Manufacturing in Bristol – Bridging the gap to a more sustainable and more resilient future

University of Bristol

The University of Bristol and partners announce the launch on 22 of April of a new collaborative research project to determine how highly adaptable manufacturing processes, capable of operating at small scales (re-distributed manufacturing), can contribute to a sustainable and resilient future for the city of Bristol and its hinterland. 

The next few years have the potential to be transformative in the history of our society and our planet.  We are faced with numerous choices in how we live our lives, and our decisions could either embed the practices of the last two centuries or empower new paradigms for the production of our food and energy, our buildings and transport systems, our medicine, furniture and appliance, all of those things on which we have grown to depend. It could be a transformation in what we own or borrow, how we use it…. And how we make it.

Bristol is one of the Rockefeller Foundation’s 100 Global Resilient Cities.  Unlike many of the other cities (and somewhat unconventionally), Bristol, the University of Bristol and its Cabot Institute have adopted a holistic definition of resiliency that includes not just adaptation to future change but also the contemporary behaviour that minimises the chances of future shocks.  Recognising that, the launch of the Bristol 2015 European Green Capital year focussed on the need to bridge the gap  between our resource intensive and environmentally harmful current behaviour and a more sustainable – and resilient – future.

This combination is key.  Increasingly we recognise that our non-sustainable behaviour could bring about dangerous climate change and resource stress. But we are also obtaining a sharper understanding of the limits of our knowledge. Unfortunately, our behaviour is not just threatening the security of our food, water and energy but is inducing a profound uncertainty in our ability to forecast and adapt to future change.  Not only does such radical uncertainty demand mitigative rather than adaptive action  but, where we fall short or the damage has already been done, it will require an equally radical emphasis on resiliency.

Part of Bristol’s path to achieving these goals of sustainability and resiliency is localism, including local production of food and energy, exemplified by the recent launch of a municipally-owned energy company  but also community-owned energy and food cooperatives.   Localism can only go so far in our highly interconnected and interdependent world, but it is undeniably one of Bristol’s strongest tools in empowering local communities and driving its own sustainability agenda while making us more resilient to external factors.  But why stop at food and energy?

Manufacturing has undergone a suite of radical transformations over the past decade, the potential of which are only now being harnessed across a range of manufacturing scales from high-value (such as Bristol’s aerospace industry) to SMEs and community groups.  Crudely put, the options for the manufacturer have traditionally been limited to moulding things, bashing things into shape, cutting things and sticking things together.  New technologies now allow those methods to be downscaled and locally owned. Other technologies, enabled by the exponential growth of computer power, are changing the manufacturing framework for example by allowing complex shapes to be made layer-by-layer through additive manufacturing.

Crucially, these new technologies represent highly adaptable manufacturing processes capable of operating at small scales.  This offers new possibilities with respect to where and how design, manufacture and services can and should be carried out to achieve the most appropriate mix of capability and employment but also to minimise environmental costs and to ensure resilience of provision.  In short, manufacturing may now be able to be re-distributed away from massive factories and global supply chains back into local networks, small workshops or even homes. This has brought about local empowerment across the globe as exemplified by the Maker movement and locally in initiatives such as Bristol Hackspace.  These technologies and social movements are synergistic as localised manufacturing not only brings about local empowerment but fosters sustainable behaviour by enabling the remanufacturing and upcycling that are characteristic of the circular economy.

There are limits, however, to the reach of these new approaches if they remain dependent on traditional manufacturing organisations and systems into which we are locked by the technological choices made in two centuries of fossil-fuel abundance.  As well as the technologies and processes that we use, a better understanding of how to organise and manage manufacturing systems and of their relationship with our infrastructure and business processes is central to the concept of re-distributed manufacturing and its proliferation.  It requires not only local production but a fundamental rethinking of the entire manufacturing system.

This is the focus of our exciting new RCUK-funded project: it will create a network to study a whole range of issues from diverse disciplinary perspectives, bringing together experts in manufacturing, design, logistics, operations management, infrastructure, engineering systems, economics, geographical sciences, mathematical modelling and beyond.  In particular, it will examine the potential impact of such re-distributed manufacturing at the scale of the city and its hinterland, using Bristol as an example in its European Green Capital year, and concentrating on the issues of resilience and sustainability.

It seems entirely appropriate that Bristol and the SW of England assume a prominent leadership role in this endeavour.  In many ways, it is the intellectual and spiritual home of the industrial use of fossil fuels, responsible for unprecedented growth and prosperity but also setting us on a path of unsustainable resource exploitation.  Thomas Newcomen from South Devon produced arguably the first practical steam engine, leading to the use of fossil fuels in mining and eventually industry; in the late 1700s, coal-powered steam energy was probably more extensively used in SW England than anywhere in the world.  Continuing this legacy, Richard Trevithick from Cornwall developed high pressure steam engines which allowed the use of steam (and thus fossil fuels) for transportation, and of course Brunel’s SS Great Western, built in Bristol, was the first vehicle explicitly designed to use fossil fuel for intercontinental travel.

But that legacy is not limited to energy production.  Abraham Darby, who pioneered the use of coke for smelting iron in Coalbrookdale, i.e. the use of fossil fuels for material production, had worked at a foundry in Bristol and was funded by the Goldney Family, among others.  He married fossil fuels to the production of materials and manufactured goods.

These are reasons for optimism not guilt.  This part of the world played a crucial role in establishing the energy economy that has powered our world.  On the back of that innovation and economic growth have come medical advances, the exploration of our solar system and an interconnected society.  That same creative and innovative spirit can be harnessed again.  And these approaches need not be limited to energy and materials; our colleagues at UWE been awarded funds under the same scheme to explore redistributed healthcare provision. The movement is already in place, exemplified by the more than 800 organisations in the Bristol Green Capital Partnership.  It is receiving unprecedented support from both Universities of this city.  This new project is only one small part of that trend but it illustrates a new enthusiasm for partnership and transformative change and to study the next generation of solutions rather than be mired in incremental gains to existing technology.
———————————————–
This blog is written by Cabot Institute Director Prof Rich Pancost and Prof Chris McMahon from the Engineering Department at the University of Bristol.

Prof Rich Pancost

More information

For more information about the issues covered in this blog please contact Chris McMahon who is keen to hear from local industries and other organisations that may be interested in the possibilities of re-distributed manufacturing.

The grant has been awarded to the University of Bristol, supported by the Universities of Bath, Exeter and the West of England and Cardiff University, by the Engineering and Physical Sciences Research Council (EPSRC), supported by the Arts and Humanities Research Council (AHRC). The network, one of six being funded by the EPSRC for the next two years to study RDM, will also explore mechanisms by which interdisciplinary teams may come together to address societal grand challenges and develop research agendas for their solution. These will be based on working together using a combination of a Collaboratory – a centre without walls – and a Living Lab – a gathering of public-private partnerships in which businesses, researchers, authorities, and citizens work together for the creation of new services, business ideas, markets, and technologies.

EPSRC Reference: EP/M01777X/1, Re-Distributed Manufacturing and the Resilient, Sustainable City (ReDReSC)

The Cabot Institute

The Cabot Institute carries out fundamental and responsive research on risks and uncertainties in a changing environment. We drive new research in the interconnected areas of climate change, natural hazards, water and food security, low carbon energy, and future cities. Our research fuses rigorous statistical and numerical modelling with a deep understanding of social, environmental and engineered systems – past, present and future. We seek to engage wider society by listening to, exploring with, and challenging our stakeholders to develop a shared response to 21st Century challenges.

The challenges of global environmental change: Why we (Bristol) should ‘bridge the gap’

Our planet and the people who live upon it face profound challenges in the coming century. As our population, economies and aspirations grow we consume increasing amounts of precious and finite resource.  The side effects and waste products of this consumption also have profoundly negative impacts on our environment and climate, which  in a vicious circle will make it even harder to support our food, energy and water needs.


In order to live on this planet, we must bridge the gap between wasteful lifestyles based on limited resources to efficient lifestyles based on renewable ones. Nowhere is that more apparent than in our consumption of fossil fuels. Much of our prosperity over the past two centuries has derived from the exploitation of these geological gifts, but those gifts have and are causing climate change with potentially devastating consequences. These are likely to include more extreme weather, loss of marine ecosystems and droughts; in turn, these could cause famine, refugee crises and conflict. 


These climatic and environmental impacts will be felt locally in the European Green Capital as well as globally.  We live in an interconnected world, such that drought in North America will raise the price of our food. The floods of last winter could have been a warning of life in a hotter and wetter world.  Many of us in the South West live only a few metres above current sea level.  


In my own work with Cabot Institute colleagues, I have investigated not just how Earth’s climate might change but how it has changed in the past.  This shows that our climate forecasts are generally right when it comes to the temperature response to greenhouse gases, although perhaps they underestimate how much the poles will warm.  More concerning, Earth history reveals how complex our planet is; with dramatic biological and physical responses to past global warming events. During one such event 55 million years ago, rapid warming transformed our planet’s vegetation and water cycle: rivers in Spain that had carried fine grained silts suddenly carried boulders. And that ‘rapid’ warming event occurred over thousands to tens of thousands of years not two hundred a reminder of the unprecedented character of our current climate change experiment.

Flooding in Whiteladies Road, Bristol. Credit: Jim Freer



Consequently, despite our best understanding of some factors, climate change will make our world a more uncertain place, whether that be uncertainty in future rainfall, the frequency of hurricanes or the timing of sea level rise. This uncertainty is particularly problematic because it makes it so much harder for industry or nations to plan and thrive.  How do we ensure a robust and continuous food supply if we are unsure if the planet’s bread baskets will become wetter or dryer?  Or if we are unsure how our fisheries will respond to warmer, more acidic, more silt-choked oceans?


Underlying this uncertainty is a deep ethical question about who will bear the risk and the inequality issues hidden within our choices.  Most of us recognise that we are consuming the resources and polluting the environment of our children.  But the inequity is deeper than that it is not all of our children who will suffer but the children of the poorest and the most vulnerable.  Those whose homes are vulnerable to floods, who lack the resources to move or the political capacity to emigrate, who can barely afford nutritious food now, whose water supplies are already stretched and contaminated. 


Bristol in 2015 will not bridge the gap by despairing at these challenges, but we can lead in acknowledging them. We can lead in showing how to avoid the worst uncertainty and taking responsibility for the consequences of where our efforts fall short.  Most importantly, we can lead towards not just radical resiliency but inclusive resiliency. 

—————————————–

This blog is by Prof Rich Pancost, Director of the Cabot Institute at the University of Bristol.

Prof Rich Pancost

Do not make policy during the middle of a flood crisis

Across the country, we have seen our neighbours’ homes and farms devastated by the floods.  We understand their anger and frustration.  We understand their demands for swift action.

What they have been given is political gamesmanship.  Blame shifting from party to party, minister to minister, late responses, dramatic reversals of opinion.  It reached its well-publicised nadir this past weekend, with Eric Pickles’ appearance on the Andrew Marr show:

‘I apologise unreservedly and I’m really sorry that we took the advice; we thought we were dealing with experts.’

Throwing your own government experts to the wolves is not an apology.

This political vitriol, at least with respect to the Somerset Levels, all appears to come down to a relatively simple question – should we have been dredging?

This is not a simple question.  

It is an incredibly complex question, in the Somerset Levels and elsewhere, and this simplistic discussion does the people of those communities a great disservice.

Image by Juni

But more fundamentally, this is not the time to be deciding long-term flood mitigation strategy.  In times of disaster, you do disaster management.  Later, you learn the lessons from that disaster.  And finally, informed by evidence and motivated by what has happened, you set policy.  And that, to me, is the most frustrating aspect of the current political debate.  In an effort to out-manoeuvre one another, our leaders are making promises to enact policy for which the benefits appear dubious.

So, what are some of the issues, both for Somerset and in general?

First, the reason the rivers are flooding is primarily the exceptional rainfall – January was the wettest winter month in almost 250 years. This rain occurred after a fairly damp period, so that the soil moisture content was already high. However, these issues are exacerbated by how we have changed our floodplains, with both agricultural and urban development reducing water storage capacity.

Second, as the 2013-2014 flooding crisis has illustrated, much of our nation is flood-prone; however, those floods come in a variety of forms and have a range of exacerbating causes – some have been due to coastal storm surges, some due to flash floods caused by rapid flow from poorly managed lands and some due to sustained rain and soil saturation. We have a wet and volatile climate, 11,073 miles of coastline and little geographical room to manoeuvre on our small island.  Our solutions have to consider all of these issues, and they must recognise that any change in a river catchment will affect our neighbours downstream.

Flooding on West Moor, Somerset Levels
Image by Nigel Mykura

Third, returning to the specific challenge of the Somerset Levels, it is unclear what benefit dredging will have. The Somerset Levels sit near sea level, such that the river to sea gradient is very shallow.  Thus, rivers will only drain during low tide even if they are dredged.  And widening the channels will actually allow more of the tide to enter. Some have argued that in the past, dredging was more common and flooding apparently less so.  However, this winter has seen far more rain and our land is being used in very different ways: the memories of three decades ago are not entirely relevant.

Fourth, where dredging is done, it is being made more costly and challenging by land use practices elsewhere in the catchment. The rivers are filling with sediment that has eroded from intensively farmed land in the headwaters of the catchments and from the levels themselves. Practices that have greatly accelerated erosion include: heavy machinery operations in wet fields; placement of gates at the bottom of hillslopes so that sediment eroded from the field is very efficiently transported to impermeable road surfaces, and thence to streams downslope; cultivation of arable crops on overly steep slopes (increasing the efficiency of sediment transport from land to stream); overwintering of livestock on steep slopes; and excessive stocking densities on land vulnerable to erosion.

Image by Nicholas Howden

Nutrient enrichment from livestock waste and artificial fertilisers (when used in excess of crop requirements) also contribute to the dredging problem.  The nutrient loading often exceeds the system’s recycling capacity, such that nutrients flow into ditches and waterways, stimulating growth of aquatic plants that can readily clog up the minor ditches and waterways. With less space to dissipate water within the network, it is forced into the main channel.  In other words, some of these floods are a subsidised cost of agriculture – and by extension the low costs we demand of our UK-produced food.

And finally, if we are going to consider long-term planning, we must consider climate change impacts. Flooding will become worse due to sea level rise, which has already risen by about 12cm in the last 100 years, with a further 11-16cm of sea level rise projected by 2030.   It is less clear how climate change will affect the intensity and frequency of these particularly intense rainfall events. Although almost all projections indicate that dry areas will become dryer and wet areas will become wetter, predictions for specific geographical regions are highly uncertain.  And our historical records are not long enough to unravel long-term trends in the frequency of uncommon but high impact weather events. This should not be reassuring – it is another major element of uncertainty in an already complex problem.

As challenging as these issues are, they are not intractable. The solutions will involve stronger planning control and scientifically informed planning decisions (including allowing some areas to flood), a reconsideration of some intensive farming practices, some dredging in key areas, some controlled flooding in others, and better disaster management strategy for when the inevitable flooding does occur.  But now is not the time to resolve such a complicated knot of complex issues.  It is certainly not the time to offer false promises or miracle cures.

Now is the time to help our neighbours in distress, listen to their stories, and remember them when the floodwaters recede.  And then we should let our experts get on with their jobs.

This blog is co-written by Professor Paul Bates, Professor Penny Johnes (Geographical Sciences), Professor Rich Pancost (Chemistry) and Professor Thorsten Wagener (Engineering), all of whom are senior members of the Cabot Institute at the University of Bristol.

This blog post was first published in the Guardian on 12/02/2014, titled Flood crisis: Dredging is a simplistic response to a complex problem.

If you have any media queries relating to this blog, please contact Paul Bates or Rich Pancost (contact details in links above).

Prof Paul Bates, Head of
Geographical Sciences
Prof Rich Pancost, Director of the
Cabot Institute

 

The fraud factor: Why a changing environment might mean more food scandals in the future

Horse meat in burgers, melamine in milk and shark labelled as swordfish…as our urban lifestyle brings us further from our food sources, there are more opportunities for dishonesty along each link of the food production chain. Whether it’s a matter of making a good quality oil stretch a little further by adding cheaper oil or labeling something falsely to appeal to current consumer trends – it’s all fraud and it costs the global food industry an estimated US$10-15 billion each year [1].

While there is evidence that the incidences of food fraud are on the rise [2], consumers have been swindled by food producers since…well, since there have been food producers. Indeed food fraud in the 18th and early 19th century was so widespread and involved such toxic substances that it’s surprising that the citizens of industrialised nations managed to survive to their next meal [3]. Pickles were turned an alluring bright blue-green through the use of copper sulfate, children’s sweets were colored with lead and copper, and chalk and lime (calcium oxide, not the fruit) were common additives to bread. By comparison, one might argue that a little horsemeat in one’s burger might seem rather tame.

Unlike previous generations, however, our food supply systems have become incredibly complex. Food passes through many hands and travels around the world at such astonishing speeds that the threat of food fraud now has a global reach. Add to this a changing environment with implications for agriculture, food and energy security, and transportation and we may very well be creating the ideal conditions for culinary crimes: incentive and opportunity.

Factors contributing to food fraud

 

Milk, olive oil, honey and spices are among
the most commonly adulterated foods.
Image by Nicola Temple.

Unlike food safety issues, which generally stem from neglect, food fraud is a deliberate act, usually for financial gain. Behind every scandal are people who make decisions to be dishonest, but what is it that motivates these behaviours?

Some of the factors that are thought to have contributed to recent food fraud scandals, such as horsemeat in the UK and fox meat in China, include: the financial crisis, rising food prices, a demand for cheap food, complex food supply chains, a lack of strong penalties, and low risk of detection [4].

Climate change may trigger more criminal behaviour in the future

If we now look at these crime contributing factors in the context of climate change, we might expect to see even more food scandals hitting headlines in the future. More extreme weather events – such as droughts and floods – will affect agriculture, as will increased prevalence of disease and parasites that have longer life cycles in a warmer climate (e.g. blowfly strike). These conditions can force food producers into a state of desperation.

For example, in the late 1800s a tiny root-feeding aphid (Phylloxera) sucked the sap out of nearly 2.5 million hectares of grapes in France. The vineyard owners began to import raisins from other countries, desperate to fill demands for wine. They even fabricated wines entirely from chemicals, sugar and water [5].

The costs of food transportation may also increase as changes in weather patterns and extreme weather events cause infrastructure disruptions and the price of fossil fuels (upon which our food transportation systems are so dependent) increases.

The combination of farmers thwarted by environmental conditions and increased transportation costs alone could potentially increase the costs associated with food production. All the while, an ever growing global population continues to demand cheap food. It is indeed a situation that could very well force otherwise honest people into shady territory.

While food fraud has been discussed thoroughly in terms of globalisation, and even in the context of security and acts of terrorism, to my knowledge there has yet to be much discussion on food fraud in the context of climate change and an uncertain environment.

Fighting food fraud

In a proactive approach to preventing food fraud there are two approaches: reducing the motivation behind the crime and reducing the opportunities to commit the crime [6]. Governments around the world are moving food fraud further up the agenda, considering action plans to crack down on fraudsters with more funding for testing, increased penalties and a more cooperative approach to gathering and sharing information on types of food fraud.

At the same time, researchers are doing their best to help build resilient agriculture through the development of disease and drought resistant crops, increased yields, disease prevention and welfare in livestock and more sustainable farming practices.

Other researchers are spearheading new technologies and methods that can detect food adulteration. This not only increases the risk of fraudsters getting caught, it forces the fraudsters to become more sophisticated in their techniques and eventually the cost of adulterating the food becomes so high it is no longer worthwhile.

As always, we as consumers are not helpless. Our behaviours and choices can make us less vulnerable to food fraud. If we reduce the number of steps between the producers and ourselves, this alone will reduce our chances of being swindled.

Over the last three years I have worked on several projects with the University of Bristol’s Cabot Institute. With every interaction I have with the researchers involved with Cabot, I find myself making new connections between the realities of daily life and how these may be altered in an uncertain and changing climate. I have spent considerable time thinking and writing about ocean acidification, warming temperatures, sea-ice melt, extreme weather events and food security and yet I have not given enough consideration to the impacts on things like education, finances, and security.
Any one of these topics on their own are overwhelming and so by necessity we need to break the issues down into tangible components. However, I’m grateful that there are groups like the Cabot Institute out there who are helping to hold the bigger picture – connecting a web and giving an occasional tug on the silk lines to see how the whole thing shakes.

Sources/notes
[1] Johnson R. (2014) Food Fraud and ‘Economically Motivated Adulteration’ of Food and Food Ingredients. Congressional Research Service Report (7-5700), Prepared for Members and Committees of Congress. http://www.fas.org/sgp/crs/misc/R43358.pdf
[2] Holpuch A. (23 January 2013) Food fraud report reveals rise in manufacturers’ cost-cutting measures. The Guardian < http://www.theguardian.com/world/2013/jan/23/food-fraud-report-cost-cutting>
[3] For a thorough and captivating history of food fraud, I highly recommend the book Swindled by Bee Wilson and published by Princeton University Press.
[4] Avery J. (16/01/2014) Fighting food fraud, European Parliamentary Research Service < http://www.europarl.europa.eu/RegData/bibliotheque/briefing/2014/130679/LDM_BRI(2014)130679_REV1_EN.pdf
[5] Wilson B. (2008) Swindled. Princeton, New Jersey: Princeton University Press. (Pg. 60)
[6] Spink J, Moyer DC. (2011) Defining the public health threat of food fraud. Journal of Food Science, 76 (9):R157-R163. http://onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2011.02417.x/full

This blog is written by Nicola Temple, Independent Science Writer and editor of the Cabot Institute Magazine.  This blog was taken from Nicola’s blog with kind permission.

Nicola Temple

Environmental uncertainty: A challenge to both business and vulnerable communities

In September, the IPCC published the Fifth Annual Report on the Physical Basis of Climate Change.  It devotes little attention to the human and ecological impacts of global environmental and climatic change, topics that will be addressed by working group reports released in early 2014 .  Nonetheless, the trajectory of climate and other environmental changes and their implicit impacts on society are stark. Despite numerous treaties and efforts at mitigation, concentrations of carbon dioxide and other greenhouse gases continue to increase, and at greater rather than diminished rates. If those rates continue they will result in global warming of 3 to 5.5°C by 2100. This in turn, will result in dramatic changes to the global hydrological cycle, including both more evaporation and more rainfall.

A More Uncertain Climate

Flood by Paul Bates

The results will be a more hostile climate for many as land can become either drier or more flood-prone or both, changes exacerbated in coastal areas by sea level rise.  Freshwater supply will also be affected by the forecast changes in climate. The quantity of water flowing in glacier or snow-melt fed river basins will change, affecting around a sixth of the world’s population[i], while coastal freshwater will be contaminated with saline water[ii]. Areas of the Mediterranean[iii], Western USA[iv], Southern Africa[v] and North Western Brazil[vi] are projected to face decreased availability of freshwater.

Key to understanding who will be affected is our ability to predict changes in rainfall, seasonality, and temperature at a regional scale.  However, regional climatic predictions are the most challenging and least certain, especially with respect to the nature and amount of rainfall. For vast parts of the world, including much of South America, Africa and SE Asia, it is unclear whether climate change will bring about wetter or drier conditions. Thus, uncertainty will become the norm: uncertainty in rainfall; uncertainty in weather extremes and seasonality; and most importantly, uncertainty in water resources.

Those combined effects lead to an additional and perhaps the most profound uncertainty for the latter half of the 21st century: uncertainty in food production and access. In the absence of other factors, climate uncertainty and more common extreme events will compromise agriculture at all scales, yielding increased food prices and increased volatility in markets.

 

Impacts on the Poor

Although the human impacts of climate change will be diverse, their effects will be worst for the most impoverished and, by extension, least resilient population groups.  The UN reports that climate change could “increase global malnutrition by up to 25% by 2080.”  And all of this occurs against a backdrop in which access to food is already a challenge for the poorest of the world already a challenge for the poorest of the world [p5], a situation exacerbated by the global financial crash.

These risks to the poorest result from a lack of resources to mitigate harm, lack of power to protect resources, and the global competition for resources.

Those who lack the financial resources to migrate or build more hazard-resistant homes will suffer most from extreme events, as has been sharply illustrated by those suffering most in the aftermath of Typhoon Haiyan.  Those who can least afford to dig deeper wells into more ancient aquifers as water resources diminish will go thirsty.  Subsistence farmers – and those dependent on them – are less resistant to climate shocks (desertification) and adverse weather events (flooding) than commercial farmers.

Land ownership for the poorest is often tenuous, and displacement from land a serious problem for many.  Previous switches to biofuels have led to land competition, resulting in both loss of land to subsistence [p6]  farmers, and diversion of commercial production leading to shortages [p7]  and increased food prices. Within communities, these effects are not evenly spread as marginalised groups, such as women, are the least likely to hold land tenure [p8] .  Similarly, there is increased competition for water [p9]  between peoples, but also between water for industry (including agriculture) and water for drinking. When water is scarce, pollution of fresh water is common, and governance is weak, the poorest are likely to lose out.

 

Image by Mammal Research UnitUniversity of Bristol

Food competition will most likely be exacerbated by other factors: rising demand from a rapidly expanding population and a growing demand for meat from a global ‘middle class’; the increased economic divide between post-industrial and developing nations; the ongoing depletion of soil nutrients and associated impacts on the nutritional value of our food.  The combination of these factors will result in profound impacts on food security. Who decides what gets grown? Who can afford it in the context of global markets and the loss of agricultural land? The poorest members of even the wealthiest societies are the most vulnerable to dramatic and unpredictable changes in food costs[p10] .

‘Wicked Problems’

These issues yield a profoundly challenging ethical issue: the wealthy who are most responsible for anthropogenic climate change, via the greatest material consumption and energy demand, have the greatest resilience to food market fluctuations and the greatest means for avoiding their most deleterious impacts.  Therefore, these issues challenge all governments to dramatically and swiftly act to decrease greenhouse gas emissions and mitigate the associated climate change.

Unfortunately, many proposed mitigation strategies could also have negative consequences for food prices and availability. Increasing energy prices, such as those brought about by a carbon tax, will be passed onto food prices.  Genetically modified foods could be essential to feeding a growing population, and we would urge that future efforts expand to incorporate a greater degree of climate resilience in crops; however, the patents on those crops can make them financially inaccessible to the poorest nations or build critical dependencies.

Although sustainable agriculture and crops might reduce the impact of climate change and uncertainty in some countries, these solutions can be deleterious for the poorest.  They are more likely to live in regions and areas most negatively affected by climate change, most likely to be relying on subsistence/small scale agriculture and least likely to have access to the global market as consumers.  In other words, a stable global market will be of little direct benefit to them; in fact, most of these populations are likely to face competition for land/water use from globalised markets (for biofuels or commercial farming).  In short, what builds food resilience in one nation might be exposing the most economically vulnerable in another.

In fact, when properly mobilised for the benefit of the community, access to new energy sources – even if in the form of fossil fuels – can be transformative and facilitate the economic growth needed to access increasingly globalised food markets [p12].    Domestic access to gas reduces the need to collect wood for fires, reducing deforestation, improving air quality, and freeing up time for communities to address other development needs.

This is not an argument against mitigation of climate change, but it does need to be balanced against human development needs; and this represents one of the world’s most profound challenges. In some circles, we consider this a ‘wicked’ problem: a problem that has multiple causes, probably in interaction, and where information is incomplete, such that proposed solutions might be incomplete, contradictory, complex and work across multiple causes in complex systems.

Challenges and Opportunities

Biofuel by La Jolla

Wicked problems are not intractable, however, and previous studies of land use for biofuels provide clues as to how a complex solution could be more sustainable for all; well planned switches to biofuels which consider local custom in land tenure can provide more land for agriculture, and reduce deforestation pressure.

In such situations, we argue, solutions which focus on halting or slowing climate change alone, and then coping with the business and development problems that they might create answer the wrong question.  Our challenge to the business (and academic) community, then, is to engage with some wicked questions:

  • What are the business opportunities in improving the social and physical environment?
  • Can the global agricultural system be a single resilient network, rather than a competition?
  • What technology or innovation is needed to support a resilient food network?
  • How can innovative solutions to these challenges generate local income, allowing reinvestment in education and development?

These are difficult questions but they also represent opportunities for development and growth in poor communities.  A world with increasing environmental uncertainty is a challenge for both businesses and vulnerable communities.  But it could also be a shared opportunity for growth and development: to innovate and identify new solutions, to co-invest in local resilience and risk reduction, and to share the growth that arises from more stable communities.

 


[i] Z Kundzewicz, L Mata, N Arnell, P Doll, P Kabat, K Jimenez, K Miller, T Oki, Z Sen & I Shiklomanov, Freshwater Resources and their Manegemtn. Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press2007
[ii] R Buddemeier, S Smith, S Swaaney & C Crossland, The Role of the Coastal Ocean in the Disturbed and Undisturbed Nutrient and Carbon Cycles,  LOICZ Reports and Studies Series2002, 84
[iii] P Etchevers, C Golaz, F Habets & J Noilhan, Impact of a Climate Change on the Rhone River Catchment Hydrology,Journal of Geophysical Research2002, 4293
[iv] J Kim, T Kim, R Arritt & N Miller, Impacts of Increased CO2 on the Hydroclimate of the Western United States, Journal of Climate2002, 1926
[v] M Hulme, R Doherty & T Ngara, African Climate Change, Climate Research2001, 145
[vi] J Christensen, B Hewitson, A Busuioc, A Chen, X Gao, I Held, R Jones, R Kolli, W Kwon, R Laprise, V Magana Rueda, L Mearns, C Menendez, J Raisanen, A Rinke, A Sarr & P Whetton, Regional Climate Change, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,2007, 847

————

This blog is written by Prof Rich Pancost, Director of the Cabot Institute and Dr Patricia Lucas, School for Policy Studies, both at University of Bristol.

Prof Rich Pancost

This blog has kindly been reproduced from the Business Fights Poverty blog.