MetroLabs visit: Sharing experiences of implementing smart cities

Image credit: CarriAyne Jone, (Head of Science and Innovation, British Consulate-General, Atlanta)

In December 2017 I was invited to take part in the Metro Lab Annual Summit, taking place in Georgia Tech in the United States. I thought it worthwhile to share a few of my own thoughts about the meeting and what can be drawn from the experience.

The MetroLab Network includes 41 cities and 55 universities within the United States that have formed city-university partnerships that focus on research, development and deployment projects to offer solutions to many of the challenges facing urban areas. These allow decision makers and researchers to work together within their cities to achieve better urban living, while being able to share best practice from each other’s experiences.

The visit was facilitated by the UK Science and Innovation Network, part of the Foreign and Commonwealth Office who provide opportunities for international collaboration. As well as delegates from the University of Bristol and Bristol City Council, we shared the visit with delegates from Glasgow and Strathclyde and from Innovate UK. Bristol has been designated as the UKs ‘smartest city’ according the smart city index commissioned by Huawei UK. A number of current innovations at Bristol are helping to develop the smart city capability including Bristol is Open, a joint venture between the city and university providing a digital infrastructure; and the Digital Health strategy (including IRC SPHERE ) that utilises sensing technology to facilitate healthier living. My own future work plans fit into this agenda, as I am trialling air quality and meteorological sensors that will help inform when and where I can run my gas tracer and aerosol measurement experimental campaigns.

In the morning of the day before the Summit, our delegation was introduced to the Consulate General and staff in their Atlanta office. Afterwards, we visited Southface, a company that promotes sustainable development and green building. Their offices included buildings designed to be exemplars of the type of technologies that they promote. I look forward to finding out more on some of the work they are doing in the monitoring of pollutants indoors from outdoors. After this visit we attended the launch of the Smart city and data-driven energy policy program, within which presentations were given on how a city could increase energy efficiencies, and the net gains that could be achieved.

The first day of the summit was held in the Georgia Institute of Technology Historic Academy of Medicine. The sessions included round table discussions from civic leaders, including mayors and chief technology/data/information officers (or similar variations of that title) about the challenges facing cities in the future, and how technologies can be used to address them, particularly in the gathering of data. Hearing civil leaders emphasising their commitment to action on climate change and public health independently of national policy was an encouragement to me.

Throughout both days, a number of research and development projects were highlighted that showed the benefit of smart technologies. One such technology was Numina, demonstrated in Jacksonville, which tracked traffic, bike and pedestrian movements so that cities have a better idea of what is happening on their streets. An 18 mile stretch of highway near Georgia has been turned into a living lab known as the Ray C Anderson memorial highway (The Ray) incorporating a driveable solar road surface, EV charge points and tyre safety checks. Another presentation described an ambitious attempt to link Portland, Seattle and Vancouver in the larger ‘megapolitan’ region of Cascadia, which would provide better management of transport over the area.

James Matthews (second from left) participated in a panel discussion on Air Quality Sensing in Smart Cities.  Image credit: Melissa Wooten (Vice Consul for Prosperity and Economic Policy, British Consulate-General, Chicago).

On the second day, there were, among other things, discussions on data privacy and an update on the Array of Things. The Array of Things is a project by Argonne Labs and Chicago University that is building a platform by which an instrumented ‘node’ can be connected to an urban network, collecting environmental sensing data which could include air quality, traffic and meteorology. These are currently being trialled in Chicago and will soon be sent to participating partner cities, including Bristol.

In the afternoon it was my privilege to participate in a panel discussion on Air Quality Sensing in Smart Cities, where I provided the perspective of a researcher in urban meteorology and pollution dynamics who is attempting to use the Bristol is Open smart city technology to assist with my research. The other panel members were Vincent McInally from Glasgow City Council who provided his experiences addressing air quality in Glasgow, including maintaining air quality measurement networks in the city, and Don DuRousseau from DWU, Washington DC who has many years experience in real-time systems, cybersecurity and informatics and has worked to set up high speed connectivity in many MetroLab partners.

The discussion included concerns about low-cost, (or low-accuracy as Vincent suggested we  call them) sensors in reflecting true values of pollution in the city, and whether we can use the higher specification instrumentation to validate their usage and the related discussion on sensor placement and temporal variability or their output. The dangers of false positives, in particular from citizen sensing initiatives, was brought up in relation to these reliability concerns, and how these limitations can be communicated with the public such that the information can be better interpreted. There is certainly value in giving real time air quality information to the public, and it is something I have discussed with many project partners within Bristol, but this leads to the dilemma of whether the data needs to be filtered in some way so as to account for the errors, or whether the public have a right to all the data as a matter of course. The discussion also included some examples of how sensor measurements, and other initiatives, have been used to make a positive difference in city life.

Overall, the experience was a positive one for our delegation and shows the value of both using new technologies to affect positive change in city life, it underlined the merits in strong communication and collaboration between city leadership and the universities, and furthermore, showed the value of civic leaders and university academics from different cities coming together to share each other’s experiences of implementing smart cities. It may be time to consider how those cities in the UK could also bring together our own experiences.

——————————–
This blog is written by Cabot Institute member Dr James Matthews, a Senior Research Associate at the University of Bristol.  James is interested in the flow of gases in urban environments, and use perfluorocarbon trace gas releases to map the passage of air in urban cities.  He is currently running an extended field campaign measuring air quality for four months in Bangkok.
James Matthews

Presenting at the Oxford Symposium on Population, Migration, and the Environment

In my last blog post, I mentioned that the Cabot Institute would be sponsoring me to present my master’s dissertation at the Oxford Symposium on Population, Migration, and the Environment. The Symposium took place on 7 – 8 December 2017 at St. Hugh’s College.

My dissertation (which I also summarised in the last post), focusses on compensation for individuals or entities who bear the uneven costs of environmental policies. A well-designed environmental policy creates benefits, such as cleaner air and water, mitigated greenhouse gas emissions, or protection of a limited resource or species. These benefits are vital, and I opine that the world needs more and better-designed environmental policies, not fewer. However, my dissertation recognises the uneven distribution of costs in environmental policies—the companies that must purchase abatement technologies, the low-income homes that must pay more for electricity and heat, or the resource-dependent livelihoods that may struggle to make ends meet—and recommends how to compensate those who bear higher costs.

At Oxford, I presented my premise, methodology, findings, and ultimate recommendations for designing compensation for environmental policies. The listeners gave positive feedback. They had all encountered the concept of compensating environmental policies’ victims, but seeing an in-depth study of the concept was novel. After my twenty-five-minute talk, I had five minutes for a formal Q&A.

In my presentation, I mention that one potential uneven cost is the creation of stranded assets. Companies might be left with technologies or whole plants they can no longer use given new, more stringent environmental regulations.

One university professor from the USA commented that companies in Appalachia have left behind old plants of their own accord, leaving an infrastructural scar and economic stagnation. While we consider compensating companies left with stranded assets by policy, we should also hold companies responsible for decommissioning the assets they abandon as a strategic choice.

Another researcher from Poland detailed the difficulty in compensating poor families pushed by policy to buy more efficient heating stoves that they cannot afford. Government could subsidise the purchases if it has sufficient funding, but often these stoves have higher lifetime operating costs as well. Should government permanently subsidise the energy costs of poor families who upgrade their stoves?

These questions challenged me and further emphasised the complexity of designing well-meaning environmental policies and compensation. The symposium was well-planned for these kinds of conversations. Presentations began as experts detailing their work, but finished in a seminar-style unpacking of how the work should evolve and improve. The list of attendees was small, in the 30s range, so the room felt warm and open for discussions. Although small, the symposium was quite international. Presenters came from the UK, the USA, Mexico, Chile, Spain, Italy, India, South Africa, Japan, and elsewhere.

I gained not only from presenting my own work, but also from listening to the presentations of others. The topics varied, all loosely-related to the symposium’s title topics of population, migration, and environment. I am very grateful to the Cabot Institute for making my participation possible. I plan to submit my full manuscript to the symposium, which will publish selected ones a few months into the New Year. The Journal for Science Policy and Governance has already accepted a version of my dissertation for publication, so I am excited to work with its editors to further disseminate my work.

————————–
This blog is written by Michael Donatti in October 2017. Michael is a Cabot Institute Masters Research Fellow.

Michael Donatti

 

Unless we regain our historic awe of the deep ocean, it will be plundered

File 20171107 1017 1vsenhn.jpg?ixlib=rb 1.1
Image credit: BBC Blue Planet

In the memorable second instalment of Blue Planet II, we are offered glimpses of an unfamiliar world – the deep ocean. The episode places an unusual emphasis on its own construction: glimpses of the deep sea and its inhabitants are interspersed with shots of the technology – a manned submersible – that brought us these astonishing images. It is very unusual and extremely challenging, we are given to understand, for a human to enter and interact with this unfamiliar world.The most watched programme of 2017 in the UK, Blue Planet II provides the opportunity to revisit questions that have long occupied us. To whom does the sea belong? Should humans enter its depths? These questions are perhaps especially urgent today, when Nautilus Minerals, a mining company registered in Vancouver, has been granted a license to extract gold and copper from the seafloor off the coast of Papua New Guinea. Though the company has suffered some setbacks, mining is still scheduled to begin in 2019.

Blue Planet’s team explore the deep. Image credit BBC/Blue Planet

This marks a new era in our interaction with the oceans. For a long time in Western culture, to go to sea at all was to transgress. In Seneca’s Medea, the chorus blames advances in navigation for having brought the Golden Age to an end, while for more than one Mediterranean culture to travel through the Straits of Gibraltar and into the wide Atlantic was considered unwisely to tempt divine forces. The vast seas were associated with knowledge that humankind was better off without – another version, if you will, of the apple in the garden.

If to travel horizontally across the sea was to trespass, then to travel vertically into its depths was to redouble the indiscretion. In his 17th-century poem Vanitie (I), George Herbert writes of a diver seeking out a “pearl” which “God did hide | On purpose from the ventrous wretch”. In Herbert’s imagination, the deep sea is off limits, containing tempting objects whose attainment will damage us. Something like this vision of the deep resurfaces more than 300 years later in one of the most startling passages of Thomas Mann’s novel Doctor Faustus (1947), as a trip underwater in a diving bell figures forth the protagonist’s desire for occult, ungodly knowledge.

An early diving bell used by 16th century divers. National Undersearch Research Program (NURP)

Mann’s deep sea is a symbolic space, but his reference to a diving bell gestures towards the technological advances that have taken humans and their tools into the material deep. Our whale-lines and fathom-lines have long groped into the oceans’ dark reaches, while more recently deep-sea cables, submarines and offshore rigs have penetrated their secrets. Somewhat paradoxically, it may be that our day-to-day involvement in the oceans means that they no longer sit so prominently on our cultural radar: we have demystified the deep, and stripped it of its imaginative power.

But at the same time, technological advances in shipping and travel mean that our culture is one of “sea-blindness”: even while writing by the light provided by oil extracted from the ocean floor, using communications provided by deep-sea cables, or arguing over the renewal of Trident, we perhaps struggle to believe that we, as humans, are linked to the oceans and their black depths. This wine bottle, found lying on the sea bed in the remote Atlantic, is to most of us an uncanny object: a familiar entity in an alien world, it combines the homely with the unhomely.

Wine bottle found in the deep North Atlantic. Laura Robinson, University of Bristol, and the Natural Environment Research Council. Expedition JC094 was funded by the European Research Council.

For this reason, the activities planned by Nautilus Minerals have the whiff of science fiction. The company’s very name recalls that of the underwater craft of Jules Verne’s adventure novel Twenty Thousand Leagues under the Seas (1870), perhaps the most famous literary text set in the deep oceans. But mining the deep is no longer a fantasy, and its practice is potentially devastating. As the Deep Sea Mining Campaign points out, the mineral deposits targeted by Nautilus gather around hydrothermal vents, the astonishing structures which featured heavily in the second episode of Blue Planet II. These vents support unique ecosystems which, if the mining goes ahead, are likely to be destroyed before we even begin to understand them. (Notice the total lack of aquatic life in Nautilus’s corporate video: they might as well be drilling on the moon.) The campaigners against deep sea mining also insist – sounding not unlike George Herbert – that we don’t need the minerals located at the bottom of the sea: that the reasons for wrenching them from the deep are at best suspect.

So should we be leaving the deep sea well alone? Sadly, it is rather too late for that. Our underwater cameras transmit images of tangled fishing gear, cables and bottles strewn on the seafloor, and we find specimens of deep sea animals thousands of metres deep and hundreds of kilometres away from land with plastic fibres in their guts and skeletons. It seems almost inevitable that deep sea mining will open a new and substantial chapter on humanity’s relationship with the oceans. Mining new resources is still perceived to be more economically viable than recycling; as natural resources become scarcer, the ocean bed will almost certainly become of interest to global corporations with the capacity to explore and mine it – and to governments that stand to benefit from these activities. These governments are also likely to compete with one another for ownership of parts of the global ocean currently in dispute, such as the South China Sea and the Arctic. The question is perhaps not if the deep sea will be exploited, but how and by whom. So what is to be done?

A feather star in the deep waters of the Antarctic. BBC NHU
Rather than declaring the deep sea off-limits, we think our best course of action is to regain our fascination with it. We may have a toe-hold within the oceans; but, as any marine scientist will tell you, the deep still harbours unimaginable secrets. The onus is on both scientists and those working in what has been dubbed the “blue humanities” to translate, to a wider public, the sense of excitement to be found in exploring this element. Then, perhaps, we can prevent the deep ocean from becoming yet another commodity to be mined – or, at least, we can ensure that such mining is responsible and that it takes place under proper scrutiny.
The sea, and especially the deep sea, will never be “ours” in the way that tracts of land become cities, or even in the way rivers become avenues of commerce. This is one of its great attractions, and is why it is so easy to sit back and view the deep sea with awed detachment when watching Blue Planet II. But we cannot afford to pretend that it lies entirely beyond our sphere of activity. Only by expressing our humility before it, perhaps, can we save it from ruthless exploitation; only by acknowledging and celebrating our ignorance of it can we protect it from the devastation that our technological advances have made possible.-
——————————-
This blog is written by Laurence Publicover, Lecturer in English, University of Bristol and Katharine Hendry, Reader in Geochemistry, University of Bristol and both members of the University’s Cabot Institute. This article was originally published on The Conversation. Read the original article.

New research by Cabot Institute members reveals super eruptions more frequent than previously thought

Toba supervolcano – image credit NASA METI AIST Japan Space Systems, and U.S. Japan ASTER Science Team

I’m sat in my office in the Earth Sciences department reading a research paper entitled ‘The global magnitude-frequency relationship for large explosive volcanic eruptions’. Two lines in and I can already picture the headlines: ‘APOCOLYPTIC VOLCANIC ERUPTION DUE ANY DAY’ or perhaps ‘MANAGED TO GET OFF BALI? YOU’RE STILL NOT SAFE FROM THE VOLCANOES. The temptation is to laugh but I suppose it’s not actually very funny.

The paper in question, produced by four Bristol scientists and published in Earth and Planetary Science Letters on Wednesday, uses a database of recorded volcanic eruptions to make estimates about the timing of large world-changing eruptions. It is the first estimate of its kind to use such a comprehensive database and the results are a little surprising.

In case you’re in a rush, the key take-home message is this…

When it comes to rare volcanic eruptions, the past is the key to the future. Volcanoes have erupted in the past. A lot. These past eruptions establish a pattern, which, assuming nothing has changed, can give us clues about the future. This can be done for a range of eruption sizes, but this paper focusses on the biggest of the lot. It turns out they have happened more frequently than previously thought. Yes, it’s surprising. No, you don’t need to worry.

Here’s how they did it:

In reality, supplying the kind of information needed for a study like this is an enormous task. Generations of volcanologists have found evidence of volcanic material from thousands of past eruptions scattered all over the world. Key bits of information on these eruptions has been collected across many years by hundreds of geologists and collated in one place called the LaMEVE database 
The database essentially turns each volcanic eruption into a statistic based on when it erupted and the eruption size. These statistics are the fuel for the study by statistician Prof Jonty Rougier and three volcanologists (and Cabot Institute members), Prof. Steve Sparks, Prof. Katharine Cashman and Dr Sarah Brown.  
The paper highlights that overwhelming majority of these eruptions have been fairly small (think Eyjafjallajökull*, think Stromboli), a smaller proportion have been a bit more lively (heard of Krakatau? Mount St. Helens?) and a really very tiny proportion are so big they might be described as ‘civilisation ending’ if they occurred today. I can’t give a well-known example of one of these as we, fairly obviously, haven’t had one in human timescales. 
Mount St Helens. Credit: Keri McNamara.
To give you a flavour, here are some statistics from the Toba super-eruption that occurred about 75 thousand years ago. The eruption produced a minimum of 2800kmof material.That is equivalent to covering the entire area of the UK in a 12-meter-thick layer of volcanic material, or filling the O2 arena a million times. It is thought the corresponding ash and aerosols that circled the earth cooled the surface temperature by between 3 and 10oC. The reduction in the sun’s radiation would see the death of the majority of plant species, and consequently human’s primary food source.  
 
It paints a rather grim picture. The alarming part of the new study is that eruptions such as Toba might not be as rare as previously thought. Earlier reports have suggested that these eruptions occur every 45-714 thousand years. The new paper revises this range down to 5.2 -48 thousand years with a best guess of one every 17 thousand years. According to geological records, the most recent super eruptions were between 20 and 30 thousand years ago (Taupo 25 ka, Aira 27 ka).
 
Given that humans started to use agriculture around 12 thousand years ago, it seems as though our modern civilization has flourished in the gap between super eruptions. As Prof.Rougier commented: “on balance, we have been slightly lucky not to experience any super-eruptions in the last 20 thousand years.” A little scary perhaps? 

Here’s why you shouldn’t worry:

The really important part of all this is uncertainty.There is a huge amount of statistical leeway either side of these estimates.
Trying to put an exact number on the recurrence interval of something so naturally complex is a bit like trying to estimate the final score of a football match without knowing exactly who the players are. You know how well the team has performed in the past, but you don’t know who will play in the future, or if the same player will behave the same way in every game. There are
also a whole range of things that could happen but probably won’t – perhaps the whole match will get rained off? 
 
 
Volcanoes aren’t much different. Just because a volcano has exhibited one pattern in the past, doesn’t necessarily mean it will do the same in the future. Volcanic systems are infinitely complicated and affected by a huge range of different variables. Assuming perfect cyclicity in eruption recurrence intervals just isn’t realistic. As Prof. Rougier said ‘It is important to appreciate that the absence of super-eruptions in the last 20 ,000 years does not imply that one is overdue.  Nature is not that regular.’ 
On top of that, our records of volcanic eruptions in the past are far from perfect. Sizes of prehistoric eruptions are easily under or overestimated, and some are simply missing from the record. Generally, the further you go back in time, the hazier it gets. While Rougier and his co-authors have done their best to account for these uncertainties, it is impossible to do so completely.  
If that wasn’t enough to put your mind at rest, it is important to remember that geological timescales are a lot bigger than human ones. Whether a volcano erupts every 200 thousand years or 202 thousand years is a very small difference in the context of a volcano’s period of dormancy.
But the extra few
thousand years encompasses the last two millennia and the
hundreds of human generations that have lived within it. 
 
When it comes down to it, the real risks from volcanoes come not from the super-eruptions, but from the smaller, frequent, more locally devastating eruptions. Ultimately, when volcanoes like Agung in Bali erupt, it isn’t us who will suffer. It is those who depend on the volcano for their homes and livelihood who will have to uproot and leave. The real value in this research is not in scare mongering, or in a dramatic headline, it’s developing new techniques that further our understanding of these unpredictable natural phenomena.  

 

(*Remember
in 2010 when a volcano in Iceland erupted and shut European airspace?
Eyjafjallajökull: Pronounced ‘eye-
yafiyat-la-yerkitle in case anyone’s interested) 
 

Read the original press release Time between world-changing volcanic super-eruptions less than previously thought


—————————————–
This blog is written by Keri McNamara: Cabot Institute writer and geologist in the School of Earth Sciences at the University of Bristol. Keri’s current research looks at using ash layers to improve records of volcanism in the central Main Ethiopian Rift.

Keri McNamara

To read more about the Cabot Institute’s Research, you can subscribe to this blog, or subscribe to our weekly newsletter

How to turn a volcano into a power station – with a little help from satellites

File 20171031 18735 1gapo0c.jpg?ixlib=rb 1.1
Erta Ale in eastern Ethiopia. mbrand85

Ethiopia tends to conjure images of sprawling dusty deserts, bustling streets in Addis Ababa or the precipitous cliffs of the Simien Mountains – possibly with a distance runner bounding along in the background. Yet the country is also one of the most volcanically active on Earth, thanks to Africa’s Great Rift Valley, which runs right through its heart.

Rifting is the geological process that rips tectonic plates apart, roughly at the speed your fingernails grow. In Ethiopia this has enabled magma to force its way to the surface, and there are over 60 known volcanoes. Many have undergone colossal eruptions in the past, leaving behind immense craters that pepper the rift floor. Some volcanoes are still active today. Visit them and you find bubbling mud ponds, hot springs and scores of steaming vents.

Steam rising at Aluto volcano, Ethiopia. William Hutchison

This steam has been used by locals for washing and bathing, but underlying this is a much bigger opportunity. The surface activity suggests extremely hot fluids deep below, perhaps up to 300°C–400°C. Drill down and it should be possible access this high temperature steam, which could drive large turbines and produce huge amounts of power. This matters greatly in a country where 77% of the population has no access to electricity, one of the lowest levels in Africa.

Geothermal power has recently become a serious proposition thanks to geophysical surveys suggesting that some volcanoes could yield a gigawatt of power. That’s the equivalent of several million solar panels or 500 wind turbines from each. The total untapped resource is estimated to be in the region of 10GW.

Converting this energy into power would build on the geothermal pilot project that began some 20 years ago at Aluto volcano in the lakes region 200km south of Addis Ababa. Its infrastructure is currently being upgraded to increase production tenfold, from 7MW to 70MW. In sum, geothermal looks like a fantastic low-carbon renewable solution for Ethiopia that could form the backbone of the power sector and help lift people out of poverty.

 

Scratching the surface

The major problem is that, unlike more developed geothermal economies like Iceland, very little is known about Ethiopia’s volcanoes. In almost all cases, we don’t even know when the last eruption took place – a vital question since erupting volcanoes and large-scale power generation will not make happy bedfellows.

In recent years, the UK’s Natural Environment Research Council (NERC) has been funding RiftVolc, a consortium of British and Ethiopian universities and geological surveys, to address some of these issues. This has focused on understanding the hazards and developing methods for exploring and monitoring the volcanoes so that they can be exploited safely and sustainably.

Teams of scientists have been out in the field for the past three years deploying monitoring equipment and making observations. Yet some of the most important breakthroughs have come through an entirely different route – through researchers analysing satellite images at their desks.

This has produced exciting findings at Aluto. Using a satellite radar technique, we discovered that the volcano’s surface is inflating and deflating. The best analogy is breathing – we found sharp “inhalations” inflating the surface over a few months, followed by gradual “exhalations” which cause slow subsidence over many years. We’re not exactly sure what is causing these ups and downs, but it is good evidence that magma, geothermal waters or gases are moving around in the depths some five km below the surface.

Taking the temperature

In our most recent paper, we used satellite thermal images to probe the emissions of Aluto’s steam vents in more detail. We found that the locations where gases were escaping often coincided with known fault lines and fractures on the volcano.

When we monitored the temperature of these vents over several years, we were surprised to find that most were quite stable. Only a few vents on the eastern margin showed measurable temperature changes. And crucially, this was not happening in synchronicity with Aluto’s ups and downs – we might have expected that surface temperatures would increase following a period of inflation, as hot fluids rise up from the belly of the volcano.

A productive geothermal well on Aluto. William Hutchison

It was only when we delved into the rainfall records that we came up with an explanation: the vents that show variations appear to be changing as a delayed response to rainfall on the higher ground of the rift margin. Our conclusion was that the vents nearer the centre of the volcano were not perturbed by rainfall and thus represent a better sample of the hottest waters in the geothermal reservoir. This obviously makes a difference when it comes to planning where to drill wells and build power stations on the volcano, but there’s a much wider significance.

This is one of the first times anyone has monitored a geothermal resource from space, and it demonstrates what can be achieved. Since the satellite data is freely available, it represents an inexpensive and risk-free way of assessing geothermal potential.

With similar volcanoes scattered across countries like Kenya, Tanzania and Uganda, the technique could allow us to discover and monitor new untapped geothermal resources in the Rift Valley as well as around the world. When you zoom back and look at the big picture, it is amazing what starts to come into view.
——————————-
This blog is written by William Hutchison, Research Fellow, University of St Andrews; Juliet Biggs, Reader in Earth Sciences and Cabot Institute member, University of Bristol, and Tamsin Mather, Professor of Earth Sciences, University of Oxford

This article was originally published on The Conversation. Read the original article.
——————————
Juliet Biggs is a member of the University of Bristol Cabot Institute.  She studies Continental Tectonics and Volcanic Deformation and has won numerous awards in her field.  Find out more about Juliet Biggs research.

Olive oil production in Morocco: so many questions

No standard salad would be complete without olive oil. Our friends the lettuce, tomato and cucumber now come automatically accompanied by the vinegar and the oil, the oil and the vinegar. Perhaps in a bottle, perhaps in a sachet, perhaps in some kind of over complicated vinaigrette processed by a supermarket near you, along with lots of salt and some corn syrup, a 21st century salad in the Western world would be naked without an olive dressing.

This weekend, after an intensive academic seminar in Morocco[1], we studious seminar attendees were rewarded with a field trip. So I was taken out to visit three agricultural holdings in action. They all grew olives, but apart from that, had little in common. These three: large, medium and small producers in turn gave us a hugely insightful opportunity to witness agricultural change in action. Since the turn of the millennium the large site, on previously colonial, then state-held land had been an apple orchard and had now turned to olive oil. The medium one had been focused on cattle, making use of previous common land, that was now enclosed land, and was now diversifying with oil, watermelons, and more. The small producer produced a full range of things including olives for their own oil and most recently had established a side income in both fish and honey production.

Firstly, we learnt how to make money. Morocco’s heavily financed agricultural development programme, Plan Maroc Vert, which aims to intensify the agricultural system into a new-age competitive beacon of the modern food system, offers attractive incentives to spruce up agriculture in the country with new machines. All you need is to write a proposal (a report), have money to invest (from bank credit perhaps) and an impressive part of your money will be returned to you in state subsidies within two years.

So, for example, all three of the small, medium and large producers we visited, had benefited from a 100% state subsidy for irrigation of their crops. In the case of the ‘super-intensive’ large producer this meant state funding for the irrigation of 65,780[2] olive trees from groundwater on a rapidly declining water table. Some of the more landscape-savvy of the seminar group reminded us that olive trees had been grown in the region for centuries precisely because they did not need this kind of constant watering but could grow deep roots and access scarce water themselves. This, however, is not of interest to the ‘super-intensive’ producer. This producer is simply interested in the logic of economic growth, which in this case says: plant the trees closer, and add the chemical nutrients to the water while you’re at it. And so, these 65,780 trees are watered with the addition of nitrogen, phosphorus, potassium and ammonium, yet no studies are evident of what all these substances may be doing to the groundwater. By any other logic this would be a big concern, nitrogen pollution, particularly. Nitrogen pollution of water supplies, or more simply, of the nitrogen cycle, is one of the only planetary ecosystem boundaries that we have already crossed as a human race. This was not relevant in the lesson of how to make money.

Yet, I work with people, so where were they in the Moroccan olive grove? Well, it seems they have been replaced by a machine in this super-intensive oil production. The company, with links to power as far up as it goes, has invested in a machine that drives over the trees like a bridge. It shakes their branches and collects their olives.  So much for an investment in rural employment.

Some new olive trees defy the machine but are pretty un-reliable as employers too. These trees that the machine can’t manage provide jobs for only a very precarious seasonal and short-term workforce. I was told that 100 people would be employed for a space of around 200 hectares, and these jobs would last 2-3 months. The company assured us though that these workers would get both contracts and, in order to have those contracts, bank accounts. Thank goodness the banks aren’t losing out.

I should be kinder in tone about the small and medium sized farmers that we visited. Not only did their olive oil taste a lot richer, but they invited us to tea, and allowed us to share their experience of oil production more closely.  They humoured our partial language skills and our many, many questions. This was the second major thing we learnt on the trip – we were a team. We were a slightly chaotic, and erratic team, but really quite effective. A little like slugs on a cabbage, we chewed up every bit of information every which way.

Releasing a group of 13 researchers at a family farm, was a bit like inviting children to a playground, or providing clowns with an audience. Each of us found something to play with, interact with, reflect upon and smile. Some of us looked at the trees or identified the plant specimens. Others wrote notes, or took pictures, or carried out semi-formal interviews with whichever family member we felt most comfortable with. Others played with material toys, climbing ladders, smelling fruit or knocking on enormous oil containers to discover them empty. As we found the olive branches, force-fed powder food through irrigated pipes, or in the smaller farm providing shade for some resident chickens, this seminar group grew together, discovering the knowledge of the peasant farmer.  This experience was far richer and engaging than any power point presentation or report.

More images can be found on the original blog.

References

[1] “Workshop on Agricultural Labour and Rural Landscapes in the Arab World” Organised by the Thimar collective and supported by the École Nationale d’Agriculture de Meknès, the Leverhulme Trust and the London School of Economics.

[2] Calculated based on 286 plants/hectare in a cultivated area of 230 hectares, this was the details of the holding advertised by the company.

——————————————
This blog is written by Lydia Medland, a PhD student at the University of Bristol’s School of Sociology, Politics and International Studies who is looking at the role of seasonal workers in global food production, specifically in Morocco and Spain.  This blog has been reposted with kind permission from her Eating Research blog.  View the original blog post.

Lydia Medland

Read Lydia’s other blog: Watermelon work

Bristol Geographers appear in The Times and condemn divisive Brexit rhetoric

The following text comprises a longer version of a Letter to the Editor that appears in print and online in The Times. The letter, signed by over 85 members from of the School of Geographical Sciences expresses our dismay and disillusionment with the recent divisive rhetoric from the government regarding foreign workers and an inclusive society.

Further, we are concerned that this rhetoric is already acting as a detriment to our university’s values, and the research and teaching we do.

The letter starts here:

“As a nationally and internationally recognised research and teaching department, we echo Lord Rees’ recent comments to express our deep concern at the divisive and ‘deplorable’ rhetoric during discussions about Brexit and immigration at the recent Conservative party conference. This rhetoric does not reflect the values we aim to uphold in our university and discipline, nor the diversity of feelings in the country. We are dismayed, further, that our Prime Minister, a former student of geography, seems to have forgotten our subject’s core teachings and values.

We are ‘citizens of the world’. Our department’s research, teaching, and study ranges across diverse fields: from financial institutions to flooding; from philosophy to parliamentary boundary reform; from colonialism and biogeochemistry, and all the planetary processes in between. We come from over 19 different countries, and virtually every populated continent. We come from everywhere. And we contribute to numerous global and local initiatives that seek to make our world a better, healthier, happier place.

What unites our diverse scholarly work is the recognition that how we make sense of the Earth – how we ‘geo-graph’ it – matters. How we understand our relationships to the Earth and each other matters for addressing issues affecting our shared planet, equitably and honestly. For this reason, we highlight our responsibility to one another and the many complex forces that make life possible; we recognise and value the many who make us, always, more than one.

Thus, we stand behind all of our staff and students who come from all corners of the world, and who contribute, as international citizens, to the strength of our department and its impacts locally, nationally, and globally. International staff and students now feel very insecure about their futures here. While we will do everything we can to protect their work and contributions, we hope the government will make clear that their futures – and those of our colleagues across the UK – are under no threat.

The School of Geographical Sciences

University of Bristol”

In order of signing:

Prof Paul Bates, Head of School

Prof Ron Johnston, OBE, FAcSS, FBA (former-VC, University of Essex)

Prof Clive Sabel

Prof Richard Harris

Prof Jemma Wadham

Prof Tony Payne

Prof Alexandre Anesio

Prof Sharon Collard

Dr T Davies-Barnard

Dr Merle Patchett

Dr Alex Farnsworth

Dr Sarah Greene

Prof Kelvyn Jones, FBA, FLSW, FAcSS

Dr Jon Hawkings

Dr Gemma Coxon

Dr Chris Williams

Dr Malcolm Fairbrother

Dr Fotis Sgouridis

Mr Earl Harper

Dr Niall Quinn

Dr Chris Yates

Ms Laura De Vito

Mr Matt Trevers

Dr Fiachra O’Loughlin

Dr Twila Moon

Mr Edward Armstrong

Mr Julien Bodart

Mr Rory Burford

Mr Erik Mackie

Dr Peter Hopcroft

Mr Gwilym Owen

Mr Michael A. Cooper

Mr Tim Morris

Mr Gregory J. L. Tourte

Dr Julie MacLeavy

Dr David Manley

Dr Patricia Sanchez-Baracaldo

Dr Winnie Wang

Dr Mark Jackson

Dr Sandra Arndt

Dr Sean Fox

Mr Nathan Chrismas

Mr Thomas Keating

Ms Catherine Midwood

Dr Luke Ridley

Dr Andrew Tedstone

Ms Jeni Milsom

Dr Dewi Owen

Mr John Hargreaves

Ms Claire Donnelly

Dr Victoria Lee

Ms Natalie Lord

Ms Ciara Merrick

Dr Ros Smith

Dr Rosalyn M. Death

Ms Amy Waterson

Dr Jamie Wilson

Ms Nina Williams

Ms Iskra Mejia Estrada

Dr J-D Dewsbury

Ms Sara Davies

Mr George Burdon

Mr Sam Berlin

Ms Emily Eyles

Prof Jonathan Bamber

Mr Stephen Chuter

Mr Alistair Anderson

Mr Jethro Brice

Mr Matthew Marshall

Mr Oliver Wing

Mr James Crosby

Dr Katerina Michaelides

Dr Jo House

Dr Fran Bragg

Mr Dominik Hülse

Dr Alba Martin

Dr Jeff Neal

Dr Julie MacLeavy

Mr Edward Thomas

Prof Paul Valdes

Dr Franklin Ginn

Mr Samuel Rogers

Mr Alan Kennedy

Dr David Richards

Prof Penny Johnes

Prof Dan Lunt

Mr David Hayes

Mr Mat Keel

List of countries people are from:

United Kingdom

Spain

Brazil

Sweden

Denmark

United States of America

Canada

Greece

Italy

Ireland

The Netherlands

Belgium

France

Colombia

China

Germany

Mexico

Israel-Palestine

Cyprus

Saying goodbye and reflecting on lessons from the field

Last week I said goodbye to the National Crops Resources Research Institute (NaCRRI) where I have spent the last three months learning about Cassava brown streak disease (CBSD). I’m currently in the second year of my PhD at the University of Bristol, where I’m researching how CBSD viruses cause symptoms, replicate and move inside plants.

Cassava is a staple food crop for approximately 300 million in Africa. However cassava production is seriously threatened by CBSD, which causes yellow patches (chlorosis) to form on leaves and areas of tubers to die (necrosis), rot and become inedible. CBSD outbreaks are currently impacting on the food security of millions of cassava farmers in east Africa and it appears to be spreading westward, threatening food security in many countries.

I decided that I wanted to experience the problem for myself, see the disease in the field, meet the farmers affected and understand the different solutions. I am so pleased that I decided to visit NaCRRI; a government institute, which carries out research to protect and improve production of key crops, including cassava. The focus is on involving farmers in this process so that the best possible varieties and practices are available to them. Communication between researchers and farmers is therefore vital, and it was this that I wanted to assist with.

When I arrived I was welcomed so warmly, and was immediately part of the team. The root crop team leader Dr. Titus Alicai came up with a whole series of activities to give me a real insight into CBSD. I was invited to the field sites across Uganda, where I got to see CBSD symptoms in the flesh! I assisted with the 5CP project, which is screening different cassava varieties from five East and Southern African countries for CBSD and Cassava mosaic disease (CMD) resistance across different agro-ecological zones. I helped to score plants for CBSD symptoms. The researchers thought I was bit strange, getting very excited and taking lots of photos.

Main insight: complex and dynamic CBSD situation

The main insight I’ve gained is that the situation is both complex and dynamic. Different cassava varieties respond differently to CBSD infection, some plants show strong symptoms on the leaves and nothing in tubers, and other varieties show the opposite. Symptoms also depend on environmental conditions, which are unpredictable.

The whiteflies which carry viruses are also complex, and are expanding into new areas and responding to changing environmental conditions. There are also different viral strains found across different areas, and viral populations are also continually adapting.

Learning about solutions

It has been fascinating to learn how NaCRRI is tackling the CBSD problem through screening different varieties in the 5CP project, breeding new varieties in the NEXTGEN project, providing clean planting material and developing GM cassava.

Saying goodbye to new friends: Dr. Titus Alicai (NaCRRI root crops team leader), Phillip Abidrabo (CBSD MSc student) and Dr. Esuma Williams (cassava breeder)

And there’s the human element…

In each of these projects, communication with local farmers is crucial. I’ve had the opportunity to meet farmers directly affected, some of whom have all but given up on growing cassava. I’ve learnt a lot about how NaCRRI is constantly engaging farmers and involving them in solutions to the CBSD problem.

Challenges

Communicating has not been easy for me, as there are over 40 local languages. I’ve really had to be adaptable and learn from those around me. For example, in the UK we like to email the person sat next to us, whereas in Uganda you really have to talk to people to hear about what’s going on. This is all part of the experience and something I’m hoping to bring back to the UK!

I’ve had some funny moments too, during harvesting the Ugandans couldn’t believe how weak I was. I couldn’t even cut one cassava open!

Real world reflections

I’m going to treasure my experiences at NaCRRI. The insights into CBSD are already helping me to plan experiments, with more real-world applications. I can now see how all the different elements of the disease (plant-virus-vector-environment-human) join up and interact, something you can’t learn from reading papers alone!

Working with the NaCRRI team has given me the desire and confidence to collaborate with an international team. I’ve formed some very strong connections with people here and hope to have discussions about CBSD with them throughout my PhD and beyond. This will help make our research more relevant to the current situation. Above all, I’ve learnt the importance of getting out of the lab to experience and learn from what is happening in the field.

 

Thank you!

I would like to thank: Dr. Titus Alicai for welcoming me into the NaCRRI team and providing me with so many valuable experiences; the whole of the NaCRRI team for their generosity; my supervisors: Prof. Gary Foster and Dr. Andy Bailey for supporting my trip and my funders: Biotechnology and Biosciences Research Council, the Cabot Institute (University of Bristol), the British Society for Plant Pathology and the Society for Experimental Biology for supporting my internship.

———————————–
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie’s area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie’s blog Cassava Virus.

 

Katie Tomlinson

More from this blog series:  

Blog 1: Getting ready to go… cassava virus hunting!
Blog 2: Week one: Settling in to Ugandan life
Blog 3: Learning the ropes
Blog 4: Clean cassava to solve brown streak problem?
Blog 5: Taking a trip to the cassava field!
Blog 6: Using GM to fight cassava brown streak disease
Blog 7: Talking sweet potatoes at the Source of the Nile
Blog 8: Breeding cassava for the next generation
Blog 9: Paying a visit to the plant doctor in Uganda
Blog 10: Saying goodbye and lessons from the field

Paying a visit to the Plant Doctor in Uganda

Two weeks ago I organised a visit to a plant clinic in the Mukono district of central Uganda. The plant clinics are run by district local government extension staff with support from CABI’s Plantwise programme and offer a place where farmers can bring crop samples to get advice on how to prevent and cure diseases.

Why does Uganda need plant clinics?

It’s estimated that smallholder farmers loose 30 – 40% of their produce to plant health problems before harvest, which threaten food security, income and livelihoods. Ugandan farmers suffer heavily from pests and diseases, including maize stalk borer, wheat rust, banana bacterial wilt, coffee wilt and cassava viral diseases. The situation is always changing, as outbreaks of disease emerge and persist across the country.

Getting access to information is a challenge in rural settings. Often smallholder farmers have very little contact with extension workers and have no way of diagnosing diseases or finding solutions. The plant clinics provide farmers with access to current information to help make rapid, informed decisions that will save their crops. There are now over 191 plant clinics across Uganda and the aim is to have at least one plant clinic in every sub-county by 2020.

On the day…

I was picked up by Benius Tukahirwa an Agricultural Inspector from the Ministry for Agriculture Animal Industry and Fisheries (MAAIF). We drove to Mukono to meet Mukasa Lydia, who’s been a plant doctor for eight years! She has a wealth of plant health knowledge and is in touch with the local community.

When we arrived, we set up a base in the heart of the smallholder village of Nakifuma, Kimenyedde Sub-county, Mukono district. Local farmers find out about the monthly plant clinics through radio announcements and word of mouth. Before long a set of five farmers had arrived with their sickly plant samples. I was told that normally the plant clinics have around 20-50 visitors in a day. On this day the turnout was low as the rains had just started so farmers were in the field planting.

Local famers gather round to hear advice from the plant doctors

Patient 1

The first patient to be examined was a passion fruit branch with “woodiness” viral disease, which causes fruit to become misshapen, woody and inedible. The farmer was told to remove and destroy the infected plants immediately to prevent spread to other plants.

Patient 2

The second patient was a coffee plant with coffee berry disease, a fungal disease which causes coffee berries to rot, turn black and mouldy. The farmer was advised to immediately remove and destroy infected branches, and to apply copper based fungicides to the remaining plants.

Patient 3

The third patient I was very familiar with. The farmer had brought a cassava branch with Cassava brown streak viral disease, the leaves showed characteristic yellow patches and tubers were spoiled and inedible. The plant doctors advised him to get hold of some clean, virus-free planting material from a tolerant variety such as NAROCASS 1, NASE 14, NASE 19 from the government.

Plant patients: passion fruit with woodiness disease (left), coffee wilt disease (middle) and cassava brown streak disease (right)

The farmer: Kayondo Edrissa told me:

“I have been growing cassava for 20 years. I was hard hit in the 90’s by Cassava mosaic disease (CMD), which totally destroyed cassava crops and caused widespread famine. Since the release of CMD resistant varieties people had begun relying on cassava again. But now these varieties have been overcome with Cassava brown streak disease. I’m not going to plant cassava until I get hold of a variety which can resist the disease. Cassava is the real food which can keep our houses going so we really need a solution.”

After the crops were diagnosed, the plant doctors gave clear instructions for how to prevent or cure the diseases in the local language. These instructions were also sent as text messages to the farmers’ phones. Information and images of the diseases were also uploaded to the Plantwise Knowledge Bank so the government can track and respond to outbreaks. There was a challenge in getting a strong enough internet signal to upload the reports.

We then took a tour of Kayondo’s small-holding where we discovered lots of other problems, including a cassava plant with: CBSD, CMD, bacterial wilt and green mites! I was surprised at how many different plant diseases the farmers are facing. The visit helped me to recognise the importance of the clinics; they offer a meeting point for farmers to learn and communicate with each other and trained extension works about similar problems they are facing.

I would like to thank Plantwise for allowing me to visit the clinic, I had a very informative day!

———————————–
This blog has been written by University of Bristol Cabot Institute member Katie Tomlinson from the School of Biological Sciences.  Katie’s area of research is to generate and exploit an improved understanding of cassava brown streak disease (CBSD) to ensure sustainable cassava production in Africa.  This blog has been reposted with kind permission from Katie’s blog Cassava Virus.

 

Katie Tomlinson

More from this blog series:  

Blog 1: Getting ready to go… cassava virus hunting!
Blog 2: Week one: Settling in to Ugandan life
Blog 3: Learning the ropes
Blog 4: Clean cassava to solve brown streak problem?
Blog 5: Taking a trip to the cassava field!
Blog 6: Using GM to fight cassava brown streak disease
Blog 7: Talking sweet potatoes at the Source of the Nile
Blog 8: Breeding cassava for the next generation
Blog 9: Paying a visit to the plant doctor in Uganda
Blog 10: Saying goodbye and lessons from the field

Taking basic research to application: Using light quality to improve herb growth

Coriander has a distinctive flavour and is popular in dishes such as curry. (Image By Deeptimanta (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons)

Coriander is the UK’s top-selling culinary herb, an industry worth £18 million a year. However, maintaining high standards of product quality is expensive and can lead to lots of plants being rejected before they make it to supermarket shelves. One of the key objectives for the potted herb industry is the production of compact plants with dark green leaves, but the plants that consumers end up with often do not conform with this ideal and can appear leggy and weak.

Plants compete for light by growing taller

Plants go to extraordinary lengths to maximise their light capture for photosynthesis. When plants grow close together however, they compete for resources and one resource that becomes limited in closely spaced plants is light due to mutual shading.

Shade has a negative impact on a plant’s health as it limits the light that a plant can use for photosynthesis. But unlike animals, which can move to new areas once space, water or food becomes limited, plants are immotile and have evolved unique strategies to compete for and maximise light capture. Chief among these is the shade avoidance syndrome. Incredibly, plants anticipate that they are at risk of being shaded even before they actually are shaded through the detection of local light quality – the depletion of red and blue light and the relative enrichment of longer wavelengths of light due to the absorption and reflection properties of vegetation. The shade avoidance syndrome is triggered in response to this change in light quality and the most dramatic changes in plant form involve the elongation of stems and the raising of leaves so as to move light capturing organs into sunlight.

Elongation does have drawbacks however – resources are diverted away from seed, chlorophyll and leaf production; there is also an increased risk of lodging (where plants fall over due to over-elongation making them unable to support their organs), which puts a limit on how densely we can plant crops before they over-compete with each other and it impacts yields.

UV-B suppresses elongation

On the other hand, plants have mechanisms in place to prevent over-elongation. These are often related to light-quality as well and one such mechanism is the sensing of UV-B wavelengths.

Classical Ultra-Violet research on plants has focused on the damaging effects that this shorter wavelength, higher energy light can have on DNA, or cell structure through production of reactive oxygen species. These UV-B wavelengths are beyond our visible range, but plants have specific photoreceptors that can detect UV-B and trigger a signaling cascade that will lead to the accumulation of sun screening compounds as well as architectural changes. Indeed, it is now clear that the plant responses to UV-B are not only a reaction to UV-B damage, but also a specific response to the sensing of UV-B (read more on this on the UV4Plants society website).

A finding that emerged from our laboratory in Bristol was that the elongation that plants exhibited in crowded conditions could be suppressed with the addition of UV-B to their light conditions (Hayes et al., 2014). UV-B is a component of direct sunlight, so an interpretation of this adaptation is that plants use UV-B as a signal that they are in direct sunlight and hence no longer need to elongate to escape shade.

Applying our research to the glasshouse

Armed with this new knowledge of plant responses to light, we are collaborating with a major potted herb grower to improve their product quality. A problem with glasshouse grown coriander in the winter months is that they grow long and spindly. Often these herbs are planted densely with around 60 seedlings per pot – conditions that are conducive to shade avoidance. Short days and cloud cover during winter further contribute to over-elongation. To compound this, many materials used in glasshouse construction such as glass or clear acrylic filter out UV-B radiation. Thus, plants growing in these conditions are no longer receiving the UV-B brake on elongation that they would be if they were growing outdoors. If we restore this brake by using artificial UV-B light sources then we could solve this problem. We’ve started trialing UV-B treatments this summer and early results look promising. However, we need to wait until winter to collect our most informative data as in summer, with bright and long days, coriander plants grow far more compact than in winter.

Both pots were planted at the same density, the coriander on the left were grown in normal conditions while the coriander on the right were supplemented with UV-B radiation.

Hayes S, Velanis CN, Jenkins GI, Franklin KA. UV-B detected by the UVR8 photoreceptor antagonises auxin signalling and plant shade avoidance. Proc Natl Acad U.S.A. 2014. 111(32):11894-9

—————————-
This blog is written by Cabot Institute member Donald Fraser who is a PhD student in the Department of Life Sciences at the University of Bristol, he is studying plant responses to light and the circadian clock.