science. The idea of organising the OTVHA workshop was to further explore the opportunities in addressing these challenges, which are central to the mission of the Cabot Institute. We’ve already started planning for the next workshop!

The OTVHA workshop was followed up with an associated session at the EGU General Assembly meeting, ‘Advances in Assessing Short-term Hazards and Risk from Volcanic Unrest or Eruption’, with a keynote presentation by Prof Chuck Connor on assessment of volcanic risk for nuclear facilities.

——————————–
This blog is written by Cabot Institute member Henry Odbert, School of Earth Sciences, University of Bristol.

———————————-

There are a few places left on the Cabot Institute Summer School on Risk and Uncertainty in Natural Hazards, featuring Willy Aspinall and other leading Cabot Institute academics.  Book your place now.