Cancer and climate change

 

My Mother, Father, and I after my PhD Hooding in 2015

 

When I was growing up in Michigan, the man who lived across the street would tell me my dad saved his life. Walt and his wife were surrogate grandparents for my brother and I growing up; our grandparents lived across the country in California. Dad would always disagree about saving Walt’s life, try to deflect, talk about how it’s a team effort and he’s just one part. Walt was always insistent. 


My father is a world-renowned medical physicist. He works on how best to treat cancer with radiation, a pioneer in treating cancer in three dimensions. Hearing his colleagues talk about him, you can tell that he spent his career working primarily on two fronts: to make radiation treatment safer for both patients and the people who work with them, and to make that treatment more effective. My dad has spent his entire life harnessing a field of science with incredible destructive power to save people. 


Radiation physics started, in essence, with death. It was first self-inflicted, as prolonged exposure to radioactivity killed Marie Skłodowska-Curie, would have killed her husband except a horse-drawn cart got to him first, and killed her daughter and son-in-law. The Manhattan Project was primarily an output of the physics community, and that resulted in the deaths of tens of thousands. 

******

My drive to get into geology wasn’t high minded. I really liked Jurassic Park when I was a kid. That’s about it. I wasn’t trying to make money, wasn’t trying to save the planet, didn’t care about rocks, I just really really liked dinosaurs. The reason I liked dinosaurs, other people as well maybe, is because they capture our imaginations. They personify some narrative thread about the bizarre nature of past worlds. Giant reptilian creatures walking the Earth feels like a science fiction story, even though it’s simply science history.

Geology is at its best when telling stories. We can take people to weird locations, like the not-molten but constantly moving interior of the Earth. Amherst, Massachusetts, where I got my PhD, had a mile of ice on top of it in the geologically-recent past. We can tell you that where I grew up used to be a coral reef, if only millions of years ago. Dover used to be underwater and looked like the Bahamas. We use our stories, in paleoclimate, to unveil the past changes of Earth and put the future into context. Understanding the extinction that killed the dinosaurs and much of the other life on the planet, for example, helps explain how long it takes biodiversity to recover from severe and rapid events. Our science is experimental, only the experiments were run by the Earth long ago and we have to uncover what happened.

******

There’s a profound irony that radiation causes various forms of cancer in higher doses, and now is used to treat it. Radiation therapy essentially overdoses the cancer cells and causes them to die. If you don’t treat the cancer, which requires you to expose healthy cells, then there will be additional cancer.  There’s a duality there, or a careful balance between good (health) and bad (cancer). It’s unexpectedly poetic.


I, perhaps too hopefully and naively, view the development of radiation oncology as physics realizing it has profound tools it can use to heal. In its infancy physics used these tools for violent ends. Yes, people discuss a justification for the bombs being dropped at the end of World War II, but even if one accepts all of these arguments for their use without question, it remains a violent use of physics or radiation. I like to think that my dad, and his predecessors, his friends and colleagues, and those that will come after, chose to discard violence for healing. 

******

There’s a similar duality to geology – many of us embody it in the particular branch of geology that we study. I am a Micropaleontologist. That means that I study tiny fossils the size of a grain of sand. I’m more specifically a biostratigrapher and a paleoceanographer, among other things. Micropaleontologists in industry use microfossils to tell the age of sediments (biostratigraphy) or figure out what environments were forming, because the age and environment tell us a lot about if there’s oil in certain rocks. In academia we use those same tools to study the severity of past events to constrain the future. One side of the geosciences is extractive: it uses our stories to bring the past back. It brings fossil fuels to the surface. We rely on these fuels, and they’ve been important in the development of a variety of societies. It is, however, very clearly causing dramatic harm to our planet and our fellow humans.

Geology and physics are fundamentally different in a key way. Physics, at least Newtonian physics, is immediate. Throw a ball into the air, and it rises then falls. Start moving neutrons fast enough around Uranium-235 and it releases energy. Geology doesn’t have that sense of immediacy. Climate change is a slow-moving disaster. Each new generation is birthed into a time when the climate has already changed. It is perhaps not surprising that the general public doesn’t see this as a large problem. Living on human timescales, we only see some of the effects like larger storms.

Geology, however, should know better. We geologists know the rates of past changes in climate, and that CO2 is one of the most potent controls on climate. We have the long view of climate’s history, a view that encompasses billions of years. The stories that inform our future are hot and unpleasant.

I like to think that I’m on the right side with what I do. My research is on how a specific group of plankton (planktic foraminifera) evolve during past intervals of climate change, and I also use that same group to work on exactly how fast those past intervals of change happened. Even when all we want to do is talk about science at meetings, when I get together with other scientists we inevitably start talking about how to convince more people about the reality of increasing temperatures. I spent last year teaching in Texas and before that spent a year and a half at the Smithsonian National Museum of Natural History in Washington, D.C. doing frequent outreach programs. I spent a lot of time thinking about how best to reach folks who are hardened against hearing that the climate is changing and that it’s our fault. I spent weeks on my lectures when teaching climate science, going into the money, psychology, and politics of climate denial after spending days teaching about the physical science. I hope I’m not deluding myself when I say some of them changed their minds.

******

In a sense, Walt’s living past 50 was a direct consequence of my dad’s scientific output. I look up to my father. His scientific pursuits and those of his colleagues saved countless people from dying with cancer. Many of us have these choices, to work in a field or job that improves life on this planet, or, at best, continues a declining status quo. Do we build bombs, or do we save people from cancer? Do we make climate change worse, or do we use the past to educate people about our shared future? Science doesn’t operate in a vacuum. It’s easy to lose track of the human side of our pursuits.

My Dad and I playing our saxophones circa 1986
******

I understand the urge to go after a larger or stable paycheck. I have seen the house that having a hardworking and preternaturally lucky career in modern academia has earned me; it’s not a house it’s a flat, and it’s a rental so I can move every few months or few years. Despite that, my family has been lucky we’ve able to stitch together funding, and keep afloat through family loans when things get too tight. Others certainly don’t have that luxury. I’m from the United States, where we get our health insurance through our employers, and losing insurance is a constant concern when you have intermittent employment. I have a five year old daughter and am about to have another. Our five-year-old has lived in four different places: three states and another country, since she was born. One of the first things her teachers told us here in Bristol was “Wow, she adjusts to new circumstances fast.” She does, because the only permanency in her life are her parents and Skyping her grandparents and close friends from two moves ago. I continually reassess why I’m doing this. A big part of the reason is so that I hope both my daughters can look at me, and realize that I made the same choice my dad did.

My first daughter and I working on a microscope
while I worked at the Smithsonian Institution – National Museum of Natural
History in 2016
******

Dad had a moment in his life, when working on his PhD, when he wasn’t sure exactly what he wanted to do with his life. He asked my mother and she told him he should, of course, 

Help people. Do something good. 

He clearly took that to heart. 

——————————-
This blog is written by Cabot Institute member Dr Andy Fraass from the University of Bristol School of Earth Sciences.

Andy Fraass

COP24: ten years on from Lehman Brothers, we can’t trust finance with the planet

 

Listen! Andy Rain/EPA

Lehman Brothers filed for bankruptcy on September 15, 2008. The investment bank’s collapse was the drop that made the bucket of global finance overflow, starting a decade of foreclosures, bailouts and austerity.

The resulting tsunami hit the global economy and public sector, discrediting finance and its attempts to extract large rents from every aspect of the economy, including housing and food. An alternative was urgently needed.

Ten years later, private finance and large investors will play a central role at the COP24 in Katowice, Poland, and in the full implementation of the 2015 Paris Agreement.

Representatives from pension funds, insurance funds, asset managers and large banks will attend the meeting and lobby governments, cities and other banks to favour investments in infrastructure, energy production, agriculture and the transition towards a low-carbon economy.

Has finance cleaned up its act?

There is a US$2.5 trillion gap in development aid which needs to be filled if poor countries can adequately mitigate the effects of climate change. With little enthusiasm among rich countries to stump up, the role of private finance is inevitable. Policy makers trust financial capital as our best hope of securing investment to avoid the catastrophic warming beyond 1.5°C.

This has been the case for a while – the first announcement came at the UN Climate Summit in 2014, when a press release on the UN website said the investment community and financial institutions would “mobilise hundreds of billions of dollars for financing low-carbon and climate resilient pathways”.

Since then, networks that stress the role of private finance in rescuing the planet have multiplied, including the Climate Finance session at the Sustainable Innovation Forum, which will also take place in Katowice, on December 9-10 2018.

It is difficult to ignore that a strong reliance on private finance means putting the future of Earth in the hands of individuals and institutions that brought the global economy to the verge of collapse. It may be partially true that some are divesting from fossil fuels and funnelling their money into better projects. But before we pin our hopes on finance to solve climate change, there are some things we need to ask ourselves.

Poor countries like Bangladesh have little responsibility for climate change and need significant investment to adapt to it. Suvra Kanti Das/Shutterstock

Difficult questions for COP24 negotiators

How did we get to a point in history where it is taken for granted that public money alone can never be sufficient to finance our transition from fossil fuels? Is it an objective condition with no clear causation and responsibility, or something else?

What about the fact that global military spending in 2017 reached US$1.7 trillion while poor countries promised funding for climate change adaptation and mitigation in 2015 are still waiting?




Read more:
COP24: climate protesters must get radical and challenge economic growth


What about the cost of bailouts to the financial sector, which in the UK alone has been estimated at US$850 billion? As Michael Lewis noted in his boomerang theory, states that have propped up financiers with public money are now asking those same financiers to step in and do the job that states should do. And this leads to the second consideration.

Climate change is historically, politically and socially complex. Although sustainable finance is not presented as the sole solution, analysing its role produces a series of strategic short circuits.




Read more:
Climate change and migration in Bangladesh — one woman’s perspective


It oversimplifies and depoliticises the response to climate change. It legitimises the idea that sustainability can be achieved within continuous growth and expansion, which are essential to the survival of the financial sector.

It rewrites the way we think about our planet in the vocabulary of finance and its obsession for a return on investment. It marginalises any claim to address climate change based on present and historical injustices, redistribution and bottom-up projects organised by ordinary people.

It accepts that the financial way of defining sustainability and its achievements are inherently aligned with the rights, interests and needs of people and the planet.

Finance may be a partner in the fight against climate change, but it is certainly not a partner motivated by altruism. It’s motivated by generating profit from the transition. It is therefore unsurprising that energy generation, railways, water management and other forms of climate mitigation have been identified as priorities for sustainable finance.

Action on climate change has to involve standing up to the Wall Street Bull. Quietbits/Shutterstock

Fighting climate change on Wall Street’s terms

Wall Street can find large returns by investing in the transition to “greener” infrastructure, including the not-so-green Chinese green belt and road and dams like the Belo Monte, a project that originally applied for carbon credits and was labelled as a sustainable investment. Green bonds can help cities finance projects to reduce their environmental impact or adapt to climate change.

However, if money is the driver, we should not expect private investors to have any interest in projects that won’t generate a sufficient return, but would benefit people or cities that cannot pay for the service or for the debt, or that would protect vulnerable people from climate change. If climate change is fought according to the rules of Wall Street, people and projects will be supported only on the basis of whether they will make money.

Ten years ago, the world saw that finance had permeated every aspect of the global economy. Back then, it was clear that financial interests could not build a better and different world. Ten years later, COP24 should not legitimise large financial investors as the architects of a transition where sustainability rhymes with profitability.The Conversation

—————————-
This blog is by Cabot Institute member Tomaso Ferrando, a Lecturer in Law at the University of Bristol.  This article is republished from The Conversation under a Creative Commons license. Read the original article.

Learning about cascading hazards at the iRALL School in China

Earlier this year, I wrote about my experiences of attending an interdisciplinary workshop in Mexico, and how these approaches foster a rounded approach to addressing the challenges in communicating risk in earth sciences research. In the field of geohazards, this approach is increasingly becoming adopted due to the concept of “cascading hazards”, or in other words, recognising that when a natural hazard causes a human disaster it often does so as part of a chain of events, rather than as a standalone incident. This is especially true in my field of research; landslides. Landslides are, after all, geological phenomena studied by a wide range of “geoscientists” (read: geologists, geomorphologists, remote sensors, geophysicists, meteorologists, environmental scientists, risk assessors, geotechnical and civil engineers, disaster risk-reduction agencies, the list goes on). Sadly, these natural hazards affect many people across the globe, and we have had several shocking reminders in recent months of how landslides are an inextricable hazard in areas prone to earthquakes and extremes of precipitation.

The iRALL, or the ‘International Research Association on Large Landslides’, is a consortium of researchers from across the world trying to adopt this approach to understanding cascading hazards, with a particular focus on landslides. I was lucky enough to attend the ‘iRALL School 2018: Field data collection, monitoring and modelling of large landslides’ in October this year, hosted by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (SKLGP) at Chengdu University of Technology (CDUT), Chengdu, China. The school was attended by over 30 postgraduate and postdoctoral researchers working in fields related to landslide and earthquake research. The diversity of students, both in terms of subjects and origins, was staggering: geotechnical and civil engineers from the UK, landslide specialists from China, soil scientists from Japan, geologists from the Himalaya region, remote sensing researchers from Italy, earthquake engineers from South America, geophysicists from Belgium; and that’s just some of the students! In the two weeks we spent in China, we received presentations from a plethora of global experts, delivering lectures in all aspects of landslide studies, including landslide failure mechanisms, hydrology, geophysics, modelling, earthquake responses, remote sensing, and runout analysis amongst others. Having such a well-structured program of distilled knowledge delivered by these world-class researchers would have been enough, but one of the highlights of the school was the fieldwork attached to the lectures.

The scale of landslides affecting Beichuan County is difficult to grasp: in this photo of the Tangjiwan landslide, the red arrow points to a one story building. This landslide was triggered by the 2008 Wenchuan earthquake, and reactivated by heavy rainfall in 2016.

The first four days of the school were spent at SKLGP at CDUT, learning about the cascading hazard chain caused by the 2008 Wenchuan earthquake, another poignant event which demonstrates the interconnectivity of natural hazards. On 12th May 2008, a magnitude 7.9 earthquake occurred in Beichuan County, China’s largest seismic event for over 50 years. The earthquake triggered the immediate destabilisation of more than 60,000 landslides, and affected an area of over 35,000 km2; the largest of these, the Daguangbao landslide, had an estimated volume of 1.2 billion m3 (Huang and Fan, 2013). It is difficult to comprehend numbers on these scales, but here’s an attempt: 35,000 km2 is an area bigger than the Netherlands, and 1.2 billion m3 is the amount of material you would need to fill the O2 Arena in London 430 times over. These comparisons still don’t manage to convey the scale of the devastation of the 2008 Wenchuan earthquake, and so after the first four days in Chengdu, it was time to move three hours north to Beichuan County, to see first-hand the impacts of the earthquake from a decade ago. We would spend the next ten days here, continuing a series of excellent lectures punctuated with visits to the field to see and study the landscape features that we were learning about in the classroom.

The most sobering memorial of the 2008 Wenchuan earthquake is the ‘Beichuan Earthquake Historic Site’, comprising the stabilised remains of collapsed and partially-collapsed buildings of the town of Old Beichuan. This town was situated close to the epicentre of the Wenchuan earthquake, and consequently suffered huge damage during the shaking, as well as being impacted by two large landslides which buried buildings in the town; one of these landslides buried a school with over 600 students and teachers inside. Today, a single basketball hoop in the corner of a buried playground is all that identifies it as once being a school. In total, around 20,000 people died in a town with a population of 30,000. Earth science is an applied field of study, and as such, researchers are often more aware of the impact of their research on the public than in some other areas of science. Despite this, we don’t always come this close to the devastation that justifies the importance of our research in the first place.

River erosion damaging check-dams designed to stop debris flows is still a problem in Beichuan County, a decade after the 2008 Wenchuan earthquake.

It may be a cliché, but seeing is believing, and the iRALL School provided many opportunities to see the lasting impacts of large slope failures, both to society and the landscape. The risk of debris flows resulting from the blocking of rivers by landslides (a further step in the cascading hazard chain surrounding earthquakes and landslides) continues to be a hazard threatening people in Beichuan County today. Debris flow check-dams installed after the 2008 Wenchuan earthquake are still being constantly maintained or replaced to provide protection to vulnerable river valleys, and the risk of reactivation of landslides in a seismically active area is always present. But this is why organisations such as the iRALL, and their activities such as the iRALL School are so important; it is near impossible to gain a true understanding of the impact of cascading hazards without bringing the classroom and the field together. The same is true when trying to work on solutions to lessen the impact of these cascading hazard chains. It is only by collaborating with people from a broad range of backgrounds, skills and experiences can we expect to come up with effective solutions that are more than the sum of their parts.

—————
This blog has been reposted with kind permission from James Whiteley.  View the original blog on BGS Geoblogy.   This blog was written by James Whiteley, a geophysicist and geologist at University of Bristol, hosted by British Geological Survey. Jim is funded through the BGS University Funding Initiative (BUFI). The aim of BUFI is to encourage and fund science at the PhD level. At present there are around 130 PhD students who are based at about 35 UK universities and research institutes. BUFI do not fund applications from individuals.

Teaching controversial subjects in a conservative area

Political polarization, the ever-widening divide between Right and Left in the US, is an obvious problem. We have lost our ability to communicate with one another: using different sets of ‘facts’ to back up our arguments, with the ‘facts’ depending on our side of the political spectrum. The internet has in large part facilitated this fracturing. One can spend 10 minutes on Google to find support for anything that they believe. For example, Youtube videos link to increasingly conspiratorial videos, pushing us farther apart. This loss to our collective conversation is damaging in most arenas, even in the classroom or lecture halls. When a collection of outright lies masquerading as facts meets science, it causes problems. When a student population has firmly-held beliefs in concepts that are simply not true, as a facet of their personal values or beliefs, this presents a difficult and unique challenge for an instructor. I was a visiting assistant professor in a conservative area, dealt with these issues, and hope to provide some help for those who are walking into a similar task in this post.

I loved teaching at Sam Houston State University (SHSU), enjoyed my time with both my students and colleagues. Some of this is going to read as if I was combative the entire time I was at SHSU. I wasn’t. I truly enjoyed interacting with my students (and most liked interacting with me, from reading my evaluations), especially the ones who thought about topics differently than I do. College is supposed to be about exposure to new ideas, after all. I find it difficult to let people believe in materially incorrect things however, especially when they’re detrimental to their lives, and to my own or my family’s lives. SHSU is in a very conservative area in East Texas, and my introductory, general education course covered both climate change and evolution. Covering these subjects meant that the students signing up for “Historical Geology” as an easy science credit got a more ‘controversial’ course than they expected.

To say that climate change or evolution is controversial is imprecise. Both subjects, scientifically, are not controversial, especially at the introductory level. Evolution is a multifaceted theory that is accepted by scientists and there are no competing arguments; this has been understood for 150 years. Scientists also agree that the climate has been changing for decades, and that carbon dioxide (CO2) is a potent greenhouse gas since Svante Arrhenius calculated the extent to which increases in CO2 can cause heating in the atmosphere (he was alive in 1859-1927). Both subjects, unfortunately, are controversial in the public’s eye. Today, 29% of the American public believe scientists do not agree that humans have evolved over time, and 32% reject the scientific fact that is human-caused climate change (and 24% are uncertain!). Walker County, TX, which SHSU is in, has 7% lower acceptance rate than the national average. When I asked my students if scientists agree or do not agree that evolution is a fundamental process describing change through time, ~20% said scientists did not agree. To say that my classes were comprised of more conservative students, with strong personal beliefs, than an average introductory science course in the US is probably accurate.

Teaching these particular students about climate change isn’t simply because it’s course material–it’s vital for them specifically. My second week of teaching was canceled entirely by the university because of the impact to the region by Hurricane Harvey. SHSU is a 45 minute drive from Houston, and areas of the town were closed. Many students were commuting from the south, and some had to miss additional classroom time. One individual had to miss many Fridays that semester because he was working on fixing his mother’s house. Climate change has a direct impact on that region, will continue to have a direct impact, and these students should be fully cognizant of their choices when acting as consumers or citizens. There is an irony to a region economically-driven by oil production reaping the consequences of climate change. That, however, doesn’t mean that the population should suffer.

Flooding in Houston, Texas caused by Hurricane Harvey in 2017. The hurricane caused unprecedented flooding which displaced 30,000 people from their homes, causing more than $125 billion in damages. Image credit: urban.houstonian.

Educating a student population with strongly held personal beliefs counter to course material doesn’t work well with traditional teaching methods. We not only have to teach students the material that they need them to understand for the course (past greenhouse gas changes, radiative forcing, proxy data, feedback mechanisms, etc.) but we also have to convince them of barefaced reality. We have to convince them that, no, scientists aren’t lying to them or the public. We have to convince them that we’re not in the pocket of ‘big-environment’, reaping the benefits of ‘big’ grants. We have to recover their idea that there can be legitimacy of the scientific process. If you say the words ‘climate change’ to someone of a Right ideology, they are likely to not listen to what you say afterwards because you’ve been written off as ‘far-Left’. How do you teach when your students might react that way?

A Hybrid Teaching Approach

Instructors, professors, and educators have to engage in science communication rather than teaching. Not entirely, but to a degree that can be uncomfortable. To explain: Science communication is sharing scientific results with the non-expert public. It relies heavily on a ‘values-based’ model, which is empirically more effective than the older ‘information-deficit’ model. The information-deficit model said that “People just don’t know enough, so if I explain what I know, they’ll agree with me.” That’s standard teaching. The professor explains the subject, the students take notes, everybody agrees the professor is telling the truth and that the professor has the most thorough understanding and information. The information-deficit model assumes that facts win, which simply isn’t the case.  We resist facts that don’t conform to our strongly held beliefs. It doesn’t work if everyone does not agrees that the professor has authority in the subject. If a large enough number of the class think the professor is a member of a global conspiracy of attempted wealth redistribution, then the information deficit model falls completely apart. If the information-deficit model worked, then no one walking out of a (properly taught) high school biology course would believe intelligent design or creationism. That’s simply not the case.

The values-model says that the communicator (professor, instructor, educator) establishes shared values with their audience and communicates with them in a back-and-forth exchange.  They then explain why a scientific concept is important to them, and why it should also be important for those who share the same values. That’s not teaching, in the purest sense, because it’s broader than just pure information conveying. That’s also not possible in the lectures we frequently find ourselves teaching.

Let’s assume that our goal is to take students who are uncertain about climate change, or don’t believe that evolution has occurred through time, and get them to accept scientific truths. Information-deficit isn’t going to get us to students accepting the truth, if we’re dealing with a resistant population. While not all of my students were resistant, I like to ‘swing for the fences’ and get everybody to understand concepts. Past students said they liked the ‘nobody left behind’ classroom ethos I set out. The values-model is uncomfortable for scientists, in particular. A scientific-upbringing, like one has while you get a Ph.D., prizes the ultra-rational and eschews ‘values’ for data (click here for a discussion about science being inherently political).

Blending both the values-based and information-deficit models of teaching might be the right approach. We need to communicate information, but if we demonstrate to students why the subject matters, how it fits with their previously held ideas, or even provide space for them to blend their faith with known biology, then we move them away from irrational, ill-placed skepticism.

I had these concepts gnawing at the back of my head while I was teaching my introductory course (Historical Geology). There was one particular moment that help me see a blending as the correct way forward. In class I occasionally asked students to submit anonymous questions to me on note cards about either impending or just-covered subject material. I’m one of the only research-centric scientists these students might ever meet, and I know from conversations with students that they have questions that weren’t covered in the course. Sometimes I answered the note card questions in lecture alongside the regular material, like in my climate lectures. Other times they exchanged cards with 5 other people, then the last person decided if they wanted to ask that now-anonymous question right then. At the end of my evolution section I got the question “What are your values?” from a student. I used my answer to that question as my first slide when discussing climate change.

That’s me sharing a value that most folks should share: that truth is important, something that we should respect. I used it to set the stage for a series of lectures on climate change that talks primarily about the mechanism and past examples, but also talked about climate models, future projections, and why we’re still arguing about it.

The following are my suggestions for how to teach a subject that folks in your classes think is controversial.

Basic structure

I opted for an overt structure to the roughly two weeks that I discussed climate change. I went methodically through a series of questions, going from “What can change climate?” to “Has climate changed in the past?” and “Why might it matter?”. Touching back to the objections that folks have to climate change and systematically explaining why they are wrong is useful, and makes a really compelling way to organize your lectures. Just be sure not to reinforce the incorrect material by stating it as a statement, rather phrase them as questions. So, you shouldn’t say things like “‘Climate changes all the time, so it doesn’t matter if it does now’ is wrong”, instead it should be “Has climate changed in the past? Yes, but here’s why that’s important”.

Spend time with contrarian ‘evidence’

I had a student bring up a conspiracy theory: the Rothschilds were funding research in climate change and if the research came up counter to human-caused climate change they’d bury it. The student then brought up a ‘fact’ which I’d never encountered before, which they said had been buried by the Rothschilds company. The fact was counter to a huge amount of real research. All I was able to do in the moment was to explain the way things really are, but if the student has decided that the underlying data is falsified it’s difficult to counter. Since then, all I’ve been able to find is an anti-Semitic conspiracy theory from the Napoleonic Wars and a Democratic DC Council member talking about how the Rothschilds control the weather. I still do not know where the student got their ‘fact’. I feel like I was under prepared to handle that interaction.

The index card activity that I mentioned above allowed me time to prep for these kinds of questions from my students, when I ask them for questions for the next lecture. I prompt them with “What’s a question that you’ve always wanted to ask a climate scientist? Something you heard about that sounds wrong or is confusing?”. On the spot, it’s difficult to do the due-diligence of tracking down the source of the student’s misconception. A student in another class wrote a question about Al Gore’s prediction of a sea-ice free Arctic Ocean by a certain deadline. The student missed several key points; it was about Arctic summer ice, Gore is not a scientist, the actual analysis Gore got that from was correct, Gore just used the most pessimistic number rather than the scientists preferred value, etc. Those aren’t facts I keep in my head, but I was able to collate them and present them one-after-the-other as a way to dismantle that piece of misinformation.

One way to view the interactions is as an accidental “Gish Gallop”. Dwayne T. Gish was a debater of evolutionary biologists. He was infamous for his rapid-fire objections to evolutionary science. He would place a simple objection, “There are no transitional forms,” and then another and another, then the scientist would need to explain why that’s clearly not true. The explanation requires a great deal more time. Any unanswered objection is then assumed by the audience to be correct. Such is the way in these classes. If you don’t clarify or correct a student’s point, that point is assumed to be correct, at least by the students you’re trying to reach the most, the ones that don’t accept the legitimacy of climate or evolutionary science.

In an ideal world a student would say, “Did you know crazy-thing-X?” and you respond, “I saw that somewhere, but that’s completely wrong because of A-B-C-D, and have you considered that person-backing-X does so because of E-F-G?”. It’s easier to catch something out of left field if you have some knowledge of the outfield.

Consider your approach

Telling somebody to their face that they’re an idiot for voting for somebody might be both cathartic and true sometimes, but it’s not that effective. Changing minds doesn’t involve hurling epithets, even if the president and his supporters are doing it (please see section My Perspective below for an important caveat). Scientists have facts on our side. Proving your point without literally cursing the name of the current president during a lecture in class is more effective than adding “*&@^ Trump”. Are you just venting your own frustration or are you trying to actively convince these folks who are wrong to join the correct side? By all means, force your students to grapple with the underlying long-term consequences of their voting choices, if they voted for him, but do it in the most effective way possible. Yelling at them is just going to stop them from listening.

An example: three students and I are having a conversation that explicitly turns to voting for Trump*. One student voted for Trump because Trump was going to redistribute wealth to the little guy, the other voted for Trump because Trump was going to engage in trickle-down economics (a failed style of economic policy that gives taxes breaks to the ultra-wealthy that then increases economic benefit down the class structure [it fundamentally does not work]). I tried to make sure they realized that they voted for him for polar opposite reasons, and that at least one of them had to be wrong about what Trump would do in office. Just like we try to do in education: making them walk down the path themselves, providing a guiding hand when necessary, and not just telling them, is more effective than yelling it at them (I’ll admit I laughed at the idea that trickle-down economics would actually be effective, but it took me by surprise).

I also spent a lot of time thinking about how the students perceived me as the messenger. I am originally from the Northern Midwest, where “hey guys” is a gender-nonspecific greeting for a group. In Texas it’s “y’all”, which is actually gender-nonspecific, unlike guys which is just used as nonspecific while being male. It’s very easy to adopt regionalisms accidentally or when it appeals to you for good reason. I’m living in the UK now and I’ve no reason to start saying trousers but I have. I fought the “y’all” change because it felt like the students would perceive me trying to co-opt their language to be more like them, which if you add me trying to push them away from strongly held viewpoints, would lead to resentment.

*This happened without me trying to get the conversation there. I try to discuss the political issues with my students, not the individuals involved in politics, when possible.

Talk politics

One of the questions that stuck out in my mind most from the folks who already accepted and had seemed like they might have a solid understanding of climate change was “Why do some people not believe in climate change?”.

Besides the word ‘believe’ in there, it’s a really astute question. Why is it? The physical basis is solid and fairly simple. The question ends up being more of a social science question. Leaving that unanswered though, falls into a serious trap. If you’re presenting the physical science of climate change you leave questions in your students’ minds. They know there’s another side to the ‘debate’. While the ‘there are two sides to every story’ journalism trope has plenty of faults, we’re conditioned to expect to hear the other side’s opinions. So cover it! Without it you seem like you’re trying to obfuscate.

Explain how the Pope, the U.S. Department of Defense, and all oil companies have statements affirming that climate change is real. Go to Open Secrets and show them where the lobbying money goes (mostly Republicans, with the occasional Democrat from an Oil state like North Dakota). Talk about the fight to remove lead from gasoline (which has a great connection to the age of the Earth), or talk about cancer and tobacco litigation.  I also try to explain to students about the Dunning-Kruger effect and how confident non-experts can be when discussing topics (which explains the bulk of the internet). Explain how you can simply say the words “Climate change” to someone on the right and they erect a mental wall, not hearing anything after. Explain that the divide on climate change acceptance can be attributed strongly to political party. It is scientifically shown that climate change is a a political issue . By ducking the question you’re doing a disservice to your students.

Judging pseudo-scientific crap (fact checking?)

A basic understanding of how to engage in sniffing out pseudoscience is useful these days. There are folks peddling all sorts of incorrect information, and students should be inoculated to that. It’s certainly relevant to climate change, where on social media stories about how climate change is all faked go viral very quickly. Giving students a primer on how to suss out lies, misinformation, and disinformation is important in your class and literally every other!

Individual actions vs. community actions

Lastly, while this might lose your conservative students, it’s important to discuss with your students the actions that can be taken. While individual actions are useful and important, we all have our roles to play in conservation, those individual actions aren’t going to solve anything by themselves. The issue in climate change isn’t solved by one, two, or a hundred people starting to recycle (though that is a good end), it’s systemic change that is required to fix this problem. The end goal of doing this is to motivate the students to vote or to engage with their policy makers in some fashion. Them driving less is important, but the impact is not of the magnitude that we need.

I’m deeply uncomfortable with advocating for individual solutions. As a physical scientist teaching a physical science course at a public institution, it’s not really my purview to go into what solutions are politically feasible, unless asked. I explain the situation, I go through some of the solutions we have, and the implication is that the most effective one is to get involved politically. Because it is. That’s the solution to the community action; to involve the community in solving the problem.

My perspective

All of this has been from my individual perspective. I’m a straight white dude in my thirties. I look, and probably outwardly project, a more traditional set of values than I actually hold. That affords me a whole lot of privilege in certain situations. Particularly in conservative areas there’s a baseline respect that comes with students having to call you ‘Sir’, ‘Doctor’, or ‘Professor’. It works, I think, really well to act as a Trojan horse for these students as someone who is not immediately bothered within their views. I’m a person who presents as fairly stereotypical American male, so there aren’t quick barriers thrown up that my views are from someone with a more liberal set of values, similar to how when the words “climate change” are used, conservative individuals ignore the rest of the argument made.

So your mileage may vary. This advice may not work, some might actually be horribly counter productive for somebody who doesn’t have a similar background or the assumed respect that goes with being a white, male professor. I chose to keep my preferred pronouns out of my email signature while at SHSU, because that’s a clear sign I’m a lefty. Part of my privilege is that it’s not a life-and-death or job-or-no-job situation for me to fight for those rights. I don’t have the level of righteous anger of someone marginalized, targeted, or worse by our government, which allows me the privilege to not having to worry about getting into many possible unsafe situations. I opted to not engage on some issues in my first semester teaching, and to only deal with very specific battles. Making sure that I taught my course material, including those viewed as political, as effectively as possible seemed like a good first step.

——————————-
This blog is written by Cabot Institute member Dr Andy Fraass from the University of Bristol School of Earth Sciences.  This blog has been reposted with kind permission from the Time Scavengers blog.

Courts can play a pivotal role in combating climate change

Calin Tatu/Shuttestock.com
The international community has widely acknowledged the severe threats posed by the impacts of climate change to a series of human rights, including the rights to life, health, and an adequate standard of living. But a stark gap has emerged between this acknowledgement in global climate policy – evidenced by a non-binding clause in the preamble of the Paris Agreement – and their actions to meet promised targets.
How can we hold governments accountable to their human rights duties? A Dutch case recently upheld by the appeals court might hold the answer.
In June 2015, The Hague District Court and a group of 886 concerned citizens, united by the environmental interest group Urgenda Foundation, made history. This, the first successful climate change case brought on human rights and civil law grounds, saw the Dutch government ordered to reduce their greenhouse gas emissions by a minimum of 25% on 1990 levels by the year 2020.
Three years on – against a backdrop of intense scrutiny and after an appeal lodged by the government – The Hague Court of Appeal upheld this decision on October 9. Indeed, it has gone significantly further in affirming the duties of care owed by the state to its people. The court considered the weight of the scientific evidence presented by the Intergovernmental Panel on Climate Change (IPCC) and the recommendations of successive UN conferences to reach an informed conclusion on the required mitigation targets commensurate with the prevention of dangerous climate change.
Marjan Minnesma, director of environmental group Urgenda, arrives at court prior to the appeal. Jerry Lampden/EPA
Significantly, the judges reached this decision by applying the European Convention on Human Rights: the right to private and family life and the right to life more broadly. As such, this case reaffirms the existence of obligations on the part of the state to take concrete measures to prevent the infringement of these rights where the authorities are aware of the existence of a real and imminent threat.
These obligations were held to extend to industrial activities which threaten the rights of people within the state’s jurisdiction. Based on an analysis of the scientific evidence, the court concluded that climate change presents a real and imminent threat to the enjoyment of citizens’ rights as spelled out in the EU convention. They ruled that a 25% emissions reduction is the minimum required to fulfil the government’s duty of care.


Human rights alarm

The Urgenda appeal decision was handed down too early for the findings of the most recent IPCC report on global warming of 1.5ºC, which was published the day before the ruling, to be integrated into the judges’ reasoning. But these findings will significantly strengthen the evidential basis of future claims.
The IPCC report outlines the stark increase in the risks to human health, food and water security, and livelihoods associated with 2ºC of warming, when compared to 1.5ºC. The evidence presented on human health, including the increased risk of heat-related morbidity and mortality, projected with “very high confidence”, is particularly striking. The climate is currently 1ºC warmer than pre-industrial levels, and with the planet projected to reach 1.5ºC as early as 2030 if current trends continue, the alarm on the imminence of the threat to human rights has been sounded.
No legally binding human rights provisions or remedies are provided within the international climate change regime. And so we must turn to the courts to clarify state duties. The Urgenda case sets an encouraging precedent. And there are many more examples of rights-based claims being brought against governments in BelgiumCanadaColombia, the UK, and even against the EU institutions. This marks a sea change in the use of human rights to hold policymakers to account for their inaction on climate change.


The decision by the Netherlands court of appeals in #Urgenda immediately becomes the most important judicial decision yet on the application of human rights law to climate change. 1/10 https://t.co/8ioKxFEjly

— John H Knox (@JohnHKnox) 9 October 2018


A new approach

In the face of the severity and imminence of the environmental risks we face, the approach to human rights protection adopted by the Urgenda judges is crucial. If courts focus on the imminent risks to human life and health, cases brought forward by particularly climate-vulnerable groups should be prioritised.
Individuals most at risk from rising temperatures and extreme weather events – including those whose livelihoods, socio-economic status, and geographic susceptibility result in them being disproportionately affected – would have the strongest claims. Civil society organisations have a crucial role to play in facilitating access to justice for such individuals, for whom entrenched structural barriers often mean that individual access to the courts remains out of reach.
To effectively accommodate climate risks of this nature the existing legal doctrine will need to be adapted, bringing together environmental principles and human rights. The role of the courts themselves is being called into question by climate litigation: the separation of powers between policymakers and the judiciary is embedded in legal systems around the globe, yet the protection of fundamental rights is intended to transcend this divide. It is the duty of the courts to act as a check on executive action and, in this case, inaction, where the enjoyment of rights is in jeopardy.
Never before has the role of the courts been so significant in influencing the path of global policy. In the face of inadequately ambitious action by policy-makers, civil society movements and the courts are the agents of change securing climate action.The Conversation


——————————————-
This blog was written by Cabot Institute member Alice Venn, a PhD Candidate in Environment, Energy & Resilience and Unit Coordinator in Environmental Law, University of Bristol.  This article is republished from The Conversation under a Creative Commons license. Read the original article
Alice Venn
 
 

What Al Gore taught me about effective climate change communication

 

Solutions to the climate crisis are within reach, but in order to capture them, we must take urgent action today across every level of society.  

~ Al Gore. 

Al Gore has always been a hero of mine. I distinctly remember watching ‘An Inconvenient Truth’ for the first time and the profound impact that it had on my view of the world. I personally believe that what Al Gore has done for the awareness of climate change is up there with the contributions of Martin Luther King Jr. to the civil rights movement and Nelson Mandela to the abolition of apartheid. In fact, I have pictures of all three in my bedroom (sad, I know…). Often, they will cast judgemental looks from the side of the room and mutter under their breath that I haven’t made enough of a contribution to humankind today! I find that having such tough critics of my moral compass omnipresent often gives me a little more impetus to do something positive and temporarily clear my conscience.

After dragging my family along to the cinema in September 2017 to watch Al Gore’s moving sequel to ‘An Inconvenient Truth’, I decided to apply to the Climate Reality Training Programme – a training course delivered by Mr. Gore and his team to train individuals about the intricacies of public climate change communication and instigating change in your local community – perfect! Never in a million years did I think that Osh from West Wales would be selected, but so I was.

The training took place in Mexico City and I was lucky enough to use scholarship funding from the Royal Academy of Engineering to pay for my flights and accommodation. The training itself was run for free by Mr. Gore’s charity, The Climate Reality Leadership Training Corps.

Believe in the power of your own voice. The more noise you make, the more accountability you demand from your leaders, the more our world will change for better.

~ Al Gore

I arrived in Mexico City unsure of what to expect. I had read all the pre-material on the flight (in and around a binge watch of the latest movies… as you do), but I was still pretty apprehensive. Luckily, the moment I arrived at the conference and started chatting to the other delegates, I realised that I was surrounded by people just like me from all over the world – a load of enthusiastic tree-huggers looking to do a little bit more than using a bag-for-life at Sainsburys, a keep-cup at Costa and a passive-aggressive tone with housemates about the recycling – I was in my element.

The first session of the day was opened by the man himself, Mr. Gore. He delivered a powerful and poignant speech to begin the training. He talked about the severity of the current situation and the growing need to act:

  • CO2 is being released into the atmosphere faster than at any time in at least the last 66 million years. [1]
  • As a result, global temperatures have increased significantly. We are at a point now, where what would have been considered an ‘Extremely Hot’ day (i.e. a 0.1% frequency event) between 1951 and 1981 now occurs 14.5% of the time! [2]
  • 17 of the 18 hottest years on record have occurred since 2001. [3]

He then went on to talk about some of the devastating consequences that we have already observed. Notably, he drew links between changes in climate to both the ‘Syrian Refugee Crisis’ and the ‘Beast from the East’:

The Syrian Refugee Crisis

 

  • Between 2006 and 2010, 60% of Syria’s fertile land was turned into dessert due to severe droughts as a result of record high temperatures. [4]
  • 80% of their livestock was killed. [4]
  • This drove 1.5 million people into Syria’s already overcrowded cities coping with the influx of refugees as a result of the Iraq war. We all know what happened next…
  • In 2015, the crisis reached its climax with millions fleeing Syria for Europe. As a result, thousands died, and huge political unrest was created across the continent.
  • A paper published by the ‘Proceedings of the National Academy of Science (PANS) ‘ in 2015 stated that the probability of the severity of the droughts was increased by 2-3 times as a result of climate change. [5]

 

The Beast from the East

 

  • On February 25th, 2018, the temperature at the North Pole was 28°C higher than normal. [6]
  • The North Pole is usually protected from the warmer temperatures of Southern Latitudes by a natural phenomenon called the Polar Vortex.
  • However, in February/March of this year, a surge in temperature caused the polar vortex to split. This created two areas of low pressure over Northern Europe and North America, resulting in very cold temperatures and large snowfall in both areas. [7]
  • The reason this is important is because the poles serve like a refrigerator for the planet, reflecting solar irradiation back into space. With rapid melting events like those seen in February/March, the ice mass at the North Pole decreased, reducing the pole’s ability to reflect the irradiation and accelerating the warmth of the planet.

Of course, no speech about climate change would be complete without mentioning everybody’s favourite antagonist – yep, you guessed it… Donald Trump. Simply mentioning the name of Trump in a room full of environmentalists was bound to get a laugh. Mr Gore summed it up concisely:

We need to put a price on carbon in the markets, and a price on denial in politics.

~ Al Gore

However, as has become a trademark of Mr. Gore’s speeches over the years, he didn’t leave his audience in the depths of despair about the mess that we find ourselves in. He went on to talk about the positive news and the reasons for hope:

  • In 2000, the International Energy Agency (IEA) projected that there would be 30 gigawatts of wind power worldwide by 2010. In 2010, this estimate was exceeded by a factor of 7 and in 2017, global wind energy capacity rose to 539.6 GW, or about 18 times more than the IEA’s projection for 2010. [8]
  • In 2002, a top solar industry analyst projected that the global solar market would grow 1 gigawatt annually by 2010. The actual growth of the solar market in 2010 turned out to be 17 times that, with 17 gigawatts of solar capacity added that year. The world installed a record 98 gigawatts of solar photovoltaic (PV) capacity in 2017, far more than the net additions of any other technology – renewable, fossil fuel, or nuclear. [9]
  • According to Bloomberg New Energy Finance, by 2040, wind power could draw $3.3 trillion in investment and see a fourfold increase in capacity. [10]
  • China installed 53 GW of solar capacity in 2017, more than the total installed solar capacity of any other country in the world. [11] This has driven a dramatic decrease in the cost of solar and an increase in the robustness of the technology.

Needless to say, it was incredible to watch the passion and conviction with which Mr. Gore delivered his material. He is a truly gifted orator. Communicating the harsh realities of climate change, coupled with the strong message for hope was something that really gave Mr. Gore’s presentation weight. Rather than feeling depressed about the situation, as is often the case when listening to a speech about climate change, this speech left me feeling empowered. Striking this fine balance was a key emphasis of the training to follow.

The next few days of the training flew by in a blur of presentation coaching, climate change and solutions workshops, networking events and various other activities. It was truly inspiring to learn about all the incredible things that people had achieved in their own respective communities. A key aspect of the training was the commitment required following the event. We each had to commit to making 10 ‘acts of leadership’ once we arrived back at home. This could include contacting our local MP to discuss climate change, delivering presentations on the subject, arranging events and so forth.

So far, I have delivered a presentation to my fellow Royal Academy of Engineering scholars and contacted both my Member of Parliament and my Welsh Assembly Member. I have arranged to meet my MP in Westminster, and I intend to present to him about climate change and urge him to instigate action. For my other acts of leadership, I intend to present at a series of secondary schools. I have been lucky enough to be elected Engineers Without Borders’ Outreach Officer for this year, and we have 6 school visits in the pipeline for the Bristol area. I have also organised to go back to my own secondary school in West Wales to present.

Overall, the training was an incredible experience – something that I have taken a lot away from, both in terms of the knowledge and confidence that I have gained to present about climate change and the lasting friendships that I have made with other delegates. I would urge anybody passionate about tackling climate change to attend a training course run by the Climate Reality Leadership Corps (a link to their site to find out about the next training can be found here).

I’d like to leave you with a list of actions that we can all do as individuals to make an impact:

  • Contact your local MP and set out your concerns regarding climate change (I have a template that you are welcome to use – see the bottom of the article for my contact details)
  • Vote for candidates that have a strong stance on combating climate change
  • Buy less meat, milk, cheese and butter and more locally sourced seasonal food – and throw less of it away
  • Drive electric cars but walk or cycle short distances
  • Take trains and buses instead of planes
  • Use videoconferencing instead of business travel
  • Use a washing line instead of a tumble dryer
  • Insulate homes
  • Demand low carbon in every consumer product

 

 Will our children ask, why didn’t you act? Or will they ask, how did you find the moral courage to rise up and change?

 ~ Al Gore

Please feel free to contact me with any questions at: osianllyrrees@gmail.com

References

[1] RE Zeebe, et al., Nature Geoscience, March 2016
[2] NASA/GISS; Hansen, et al., “Perceptions of Climate Change,” Proc. Natl. Acad. Sci. USA 10.1073, August 2012 – Updated 2016
[3] National Aeronautics and Space Administration Goddard Institute for Space Studies, “GISS Surface Temperature Analysis (GISTEMP): Global-mean monthly, seasonal, and annual means,” last updated February, 2018. 
[4] NPR Staff, “How Could A Drought Spark A Civil War?,” National Public Radio, September 8, 2013. 
[5] C. Kelly, S. Mohtadi, M. Cane, R. Seager, and Y. Kushnir. Climate change in the fertile crescent and implications of the recent syrian drought. PNAS, 112:3241–3246, 2015.
[6] Washington Post, “North Pole surges above freezing in the dead of winter, stunning scientists”, Accessed September 27th 2018
[7] The Carbon Brief, “Explainer: The polar vortex, climate change and the ‘Beast from the East’”, Accessed September 27th 2018
[8] Global Wind Energy Council, Global Wind Statistics 2017 (February 2018). 
[9] ** UN Environment, “Banking on Sunshine: World Added Far More Solar Than Fossil Fuel Generation Capacity in 2017,” April 5, 2018 
[10] Bloomberg New Energy Finance, “Global wind and solar costs to fall even faster, while coal fades even in China and India,” June 15, 2017
[11] Mark Osborne, “China officially installed 52.83 GW of solar modules in 2017,” PVTech, January 18, 2018.

——————————————
This blog was written by Cabot Institute member Osian Rees, from the University of Bristol’s Faculty of Engineering.
Osian Rees

Travelling through Asia’s breadbasket

This is the second of a series of blogs from a group of University of Bristol Cabot Institute researchers who are on a remote expedition (funded by BCAI) to find out more about Kazakh agriculture and how farmers are responding to their changing landscape. 

Image credit: Hannah Vineer

Queen’s ‘Bohemian Rhapsody’ played on the car radio as we drove through endless fields of stubble stretching into the horizon in every direction. We were 2 days into our 3-day, 2,345km journey from Astana to our field site, and it was easy to see why Kazakhstan is referred to as Asia’s breadbasket. Spring had finally arrived after an unusually long winter.  Tractors were busy burning, ploughing and planting, disappearing into the distance with each pass of the field.

The vast, flat steppe has provided the opportunity for cereal production on a scale unrivalled by the UK’s comparatively small field enclosures. In 2017, Kazakhstan held wheat stocks of 12MMT (million metric tonnes), making UK’s 1.4MMT seem like a drop in the ocean by comparison. Kazakhstan exports wheat globally and is a key player in global food security. Grain elevators capable of storing more than 100,000 tonnes of grain dominate the skyline of every major town and soon became a familiar feature of the landscape to us.

Image credit: Hannah Vineer

Our journey was punctuated every 6 hours or so by stops at restaurants that seemed to appear out of nowhere. Each one was as unique as the last, their bright colours a reflection of the cheerful nature of the Kazakh people. The popular Tabletkas parked outside reminded me of VW Transporters, and the friendly locals reminded me of my Welsh roots, where strangers greet you on the street.

Image credit: Hannah Vineer

The restaurants served a range of traditional Kazakh comfort food – meat and milk based meals like borscht, always served with bread, of course. Bread, or нан (pronounced naan) is a staple food here and is said to be the most important part of the dinner table. The menu, written in the Cyrillic alphabet, was indecipherable to me at first and I had to pester the Kazakh and Russian members of our team to help me choose a meal each time. Based on my excited reaction when I finally discovered the image recognition feature of my Google Translate app, you would have thought that I had never seen modern technology before. In truth, I was just relieved to not be such a burden on the rest of team!

Image credit: Hannah Vineer

Before long we were back on the road and as the hours passed I looked forward to getting to camp and getting started with our work. We planned to visit remote villages, thousands of kilometres off the tourist track, to survey farmers about how they cope with weather extremes such as this year’s particularly harsh winter. But for now, we had run out of time and energy. The sun was setting and we needed to find a place to rest for the night. We headed for the dim twinkling lights of Aktobe, passing a tractor working into the night, illuminating a cloud of dust in its wake. When we eventually found a motel with rooms available, I found it difficult to sleep. I couldn’t wait for the final leg of our journey to our wild camp in the Kazakh steppe.

———————————
This blog is written by Cabot Institute member Hannah Rose Vineer.  This expedition has been kindly funded by the Bristol Centre for Agricultural Innovation.  This blog was reposted with permission from the BCAI blog site.

Setting off on a BCAI expedition to Kazakhstan

This is the first of a series of blogs from a group of University of Bristol Cabot Institute researchers who are on a remote expedition (funded by BCAI) to find out more about Kazakh agriculture and how farmers are responding to their changing landscape. 

Abandoned machinery. Image credit Hannah Vineer.

Ghost towns on the Kazakh steppe look as though they are centuries old, but it is an illusion. They have been sandblasted relentlessly by the force of the steppe since they were abandoned, less than 40 years ago, after the breakdown of the Soviet Union. This is one area on earth that people have largely failed to tame, but as the human population increases the country’s agricultural systems are rapidly developing and focus is turning to the steppe once again. At the same time, farmers must adapt to recent changes in climate – drier summers limit crop production and water availability, and changing patterns of snowfall and snowmelt threaten the lives of livestock. I am about to embark on a remote expedition to find out more about Kazakh agriculture and how farmers are responding to their changing landscape. Follow this blog series for updates from the field.

Since 2000, approximately 5,000,000 additional hectares of land have been sown for cropping, and approximately 2,000,000 each additional sheep, cattle and horses are kept in Kazakhstan. This increase in livestock productivity is largely driven by smallholder farmers, who rely on livestock for up to a fifth of their family’s food. However, climate change has been felt disproportionately in Central Asia, threatening food security. National Geographic recently reported that over half a million animals failed to survive the winter in neighbouring Mongolia due to a combination of lethal winter conditions and poor summer crop growth, so I’m anxious to see how the Kazakhs fared.

Image credit: mapchart.net

I’m told that in the Ural region in Western Kazakhstan, wheat production, livestock and wildlife exist in close contact, and that this is the best place to start my research. I’m set to fly to Astana tomorrow to join colleagues from the Association for the Conservation of Biodiversity of Kazakhstan (ACBK) on the three-day, 2,000km journey to the far west. With the help of ACBK and Bristol PhD student Munib Khanyari, I will interview farmers spread out over an area the size of England, skirting along the Russian border and the Caspian Sea. I’ll spend my evenings wild camping off-grid under the stars for 2-3 weeks. There will be no fresh water, no toilets and no internet – the team and I have to carry everything we need in order to survive the duration. Wish me luck!

———————————

This blog is written by Cabot Institute member Hannah Rose Vineer.  This expedition has been kindly funded by the Bristol Centre for Agricultural Innovation.  This blog was reposted with permission from the BCAI blog site.Read part two of this blog – Travelling through Asia’s breadbasket.

The Paris Agreement – where are we now?

Cabot Annual Lecture 2018

This year the Cabot Institute Annual Lecture posed a critical question: where are we with current efforts to tackle global climate change? The event brought together over 800 people to hear from leading Cabot Institute experts in climate science, policy, and justice, Dr Jo House, Dr Dann Mitchell, Dr Alix Dietzel and Professor Tony Payne. It was both an appraisal of the findings of the recently published report of the Intergovernmental Panel on Climate Change (IPCC), and a grounded call to climate action.

Paris commitments

In 2015 world leaders adopted the Paris Agreement committing all parties to limiting global average temperatures to well below 2 °C above pre-industrial levels and to pursue efforts to limit warming to 1.5 °C. All countries undertook to achieve global peaking of greenhouse gas emissions as soon as possible and to enact increasingly ambitious mitigation measures in line with the overarching temperature goals. The Paris Agreement, in contrast to the preceding Kyoto Protocol, is not based on legally binding reductions targets for developed countries, but on a voluntary system of pledges known as ‘nationally determined contributions’ for all parties which will be subject to a stocktake of global progress every five years, beginning in 2023.

Although the Paris Agreement initially offered great promise with pledges being made by both developed and developing countries, a report by the UN Environment Programme in November 2017 examining progress towards the global temperature goals found that even if all current pledges are honoured, we remain on track for some 3 °C of warming by 2100. In light of this, and under the Presidency of Fiji, the first Small Island State to preside over a Conference of the Parties at COP23 last year, the focus has been on building momentum for more urgent action through the facilitative ‘Talanoa dialogue’ and on hashing out the final operating procedures for the Agreement. The findings of the IPCC Report on Global Warming of 1.5°C, published on 8 October represent a further important piece of the picture of global progress, which three of the Cabot speakers shed light upon as contributing authors.

Why 0.5°C of warming matters

The findings of the report are significant in illustrating the projected differences in climate change impacts between the 1.5°C and 2°C temperature thresholds. Dr Dann Mitchell outlined the evidence for increases in regional mean temperatures and for the increasing likelihood of temperature extremes of the kind witnessed during this summer’s European heatwave, which we could see occur almost every year at 2°C of warming. These extremes, together with the projected intensification of storms presented in the report, are closely linked to human risks to health, wellbeing and livelihoods.

Cabot Annual Lecture 2018
Dr Dann Mitchell

Professor Tony Payne echoed these concerns with respect to the findings of the report on sea-level rise which predict an extra 10cm rise between the 1.5°C and 2°C temperature thresholds, equating, in turn, to an additional 10 million people at risk of related impacts including inundation and displacement. The destabilisation of the ice sheets is set to become more likely beyond 1.5°C, entailing risks of much greater sea-level rise in the future. Professor Payne further outlined the strikingly severe consequences for coral reefs of the two temperature thresholds, with projections that at 2°C all coral in the oceans will die, while by limiting temperature to 1.5°C, some 10-30% of coral will survive. Reefs are not only crucial for the maintenance of healthy marine ecosystems, but also for the millions of people around the world who depend upon those ecosystems for their food security and livelihoods.

Cabot Annual Lecture 2018
Professor Tony Payne

A call for action

Against these stark warnings on the significance of limiting global temperatures to 1.5°C, Dr Jo House outlined some key recommendations for how we can get on track. The IPCC report sets out a number of pathways for action, each calling for changes across a broad spectrum of policy sectors with the aim of rapidly reducing greenhouse gas emissions and enhancing the absorption of existing carbon in the atmosphere. These changes include moving away from fossil fuels to renewable sources of energy, greening the transport sector, replanting forests, and investing in carbon capture and storage technologies. Dr House underlined the importance of action at all levels of governance to meet these goals. At the national level in the UK under the provisions of the Climate Change Act we are already committed to an 80% reduction on 1990 levels by 2050, while at the city level in Bristol, the Climate and Energy Security Framework commits to the same target, with a 50% reduction to be achieved by 2025.

Cabot Annual Lecture 2018
Dr Jo House

This action in climate policy is increasingly being driven by sub-state actors and Dr Alix Dietzel highlighted the crucial role that local government, civil society groups, citizens initiatives, corporations, and individuals are playing in this. Dr Dietzel expressed cause for hope in the reaction of sub-state actors to the announcement of the withdrawal of the United States from the Paris Agreement, with the ‘WE ARE STILL IN’ movement garnering support from city mayors, governors, tribal leaders, universities, and businesses for continuing commitment to the Paris goals. At the individual level, the actions we can all take within the boundaries of our own capabilities were discussed, outlining our capacity to affect change through our consumption and lifestyle choices. The need to consider the ethical questions surrounding our responsibilities as individuals and global citizens remains crucial, particularly in light of the disproportionately harmful effects that climate impacts will have upon those who have contributed least to the problem.

Cabot Annual Lecture 2018
Dr Alix Dietzel

The risks of inaction on the 1.5°C threshold were balanced against the opportunities and benefits of action by the panel. The successful lobbying efforts of climate-vulnerable states to embed the 1.5°C threshold within the Paris framework, alongside the commitment of many governments and sub-state actors to meet it, are cause for hope but we still have a long way to go.

——————————
This blog was written by Cabot Institute member Alice Venn, a PhD Candidate in Environment, Energy & Resilience at the University of Bristol’s Law School.

Alice Venn

Listen again to the Annual Lecture
View the presentation slides
View the photos on Flickr 
View our Moments or check out #CabotLecture2018 on Twitter.

Local students + local communities = action on the local environment

As part of Green Great Britain Week, supported by BEIS, we are posting a series of blogs throughout the week highlighting what work is going on at the University of Bristol’s Cabot Institute for the Environment to help provide up to date climate science, technology and solutions for government and industry.  We will also be highlighting some of the big sustainability actions happening across the University and local community in order to do our part to mitigate the negative effects of global warming. Today our blog will look at ‘Climate action in communities.

Geography students from the University of Bristol spent February 2018 working on air, soil and water quality research projects for local organisations and community groups, including Bristol Green Capital Partnership members. Below is a summary of each project, the findings and next steps.

Bristol City Council – Bristol Urban Heat Island effect

Students investigated the effects of urban and suburban heat islands within Bristol compared to local rural areas. Urban Heat Island can impact human health, air and water quality and energy demand in the City with implications for future planning and city resilience. This project aimed to provide early groundwork for Bristol City Council in developing a better understanding of the Urban Heat Island in the city. The group used fifteen Tinytags across the city to collect temperature data and gained secondary data from local weather stations and building management systems. The group used a contour graph (see image below) to illustrate the UHIs they found, there was significant differences (c.1.3C) between rural sites, such as Fenswood Farm, Long Ashton compared to urban sites in close proximity, such as Hotwells Road. Bristol City Council will be using this data and other insights generated through participation in the project to inform i) the co-development of an urban temperature monitoring network and ii) further research into the Urban Heat Island effect.

Malago Valley Conservation Group – water pollution in the River Malago

Students investigated how water quality varied along the River Malago in Bishopsworth and what biological impact the dam has on microplastics and pollution in the river. Initially the group collected GPS data to map the river course and used water quality samples from 40 sites along the river to record nutrient, chlorophyll and microplastic data. The team found that some microplastic build up was evident before dams and weirs along the river and nitrate concentrations increased downstream through nitrification which suggests there may be impacts on the ecology of the river. Overall the river was found to be relatively healthy according to DEFRA and Environment Agency data, but there were recommended actions to protect its health in the future. The Malago Valley Conservation Group will be using the findings to plan conversation work programmes with their volunteers.

Bristol Avon Rivers Trust – water pollution in Three Brooks Lake

Students investigated the Three Brooks Lake and accompanying urban brooks in North Bristol to see if there was a difference in pollution levels entering the lake from two brooks from separate local residential areas. The group collected twenty water samples from the site and secondary data from the Environment Agency to examine variations in the pH, nutrient concentrations, turbidity (cloudiness of the water) and microplastics levels at the site. The findings suggested that there is likely to be a difference in the water quality of the two brooks and that the lake may be a sink for water pollution in the area. The Three Brooks Nature Reserve group will use the findings to support the development of a local management plan and the Bristol Avon Rivers Trust will be using the findings to contribute to their existing knowledge base for the catchment and to search for funding to develop the research further and to undertake any necessary improvements.

Friends of Badock’s Wood – wildflower cultivation in Badock’s Wood

Students investigated the soil conditions in Badock’s Wood to support the cultivation of wildflower meadows. The group collected soil cores from three meadows and a control meadow to analyse the soil moisture and organic matter content in the lab. Most wildflower species prefer calcareous soils (>15% calcium) with low phosphorous and high nitrogen content to grow optimally. Findings showed that two meadows have calcareous soils and two were on the borderline, all meadows had low phosphorus and low nitrogen content. In the present conditions, although some wildflowers do grow, the soil isn’t optimal to sustain the growth of many species but measures could be taken to improve the soil and more robust wildflowers could be selected to cope with soil conditions. The Friends of Badock’s Wood will be using the findings to revise their management plan for the site.

Dundry and Hartcliffe Wildlife Conservation Group – water pollution in Pigeonhouse stream tributaries

Students investigated water quality variances in five tributaries of the Pigeonhouse stream in Hartcliffe and whether this is influenced by land use in the area. The group collected samples to analyse the pH, nutrient content and temperature of the streams. The findings showed that the tributaries were healthy and unlikely to be contributing to water pollution levels in the Pigeonhouse stream and further downstream in the River Malago. The group suggested that high levels of nitrate in one tributary and Pigeonhouse stream were likely to be a result of run-off from neighbouring fertilised agricultural fields. E. Coli was prolific in all areas, the source of this will be a subject for future students to investigate. Dundry and Hartcliffe Wildlife Conservation Group will present the findings to the local neighbourhood partnership group.

Dundry and Hartcliffe Wildlife Conservation Group – effects of urban development and refuse on the Pigeonhouse Stream

Students investigated water quality along the Pigeonhouse stream in Hartcliffe. The group collected water samples to analyse for pH, nutrient content, turbidity and microplastic levels in the stream. Findings showed that microplastic pollution increased and turbidity (water cloudiness) decreased downstream as urbanisation increased. Ammonia and nitrogen concentrations were found to be high in the stream, but average compared to other streams in the region and within DEFRA safety standards. In-flow pipes from the surrounding urban areas are likely to be influencing the water quality in the stream. Dundry and Hartcliffe Wildlife Conservation Group will use the report to work with Bristol Waste to reduce fly-tipping in the area and with the local neighbourhood partnership to develop strategies to reduce pollution from the in-flow pipes.

Friends of Bristol Harbourside Reed Bed – impacts of reed beds on water quality in Bristol Floating Harbour

Students investigated spatial variation in water quality across the reed bed. The group collected twenty-one water samples and analysed for E.Coli, heavy metals, pH and nutrient content. Findings showed usual levels of heavy metals, except for zinc which was ten times higher than expected. There was no evidence that the reed bed influenced nutrient concentrations or pH levels, but this may be different if the research was conducted in summer during peak growing season. High levels of chlorophyll were found over the reed bed which can result in algae blooms. The group recommended that the reed beds should be cut back annually in autumn, this will reduce the amount of dead plant matter in the water to maintain healthy levels of zinc and chlorophyll in the reed bed. Friends of Bristol Harbourside Reed Bed will be using the findings to inform their management plan of the reed bed.

Friends of Bristol Harbourside Reed Bed – the health of the Bristol Floating Harbour reed bed

Students investigated concentrations of heavy metals and microplastics in the reed bed which would impact the reed bed ecology. The group collected ten sediment samples and five reed samples to test in the lab. Findings showed usual nitrate and phosphate levels, but zinc and potassium levels were higher than in comparable rivers which may be due to houseboats dumping excrement in the water. Microplastics were prolific in the sediment samples and identified as a major pollutant in the reed bed. The reed beds were filtering some pollutants in the water, particularly potassium, but these will re-enter the ecological system if the reeds are left to die back. The group recommended that reeds were cut back annually to reduce pollutants in the water. Friends of Bristol Harbourside Reed Bed will be using the findings to inform their management plan of the reed bed.

Bristol Zoo – air pollution at Bristol Zoo

Students investigated CO2 levels as an indicator of air pollution levels at Bristol Zoo. The group collected data using CO2 probes and gas samples at five sites at Bristol Zoo and two control sites at Fenswood Farm, Long Ashton and Bear Pit Roundabout, City Centre. The analysis accounted for environmental factors such as temperature and windspeed. Findings showed that air pollution was higher at the boundaries of Bristol Zoo than in the centre, but not as high as in the city centre. The group suggested further investigations into the impact of the high boundary wall and roadside vegetation on air pollution at Bristol Zoo would be useful. Bristol Zoo will be using the findings to as a baseline for more research into air pollution at the site.

Narroways Millennium Green Trust

Students investigated the impacts of firepits on soil pollution and compaction at the Narroways Hill conservation site in St Werburghs. The group collected twenty soil samples to test in the lab. Findings showed that soil compaction was high in some areas of the site, but no evidence linked this to firepits at the site. Soil moisture was found to increase further from the firepits. There was not significant evidence to show heavy metal pollutants at the sites, except for arsenic which the group are investigating further. Narroways Millennium Green Trust will be using the findings to inform public communications around fires at the site.

———————-
This blog is written by Amy Walsh from Skills Bridge. If your organisation would benefit from similar research, please email amy@bristolgreencapital.org.



Read other blogs in this Green Great Britain Week series:
1. Just the tip of the iceberg: Climate research at the Bristol Glaciology Centre
2. Monitoring greenhouse gas emissions: Now more important than ever?
3. Digital future of renewable energy
4. The new carbon economy – transforming waste into a resource
5. Systems thinking: 5 ways to be a more sustainable university
6. Local students + local communities = action on the local environment