#CabotNext10 Spotlight on Low Carbon Energy

Dr Paul Harper (left) and Professor Tom Scott (right)

In conversation with Professor Tom Scott and Dr Paul Harper, theme leads at the Cabot Institute

Why did you choose to become a theme leader at Cabot Institute?

T.S: There is no single technology solution for our low carbon energy and net zero ambitions. Therefore, being a theme leader gives me the chance to work and coordinate research from all areas, such as wind, solar, nuclear and hydro, so we can work together to develop solutions.

P.H: I became increasingly inspired by renewable energy during my time at Bristol studying Aerospace Engineering (2000-2004, a long time ago now!). I know this is a real cliche, but I wanted to do something with my career that would help tackle some of the major challenges facing society around climate change and environmental sustainability. After completing my undergraduate degree and a PhD at Bristol in composite materials, I began a postdoc research post linked to tidal energy devices and also became involved in some the early development work of the Cabot Institute, so it has always had a special place in my heart. 10 years on and it is great to look back on so many new research developments in Low Carbon Energy and environmental sustainability more generally that have taken place across the University because of Cabot.

In your opinion, what is one of the biggest global challenges associated with your theme?

P.H: This is biased towards my interests in renewable energy, but I think the following are all major challenges associated with the Low Carbon Energy Theme:

  • Bringing down costs of both mainstream technologies (wind, solar) and more novel, less mature technologies (e.g., wave, tidal).
  • Applying circular design principles to prevent material going to landfill at end-of-life.
  • Designing improved ways of storing energy and integrating many distributed energy supply sources.
  • Electrification of the heating and transport sectors to increase the potential contribution of renewables.

T.S: Replacing fossil fuels with a mixed portfolio of viable and renewable alternatives. This is the fundamental challenge to tackle if the UK is to reach its 2050 Net Zero target, and if we are to provide reliable energy sources for future generations globally.

As we are looking into the future, what longer term projects are there in your theme?

T.S: In my specialist area of nuclear energy, there are several major projects and technologies in development to support low carbon energy production:

STEP – the Spherical Tokamak for Energy Production (STEP) programme will develop the world’s first commercial fusion plant in the UK, with a site set to be selected by the end of 2022. Complementary, large scale international consortia fusion projects ITER and DEMO are already underway.

Geological Disposal Facility (GDF) siting – The UK has begun the search for a site where radioactive waste can be stored permanently in a way that doesn’t burden future populations. We have to show we can deal with the waste produced by nuclear fission energy production to ensure support for nuclear power as a key low carbon energy source.

Advanced Modular Reactors (AMR) – We need to get the most from existing fission power, wherein there is much more value we can get from just producing electricity. Heat, Hydrogen and direct air-capture of CO2 are all viable from nuclear and AMRs, which operate at higher temperatures are the way to best exploit these other opportunities which will provide much more value than the current electricity-only proposition.

What’s more, Hydrogen will be the largest growth commodity in the next few decades. It gives us the opportunity to address issues around energy storage and transfer and especially, decarbonisation of transport, either directly as fuels for cars or indirectly as a precursor substance for making ammonia which can be used in heavy transport e.g., shipping.

Alongside all these technology developments, we will need to see a change in energy transport and storage infrastructure. For example, hydro or battery storage can help mitigate the intermittencies suffered by solar or wind. Equally, we cannot immediately swap methane for hydrogen in our domestic gas network and hence we need to upgrade or replace our infrastructure, with the former being much preferable and affordable.

Bringing the public along on this transitional journey will be incredibly important because they need to understand and support some of the tough technical decisions that need to be made.

P.H: A huge proportion of the world’s population has no existing access to a sustainable electricity supply and working on international development projects is vital to ensure communities can improve quality of life through access to low carbon energy. We currently have a rapidly growing portfolio of projects linked to international development and I think this trend is likely to continue in the future.

We are lucky to have a very large number of projects across a wide variety of different areas. The Cabot website gives a very good flavour of our diversity of projects (Energy | Cabot Institute for the Environment | University of Bristol) and these involve collaborations with a range of multinational companies, SMEs and start-ups, NGOs and policy makers.

Across the portfolio of projects in your theme, what type of institutions are you working with? (For example, governments, NGO’s)

T.S: The Government and its research organisations including National Nuclear Laboratory, UK Atomic Energy Authority.  I am also a member of the Nuclear Innovation & Research Advisory Board (NIRAB).

Working with other Universities in the UK and overseas as well as government research organisations and industry. It’s important that all these parties are talking and working together to ensure that there is both a push and a pull for the research we are doing towards net zero carbon by the middle of the century.

Please can you give some examples and state the relevant project.

T.S: My fellowship awarded earlier this year (Research Chair in Advancing the Fusion Energy Fuel Cycle) has the remit of doing just that. Being funded by the Royal Academy of Engineering and UKAEA, but with the remit to work with (and pull together) other academics with companies across a wide spectrum, from Cornish Lithium, to Rolls-Royce, EDF, Hynamics, Urenco and many others to advance the fuel cycle for future fusion power stations but also to develop spin-off opportunities in hydrogen storage, isotope production and even diamond batteries!

The South West Nuclear Hub provides a focus for civil nuclear research, innovation and skills in the South West of the UK, bringing together a strategic alliance of academic, industrial and governmental members, creating a unique pool of specialist talent and expertise that can be tapped into by industry

What disciplines are currently represented within your theme?

P.H: I’m sure I’ve missed some out but the main ones that spring to mind Engineering (all disciplines), Physics, Chemistry, Geography, Sociology, Economics and Law. We also have particularly close link with Cabot’s Future Cities Theme.

In your opinion, why is it important to highlight interdisciplinary research both in general and here at Bristol?

T.S: It’s quite simply because some of the big societal challenges are so multifaceted that they de facto require a multidisciplinary solution! At UoB we have a wealth of expertise and a wide network of collaborators that we can draw on to address key aspects around energy.

We can’t do everything, but we have been working hard to understand what we’re good at, our USPs and we’ll be concentrating on strengthening these going forwards as well as developing new opportunities.

P.H: In order to implement effective low carbon energy systems in society, interdisciplinary research is vital. You can design the most innovative and technically brilliant energy technologies but if they are not well suited to the social and economic environment where they will be deployed, they are of very limited value. For example, the type of energy system best suited to a UK community can be very different to the best solution for a community in the developing world, which may have no existing electrical grid infrastructure, relatively little access to skilled labour for installation/maintenance and relatively low incomes.

Are there any projects which are currently underway in your theme which are interdisciplinary that you believe should be highlighted in this campaign?

T.S: STEP is a classic example; you’d be forgiven for thinking it was just a big physics project (because this is what it was for many years) but now it is actually a huge interdisciplinary effort involving engineers, computer scientists, materials people (like myself), environmentalists, economists, and social scientists. The Physicists are still there working very hard too, but they are complemented by all this other activity which will help deliver this big scientific ambition into an actual working power station.

Is there anything else you would like to mention about your theme, interdisciplinary research and working as part of Cabot Institute?

P.H: It is essential to remember importance of teaching alongside research; the University are training the next generation of graduates who can address society’s environmental challenges and Cabot can play a key role in this through initiatives such as the Cabot MRes programme. I’m very pleased that within the Low Carbon Energy Theme, our members are playing a very active role in supporting both undergraduate courses and postgraduate study opportunities linked to Low Carbon Energy topics such as renewable energy.

T.S: The Cabot Energy theme is open and inclusive for anyone and any discipline! We enjoy a healthy debate about energy and the pros and cons of how we produce it, distribute it and use it. We’re proud to have different opinions and an open forum for discussion.

Please do come and join us even if you’re the tiniest bit curious and would like to help contribute to our collective efforts.

For more information, visit Low Carbon Energy.

Canada’s flood havoc after summer heatwave shows how climate disasters combine to do extra damage

People living in British Columbia will feel like they have had more than their fair share of climate disasters in 2021. After a record-breaking heatwave in June, the state in western Canada has been inundated by intense rain storms in November. It’s also likely the long-lasting effects of the heatwave made the results of the recent rainfall worse, causing more landslides – which have destroyed highways and railroads – than would otherwise have happened.

In June 2021, temperature records across western North America were shattered. The town of Lytton in British Columbia registered 49.6°C, breaking the previous Canadian national record by 5°C. The unprecedented weather was caused by a high pressure system, a so-called “heat dome”, which sat over the region for several days.

Heat intensified within the dome as the high pressure compressed the air. Dry ground conditions forced temperatures even higher, as there was less water evaporating to cool things down. Although unconfirmed, it’s estimated that the heatwave caused over 400 deaths in British Columbia alone.

A helicopter flies over a burning pine forest beneath a blue sky.
Wildfires ravaged British Columbia during the hot and dry summer of 2021.
EB Adventure Photography/Shutterstock

The hot and dry weather also sparked wildfires. Just days after recording the hottest national temperature ever, the town of Lytton burned to the ground. The summer’s fires and drought left the ground charred and barren, incapable of absorbing water. These conditions make landslides more likely, as damaged tree roots can no longer hold soil in place. It also ensures water flows over the soil quicker, as it cannot soak into the baked ground.

The huge rain storm which lasted from Saturday November 13 to Monday 15 was caused by an atmospheric river – a long, narrow, band of moisture in the atmosphere stretching hundreds of miles. When this band travels over land it can generate extreme rainfall, and it did: in 48 hours, over 250mm of rain fell in the town of Hope, 100km east of Vancouver.

This much rainfall on its own would probably cause extensive flooding. But combined with the parched soil, the results have been catastrophic. Landslides have destroyed many of the region’s transport links, leaving Vancouver cut off by rail and road. But the bad news doesn’t end there; sediment washed away by these floods could make future floods this winter even worse.

British Columbia is in the grip of what scientists call a compound climate disaster. The effects of one extreme weather event, like a heatwave, amplify the effects of the next one, like a rain storm. Instead of seeing floods and wildfires as discrete events, compound disasters force us to comprehend the cascading crises which are likely to multiply as the planet warms.

How to understand compound climate disasters

The port of Vancouver is the busiest in Canada, moving US$550 million worth of cargo every day. Because rail links are damaged, ships laden with commodities sit offshore. Canada’s mining and farming industries are having to divert exports through the US. Depending on how quickly the rail links recover, significant economic impacts are possible.

Both the June heatwave and the November rainstorm are unprecedented, record-breaking events, but is their occurrence in the same year just bad luck? A rapid attribution study found that the heatwave was virtually impossible without climate change. The atmospheric river which brought the deluge is also likely to become more common and intense in a warming climate.

In British Columbia, future flooding is almost guaranteed to be more frequent and severe. This is life at 1.2°C above the pre-industrial temperature average, yet most politicians don’t seem too worried about taking the necessary action to prevent warming beyond 1.5°C – the limit which countries agreed in 2015 is a threshold beyond which catastrophic climate change becomes more likely.

Western Canada’s year of weather extremes did not come from nowhere. Past trends and future projections tell us to expect hotter summers and wetter winters in this part of the world, and record-shattering climate extremes are on the rise.

Worldwide, compound climate disasters are becoming more common as climate change accelerates. Risk assessments typically measure the impacts of one event at a time, like the damage caused by intense rain storms, without considering how the earlier drought influenced it. This leads to scientists and insurers underestimating the overall damage. With so many combinations of climate extremes – flooding following wildfires, hurricanes passing as cold spells arrive – we must prepare for every possibility.The Conversation

————————-

This blog is written by Cabot Institute for the Environment member Dr Vikki Thompson, Senior Research Associate in Geographical Sciences, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Vikki Thompson

Who is Cabot Institute? Professor Guy Howard

Professor Guy Howard in the field

In conversation with Professor Guy Howard, Director of the Cabot Institute

What is your role at Cabot Institute?

I am the Director of the Institute, providing overall strategic direction for the Institute, developing our external and internal partnerships, raising funds, and overseeing the Cabot team.

How long have you been part of Cabot?

An active member since joining the University of Bristol in 2019, taking part as a researcher. I was appointed Associate Director International in January 2021 and then became Interim Director in June and now Director from October.

What is your background?

I have a degree in Geology, a postgraduate diploma in soil and water engineering and a PhD on public health oversight of water supplies. I spent 12 years in Surrey and then Loughborough Universities at the start of my career, and then spent nearly 16 years working for the UK Department for International Development as a Climate & Environment Advisor, Infrastructure Advisor, and Policy Manager. I returned to academia as the Global Research Chair in Environmental and Infrastructure Resilience in the School of Civil Aerospace and Mechanical Engineering at Bristol.

What do you think is the biggest environmental challenge facing us today?

We have two: climate change, its impacts, and the loss of biodiversity. These are the defining challenges of the 21st century.

What is your favourite part of your job?

Working with the Cabot community to develop new proposals for research and impact and working with the fabulous Cabot team.

What are you most looking forward to over the next 10 years of Cabot?

I want Cabot to establish itself as a global leader on inter-disciplinary environmental research with a healthy portfolio of large and small research grants, a growing and active community, and strong partnerships with local, national, and global institutions. I am particularly excited about developing a new programme of work on climate change and heath over the next 3 years.

Anything else about who Cabot is and what you do that you would like to add?

Cabot’s a great example of how bringing people together from different backgrounds and disciplines can lead to exciting new insights and projects – join us if you haven’t already!

Find out more about Guy here.

#CabotNext10 Spotlight on Water

 

Dr Katerina Michaelides

In conversation with Dr Katerina Michaelides, co-theme lead at the Cabot Institute

Why did you choose to become a theme leader at Cabot Institute?

I was particularly attracted to this role because I am strongly committed to increasing the visibility of the great water-related work going on in the University, and because I feel strongly about developing the water research community within Bristol and further afield. Over the years since its creation, Cabot Institute has been instrumental in developing my connections with others within the University, in fostering new collaborations and in encouraging new and creative avenues of research. In that same spirit, I relished the opportunity to perform a similar role within the Cabot Water theme and give back to the community by helping to foster collaborations, contacts, and new avenues of research. I believe in the Cabot mission and ethos and felt that I can help strengthen the Water theme in this more formal role.

In your opinion, what is one of the biggest global challenges associated with your theme? (Feel free to name others if there is more than one)

One of the biggest impacts of climate change is on the water cycle. In fact, climate change can be thought of as synonymous with changes in the water cycle with far reaching implications for lives and livelihoods. Think catastrophic storms, droughts, floods, declining water quality. Water is such a fundamental part of life that many in the global north take for granted. So if I was to say one biggest challenge, I would say: addressing global water scarcity and food insecurity challenges under climate change and anthropogenic pressures. There are of course, many other challenges….

Across the portfolio of projects in your theme, what type of institutions are you working with? (For example, governments, NGO’s)

Our theme members work with a huge range of non-academic institutions – from insurance companies, charities, climate services providers, NGOs, local businesses among others.

What disciplines are currently represented within your theme?

We have a broad set of disciplines within the Water theme. These range from water and sanitation, climate impacts on water balance, flood risk and hazard modelling, flooding and infrastructure resilience, freshwater biogeochemistry (water quality), hydrometeorology, dryland hydrology, tropical hydrology, hydrological modelling, forecasting floods and droughts, water, and humanities. And much more!

In your opinion, why is it important to highlight interdisciplinary research both in general and here at Bristol?

Global challenges related to water and climate impacts are inherently multi- and interdisciplinary in their nature. It starts from understanding how climate is changing, to how these changes impact the water balance on the ground hydrology) and may lead to destructive floods or devastating droughts through their effect on agriculture and drinking water. Ultimately, because water intersects society on so many different levels (from natural disasters, to agriculture, to water resources, to droughts) research needs to be interdisciplinary and consider both environmental and social aspects of the problem.

Are there any projects which are currently underway in your theme which are interdisciplinary that you believe should be highlighted in this campaign?

There are lots of interdisciplinary projects across the Water theme. Personally, our research focusses on water scarcity, as highlighted by these two projects below:

Drought Resilience in East African dryland Regions (DRIER) – This is a collaboration between hydrologists, climatologists, social scientists, livelihoods experts, climate adaptation experts. Awarded a Royal Society Grant of £500K for 2020-2023, with Bristol leading and colleagues from Cardiff, UEA, University of Nairobi, and Addis Ababa University. DRIER has been selected as case study for the Royal Society Challenge-Led grant scheme and by BEIS for the GCRF.

Mobile App Development for Drought Adaptation in Drylands (MADDAD) – This interdisciplinary project between hydrologists and computer scientists, funded by a GCRF Translational Award (2019-2021) is developing a mobile phone app to deliver water status forecasts to remote communities in Kenyan drylands. Under climate change droughts are set to become more intense and frequent and there is a pressing need for relevant, timely, and practical information about water resources, particularly with a view to climate change adaptation. However, rural agro-pastoral populations are sparse and distant from decision-making centres making it hugely challenging to disseminate useable information in a timely manner. The provision of a mobile phone app has the potential to transform decision-making and drought adaptation for a large number of people in remote, rural dryland regions of East Africa that currently do not have access to useable and relevant information about the short- and long-term changes in water scarcity in their location.

Down2Earth – Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands. Awarded an EU H2020 Grant of €6.7M for 2020-2024, with Cardiff University as the lead Institution and ~€1M to University of Bristol. In total, 15 Institutions across UK, EU, East Africa, are involved, including many non-academic actors. This project is completely multi-disciplinary in nature.

For more information, visit Water.

Introducing #CabotNext10

 

Bristol Harbourside

This week, here at Cabot Institute we will be re-introducing ourselves!

You may be asking yourself “Why? I already know and love them!”

Well, it’s because this year the Cabot Institute is celebrating its 10th anniversary! And what better way to do it than to look to the future to see what the next 10 years have in store and to introduce the team that makes it all happen.

As part of this, we want to highlight the aims and research from each theme here at Cabot Institute, and to show how being part of this wider university (and often beyond) network is aiding in achieving interdisciplinarity, global challenges.

Over the next week, you can expect to hear from theme leads and researches from each of our six themes: Water, Low Carbon Energy, City
Futures
, Natural Hazards and Disaster Risk, Food Security and Environmental Change. As well as insights into the day-to-day Cabot Institute operations, how Cabot Institute came to be, why it is important, and what to look out for over the next 10 years, in a blog mini-series, from the small but perfectly formed team that is the Cabot Institute.

This year, we are calling for the need for heightened interdisciplinarity to solve complex global challenges.

Over the past 10 years a lot has been achieved. Here at Cabot Institute, we plan on going from strength to strength – so come and join us!
 

This campaign was created and delivered by Olivia Reddy, Cabot Campaigns Assistant and PhD
Researcher in the
Department of Civil Engineering.

You can follow Olivia on Twitter @OliviaReddy_ and find out more about her background on LinkedIn.

Countries may be under-reporting their greenhouse gas emissions – that’s why accurate monitoring is crucial

Luciann Photography / Pexels

Pledges to cut greenhouse gas emissions are very welcome – but accurate monitoring across the globe is crucial if we are to meet targets and combat the devastating consequences of global warming.

During COP26 in Glasgow, many countries have set out their targets to reach net-zero by the middle of this century.

But a serious note of caution was raised in a report in the Washington Post. It revealed that many countries may be under-reporting their emissions, with a gap between actual emissions into the atmosphere and what is being reported to the UN.

This is clearly a problem: if we are uncertain about what we are emitting now, we will not know for certain that we have achieved our emission reduction targets in the future.

Quantifying emissions

Currently, countries must follow international guidelines when it comes to reporting emissions. These reports are based on “bottom-up” methods, in which national emissions are tallied up by combining measures of socioeconomic activity with estimates on the intensity of emissions involved in those activities. For example, if you know how many cows you have in your country and how much methane a typical cow produces, you can estimate the total methane emitted from all the cows.

There are internationally agreed guidelines that specify how this kind of accountancy should be done, and there is a system of cross-checking to ensure that the process is being followed appropriately.

But, according to the Washington Post article, there appear to be some unexpected differences in emissions being reported between similar countries.

The reporting expectations between countries are also considerably different. Developed countries must report detailed, comprehensive reports each year. But, acknowledging the administrative burden of this process, developing countries can currently report much more infrequently.

Plus, there are some noteable gaps in terms of what needs to be reported. For example, the potent greenhouse gases that were responsible for the depletion of the stratospheric ozone layer – such as chlorofluorocarbons (CFCs) – are not included.

A ‘top-down’ view from the atmosphere

To address these issues, scientists have been developing increasingly sophisticated techniques that use atmospheric greenhouse gas observations to keep track of emissions. This “top-down” view measures what is in the atmosphere, and then uses computer models to work backwards to figure out what must have been emitted upwind of the measurements.

To demonstrate the technique, an international team of scientists converged on Glasgow, to observe how carbon dioxide and methane has changed during the COP26 conference.

While this approach cannot provide the level of detail on emission sectors (such as cows, leaks from pipes, fossil fuels or cars) that the “bottom–up” methods attempt, scientists have demonstrated that it can show whether the overall inventory for a particular gas is accurate or not.

The UK was the first country, now one of three along with Switzerland and Australia, to routinely publish top-down emission estimates in its annual National Inventory Report to the United Nations.

A network of five measurement sites around the UK and Ireland continuously monitors the levels of all the main greenhouse gases in the air using tall towers in rural regions.

Emissions are estimated from the measurements using computer models developed by the Met Office. And the results of this work have been extremely enlightening.

In a recent study, we showed that the reported downward trend in the UK’s methane emissions over the last decade is mirrored in the atmospheric data. But a large reported drop before 2010 is not, suggesting the methane emissions were over-estimated earlier in the record.

In another, we found that the UK had been over-estimating emissions of a potent greenhouse gas used in car air conditioners for many years. These studies are discussed with the UK inventory team and used to improve future inventories.

While there is currently no requirement for countries to use top-down methods as part of their reporting, the most recent guidelines and a new World Meteorological Organisation initiative advocate their use as best practice.

If we are to move from only three countries evaluating their emissions in this way, to a global system, there are a number of challenges that we would need to overcome.

Satellites may provide part of the solution. For carbon dioxide and methane, the two most important greenhouse gases, observations from space have been available for more than a decade. The technology has improved dramatically in this time, to the extent that imaging of some individual methane plumes is now possible from orbit.

In 2018, India, which does not have a national monitoring network, used these techniques to include a snapshot of its methane emissions in its report to the UN.

But satellites are unlikely to provide enough information alone.

To move towards a global emissions monitoring system, space-based and surface-based measurements will be required together. The cost to establish ground-based systems such as the UK’s will be somewhere between one million and tens of millions of dollars per country per year.

But that level of funding seems achievable when we consider that billions have been pledged for climate protection initiatives. So, if the outcome is more accurate emissions reporting, and a better understanding of how well we are meeting our emissions targets, such expenditure seems like excellent value for money.

It will be up to the UN and global leaders to ensure that the international systems of measurement and top-down emissions evaluation can be scaled-up to meet the demands of a monitoring system that is fit for purpose. Without robust emissions data from multiple sources, the accuracy of future claims of emission reductions may be called into question.The Conversation

————————-

This blog is written by Cabot Institute for the Environment member Professor Matt Rigby, Reader in Atmospheric Chemistry, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why green jobs aren’t good jobs – yet

Image credit: Oakland Images

In his speech at the October Conservative Party Conference, Prime Minister Boris Johnson spoke of his vision of a transition of the UK national economy to one of high wages, high skills, and high productivity. One day later, the government unveiled its plans to decarbonise the UK power system by 2035.

These two events are not unrelated. A key plank of government environmental policy is how it might function to create new jobs (and save others). The ‘Net Zero Strategy’, also released in October and ahead of COP26, is a case in point, promising 440,000 jobs by 2030. Johnson’s Ten Point Plan for a Green Industrial Revolution pledged 60,000 jobs from offshore wind, 10,000 from nuclear, 50,000 in retrofitting and energy efficiency, and 30,000 in nature protection and restoration.

A ‘green’ job is a broad category – ranging from renewable energy production to organic agriculture and environmental education. They are the electricians, the roofers, the horticulturalists, the refuse and recyclable collectors. These jobs are fast-growing. Globally, there may be 24 million such jobs by 2030.

Yet, it is essential to question what these ‘green’ jobs might look like – and how they may differ from current work. If Johnson hopes for green jobs to be driving force towards a new decarbonised economy, current trends suggest that such words and hopes may dissolve into hot air.

Green jobs as a new environmentalism?

Decarbonisation will create new sets of winners and losers across the UK. These will not just be fossil fuel companies but also communities dependent on carbon-heavy work. One in five jobs in the UK may be affected by the transition to net-zero, with impacts heavily skewed by geography. Many regions, towns and communities are economically dependent on industries that others may see as dirty and in need of change. From airport towns like Hounslow to the oil and gas jobs in Aberdeen, a move away from fossil fuels will change the livelihoods for many.

‘Transition’ and ‘decarbonisation’ are words that are often met with fear – of jobs lost, local economies disrupted, and communities broken. The decline of fossil fuel industries elsewhere have proved traumatic – a loss of jobs in the Appalachia coalfields coincided with an opioid epidemic. History can also loom large. In the region of Latrobe Valley, Australia, memories of privatisation and redundancies remain central when discussing what comes next in the wake of decarbonisation agendas.

Contemporary environmental movements have often found themselves bogged down in a false decision between jobs and environmental health. Extinction Rebellion’s targeting of Canning Town underground station in 2019 is symbolic of a vision that has not only failed to make space for working people – but can also have a distinct lack of sympathy for their concerns. In France, the efforts of the Gilets Jaunes have highlighted what happens when decision-makers fail to understand how environmental policy (in this case increased fuel taxes) intersect with patterns of inequality.

Yet, working-class environmentalism can – and does – exist. The Green Bans movement in New South Wales in the 1970s provides a powerful example of how coalitions can be built by labour movements and environmentalists – to protect green spaces and local communities from re-development. For such a coalition to emerge today, environmentalism needs to move beyond a focus on communities making sacrifices – and towards comprehensively addressing people’s fears of lost jobs, unemployment, or loss of income.

A green job represents a key site at which such a coalition can be built. Whilst Johnson calls for such work should not be understood as motivated by the desire to build such an alliance, it does represent a repurposing of decarbonisation agendas. Moving them beyond shuttered industries and lost jobs and towards new forms of work.

This is not necessarily new. Previous economic transitions involved direct government action to protect livelihoods in flux. In the USA, government policies have supported communities in the wake of the closure of nearby military bases (redeveloping bases into university campuses or new business quarters) and awarded billions of dollars in compensation to tobacco farmers facing lost income due to government regulation. In the UK, the forced decline of the coal mining industry was accompanied by schemes that aimed at retraining redundant miners, encouraging entrepreneurialism, and creating coalfield ‘enterprise zones’, although none proved successful.

All such schemes demonstrate that government policy must be enacted to mitigate the impacts of policies elsewhere. New jobs and livelihoods aren’t magicked out of the air. This necessity remains evident in today’s quest for net-zero. Recent research commissioned by the Scottish Trade Union Congress has shown the importance of such concerted policy –an active industrial strategy, public ownership and significant investment can lead to up to 367,000 energy jobs in Scotland alone.

Low wages, lost skills

For all the talk of the ‘good’ jobs to be created by decarbonisation, the tangibility of such gains remains unclear.

Decarbonisation can also happen without such job creation and with any new jobs being poorly paid and precarious. In Germany, regional unemployment levels led to solar panel manufacturers imposing low wages. In the USA, non-unionised workers working on utility-scale solar projects are paid substantially less than others working elsewhere. Offshore wind projects in the UK have been found to used irregular migrant labour, paying substantially below the minimum wage and demanding extensive working hours.

A further complicating factor is how skills and training can be transferred from carbon-heavy industries to the renewables sector. Whilst the latter demands new skills and training programmes, there do remain some skills that are transferable. Plumbers and pipefitters in the gas sector may be able to move over to green hydrogen with limited fuss. Oil rig workers already have the skills and awareness of working at height to find a new home in the offshore wind sector.

Whilst the core skills may be the same, they are often treated as distinct. Recent work shows the roadblocks put in the way of workers moving from the oil and gas sector to the offshore wind industry. The two sectors often fail to recognise the training courses completed by workers in the other –requiring enrolment in a new course that significantly overlaps. The result is the need for two qualifications, with workers paying for training costs out of their own pocket. The only winners here are the training companies themselves.

What next?

81% of oil and gas workers surveyed in the UK would consider leaving the sector but are concerned about job security. This is understandable. Once a solar park or offshore wind plant is built – it reverts to skeleton staffing, for maintenance only. Community, small-scale and rooftop solar often involve ad-hoc and localised projects – with where the next job might come from uncertain.

In the USA, trade unions have sought to provide their own vision of decarbonisation – evident in Climate Jobs New York and the Texas Climate Jobs project. Such projects are centred on the protection of current working conditions and practices and the stemming of any circumvention of union labour. This has led to a series of project labour agreements, with renewable energy companies pledging to work with unions to provide good, secure, well-paid, high-skilled green jobs.

Supply chains and manufacturing are also key – with the parts required by the renewables sector stimulating job creation elsewhere. The success of any transition (and, with it, the provision of new forms of job security) depends on the continued health of local and regional economies. It is this that can assure a longer-term benefit of green job agendas.

Such moves represent substantial investment. The announcement of the BritishVolt electric vehicle battery factory in Blyth represents the biggest investment in the north-east since the 1980s.

In New York, a ‘Buy American’ provision has been extended to renewable energy projects – encouraging the use of national supply chains. This can also help avoid the use of forced labour elsewhere, as well as the collapse of locally significant employers. The debacle in Scotland surrounding the closure, the manufacturing firm, BiFab has demonstrated the sanctity of protecting renewables supply chains in national visions of decarbonisation.

Green jobs can be transformative. They can be targeted to address youth un- and under-employment. They can provide key points of transition for people leaving the armed forces and provide new lines of work for marginalised communities. Yet, they are not yet at the point where they represent ‘good’ jobs for all.

Transitions are rarely smooth processes. Jobs are lost and new lines of work must emerge. For a transition to net-zero to be inclusive, governments must adopt proactive frameworks to tie jobs created by moves to renewables to wider patterns of employment and economic support. Policies that decarbonise must be complemented by policies that stimulate new jobs and economic support.

The two come together. If they don’t, the jobs that power our route to net-zero will merely add to the list of losers of decarbonisation – and the split between environmentalism and labour will persist.

——————————

This blog was written by Cabot Institute for the Environment member Dr Ed Atkins, Lecturer, School of Geographical Sciences, University of Bristol. This is reposted under the under Creative Commons CC BY-NC 4.0 licence. Read the original article.

Dr Ed Atkins

 

 

Who’s at the table? Priorities after a year of food justice dialogue

Defining ‘Food Justice’ is not easy. When it comes to ‘fairness’ and ‘equality’ in relation to our food system, should we be concerned with questions of individual citizens’ access to sustainable sources of subsistence, or issues of production, labour and the practices of agri-business? Do people have clear rights to food? And should such rights focus on quantity alone, or take account of the quality and nature of food? Furthermore, when defining ‘food justice’ should we be primarily concerned with human rights, or are we dealing with complex systems that oblige us to think about non-human persons and actors, including animals and the environment? Whatever our responses to these questions might be, it seems clear that thinking about climate change cannot ignore either food or justice.

An artistic collaboration is stimulating discussion about who is at the table in (un)just food systems.

Over the last year, we have established the Bristol Researchers Food Justice Network. Primarily, this has been through setting up a regular fortnightly seminar series, a workshop exploring the core purpose, values and potential for the Network, and an artistic collaboration to experiment with interactive ways of thinking about the food system and food justice. As it moves into its second year, we reflect on some of the key themes discussed so far. Recent models suggest that policy decisions that focus on climate alone will likely result in rapid growth in social inequalities, including and especially in the global food system. As we focus on questions of environmental sustainability and climate change in the light of the Cop-26 conference, some key food justice issues come to mind:

1. The way that we see food justice is systemic, equally as environmental as it is social

Every part of the food system is connected. Problems with diet are not disconnected to labour force, or price of food, or access to land, or environmentally sustainable farming. It is possible to have a food justice perspective towards understanding food systems. This involves seeing and considering people and other beings everywhere in the system and their being recognised as having an inherent value, with such value not being cheapened in the name of economic cost.

What clearly emerged from the network workshop, which involved researchers from vets to social scientists, historians and lawyers, was that we valued word and concept of ‘justice’ because it captures the common understanding that we are committed to change where we see injustice. While many network members understand food interactions as part of a ‘food system’, the concept of justice helps us maintain a critical and action-led approach where we see problems in those food systems.

2. Justice in food systems is bound up with structures of trade and foreign policy agendas

Since the mid-nineteenth century, Britain has largely relied on food imports, a model which has today become normalised. For many, changing this model is fundamental to building a more sustainable food system. But this cannot be a choice between either climate or society Recent government initiatives promise radical new directions in agriculture policy but keep this trade-centred model intact. Thus, the UK is determined to get farmers away from food subsidies, having committed to end direct payments by 2027. This would turn farmers into environmental stewards whilst offshoring the production of food elsewhere. Moreover, trade deals can increasingly be seen to trade away local and national food production in favour of other priorities, something that the network held a ‘policy hack’ discussion about following the approval of the UK-Australian Free Trade deal in June 2021.

Lauren explores how the table at the heart of the artistic collaboration is supported and wired together.

3. The Dutch model alone cannot save the world

Many models for the future of farming, food supply and food consumption, focus on technical solutions. Accounts of the ‘miracle’ of Dutch agriculture, for example, cite the emphasis on the investment in research and innovation that have underpinned the country’s apparent success in agricultural research and development. But what are the social implications of technological solutions – and what if we end up sacrificing quality for efficiency?

Will research led by agri-food corporations underpin a genuine revolution in global food production, or create intellectual property that marginalises small-scale and community-centred farming enterprises in ecologically-vulnerable territories in the Global South? Some agri-tech policies pioneered by countries such as the Netherlands – such as responsible antibiotic use – are to be lauded, but if these are pursued in the service of intensive agriculture, real problems remain.

4. Consumers are key to change – but we need to do more than blame and shame

As individual consumers, we all have a role to play in transforming the food system; but individualising systemic problems simply places the onus on the consumer in ways that often inhibit radical action. Moreover, as recent polling suggests, individuals are reluctant to embrace environmental actions – such as reducing meat consumption – that have the greatest impact on their own lives.

The choices we make certainly matter, but the notion of ‘choice’ is in many cases an illusory, erroneous and pernicious concept. In effect, consumers  are presented as ‘both the cause and the solution to potential health problems and thus are made to be accountable for their own health.’ This is especially true when we consider questions of poverty and its relation with obesity and other diet-based non-communicable disease. The idea that consumers, by choosing to consume ‘ethically’, ‘sustainably’ or ‘healthily’ can on their own resolve social and environmental deep-seated problems. Policies that place the responsibility for making healthy, ethical and sustainable food choices on individuals fail to address the contexts in which individuals and families live and work.

5. Agriculture and the people within it are being consistently undervalued, around the world

The current food system involves at least 1.1 billion people working in agriculture, who are often among the world’s poorest people. Peasant and self-sufficient farming practices, which often involve very low carbon emitting practices are routinely undermined by large infrastructure and deforestation practices, perpetuating a cycle of the mobility of people away from the agricultural sector that does not compensate them well (including through low international prices for primary agricultural products) towards more intensive practices in the same sector, or into other types of work.

Intensive agriculture relies on a waged labour force of 300-500 million, including many who depend on jobs in plantation work, which is degrading and, in some cases, involves forced labour and modern slavery, having emerged from systems of production developed under conditions of colonial slavery, such as in sugar plantations. Meanwhile, migrant workers make up a large proportion of seasonal and harvest workers in many rich countries because they are in a weak position in the labour force and are therefore, overall, are paid lower wages and offered poorer conditions than their national counterparts. Small producers across the world attempting to live in low-impact lifestyles are usually excluded from subsidies, but often even wealthy farmers, find their land crops and livestock are undervalued. To stay in the sector people working within it are frequently pushed into other activities to diversify and supplement their livelihoods through ecotourism or other specialised initiatives drawing income from the service sector. Why isn’t there inherent value to producing food?

6. The combined challenges of climate and biodiversity crisis for agriculture must be addressed as issues of food justice

A (contested) narrative is emerging that suggests it is possible to divide the world into areas which protect nature and areas which intensively produce food but have negative environmental consequences. We are thus presented with ‘difficult choices’ premised on the belief that farming is inherently incompatible with conservation and climate change mitigation.

This is an off-setting approach which uses a logic of ecological destruction in one place to be compensated for by nature promotion/restoration in another place. However, such ‘land sparing’ approaches simply maintain the status quo and distract our attention from the root causes of a problematic food system. We should be wary of policies that further outsource food production (and environmental damage) to prioritise environmental conservation/restoration in the UK and elsewhere.

Lead artist and ceramicist, Amy Rose, considers the dynamics present at the table. The collaboration is supported by the Brigstow Institute of the University of Bristol.

These represent some of the central issues we have begun to tackle in the Food Justice Network. As researchers, we also recognise that to fully address concerns around our contemporary food system, we need processes that expand our conversation, allow everyone to tell their stories and to fully engage all our senses. Working with artists and creative practitioners has started to help us broaden and clarify our definitions of food justice and will give us opportunities to engage and interact between and beyond the boundaries of research, public knowledge, and practice.

Creative practice and public engagement can become critical tools as we address the twin challenges of climate emergency and social inequality and their radical impact on our food systems – at local, national, and global scales. Above all, an  emphasis on food justice will be imperative if we wish to develop food policies that sustain both our environmental and human futures. Our current food system embodies historical systemic inequalities that reflect the diverse legacies of colonialism, industrialization, and globalization; these must be addressed rather than amplified in our responses to the climate emergency.

————————-

This blog is written by Cabot Institute members Dr Lauren Blake, Dr Lydia Medland, and Dr Rob Skinner from “Who’s in our food?”. This blog has been reposted from the Bristow Institute blog with kind permission from the Brigstow Institute. View the original blog.

COP26: How Accounting and Finance can take sustainability beyond ‘blah, blah, blah’

“Accounting and finance, isn’t that all about about making the world a worse place?” – I’m paraphrasing, but this is basically the response from a friend, involved in climate activism, when I mentioned that sustainability is now a core topic in Bristol’s School of Accounting and Finance.

I had to admit that she had a point.

Plenty of people are angry and frustrated at the moment.  Corporations, banks, and governments often seem to talk about ‘sustainability’ and ‘corporate social responsibility’, but then continue on with business as usual.  There is a lot of ‘blah, blah, blah’, as Greta Thunberg put it.  Yet, while this is an important critique, accounting and finance practices, such as measuring costs or planning investments, and those who can engage critically with them, have vital roles to play in going beyond all the talk, in putting sustainability into practice.  While we might feel powerless as individuals, as accounting and finance professionals, we can definitely try to make the world a better place.

Thinking of accounting and finance as a force for change might sound a bit surprising.  After all, accounting is a dry technical subject, right?  It’s for people who are good with numbers, who like things routine and orderly, isn’t it?  Stereotypes in the media, and the way many accounting textbooks are written, might give the impression that accounting is a boring, formulaic process, which follows rules and laws that ordinary people can’t understand.  But we should be skeptical about these impressions.  Talk to anyone who actually uses accounting measures and concepts in their daily work, and they’ll likely tell you a very different story.  They will probably tell you about how accounting numbers underpin the decisions they make about how they organise what they do (including the human labour and natural resources they use), what to prioritize, what to develop, and how to do it.

Contained in any organisation’s ‘cost’ and ‘profit’ data is a story about how much it depends on its workers, their community, and the natural eco-system. Decisions made using this data have important implications for how a business impacts on society and environment.  They can make the difference between a company that just exploits its workers and environment, and one that shifts the focus onto ‘giving back’.

Accounting and finance organisations are actively telling us that they want critical and creative thinkers.  They don’t want ‘number crunchers’, but people who are capable of finding innovative solutions to problems like how companies can reduce their carbon emissions, enrich their local eco-systems, and foster inclusive work places and communities.

The world of finance is also changing, as investors reassess the meaning of risk and opportunity.  Instead of just seeking to acquire more ‘things’, many people are seeing that the world is ‘ours’ to look after and protect, as well as to discover and enjoy.  Sustainability reporting, and other techniques to assess social and environmental performance, have often been problematic, functioning as ways to improve a company’s image, rather than signify real change.  Yet, as debates about priorities happen, and attitudes change, these reporting techniques could play more substantive roles.  Accounting and finance education therefore has a role to play in enabling future decision-makers to look critically beyond ‘what is’ to see what ‘could be’, and take action to make it happen.

More opportunities to make a difference can be found in the millions of alternative organisations developing today, including worker cooperatives and social enterprises.  Worker cooperatives are organizations that the members own and manage collectively.  Because the members are their ‘own boss’, they generally have greater freedom from the bureaucratic structures and procedures, which can hold back change in traditional organizations. Cooperatives have a history of leadership in sustainable development. In the US in the early 20th century, for example, cooperatives formed by African American communities saw themselves as ‘custodians of the land’ and were pioneers of organic farming.

Today, Bristol is emerging as a major hub for cooperative and sustainable business.  Giving the city its creative energy are examples like the Bristol Energy Cooperative, a leader of community-based renewable energy, and the Bristol Bike Project, a social institution in the heart of the city that provides affordable transport for asylum seekers and promotes green and healthy living for all.  For ethical banking and investing, Bristol has Triodos Bank, there is Bristol Green Capital Partnership, a membership network for businesses and organisations who want to work towards a sustainable Bristol, while Aardman Animations, the employee owned animations studio, demonstrates the benefits of democratic and inclusive management practices.  Joining a cooperative or forming one, with the added freedom they provide, could enable you to put that vision of sustainable fashion, housing, lifestyle, or whatever it might be, into practice.

——————————-

This blog is written by Dr Alice Bryer, Reader in Accounting, School of Accounting and Finance, University of Bristol. This blog has been reposted with kind permission from The University of Bristol’s Accounting and Finance blog.

Dr Alice Bryer

Electric ecology: we’re discovering how animals and plants use electricity in ingenious ways

Sam England, Author provided

When you hear the word “electricity”, thoughts of power lines or household appliances are probably conjured up in your mind. But electricity is not just a modern human phenomenon – it was around long before us and, in fact, long before planet Earth.

“Electricity” simply refers to the interactions between any electrically charged objects, not just human-made ones, and these interactions are commonly found in the natural world among many animals and plants.

At the small scale, these electrical interactions involve negatively charged electrons and/or positively charged protons – opposite charges attract and like charges repel. But each of these tiny particle interactions can add up, and contribute to creating effects which we can see at the much larger ecological scale in the interactions between animals, plants and their environment.

In a lot of cases, what we are seeing in the natural world is static electricity, which is what you experience when you rub a balloon on your hair and it becomes statically charged. The exact same thing can happen to animals.

As animals run, crawl or fly, their body parts rub on objects in their environment – or even just the air – and this charges them up, just like the balloon rubbing on your head. The amount of charge animals can build up this way is surprisingly high, with many different species accumulating charges that when measured as voltages can be in the region of many hundreds or thousands of volts. That’s more than the voltage that comes out of your plug sockets at home.

We wanted to review whether this static electricity helps animals live their lives. The answer is a resounding “yes”.

Because statically charged objects can attract and repel each other, many different kinds of ecological interactions are affected by them.

The static charges on the feet of geckos help them stick to surfaces, so they can wall-run with ease.

Spiders also love a bit of static electricity; not only are their webs electrostatically attracted towards charged flying insects, but they also use electricity to fly. Several species of spider exhibit a behaviour called “ballooning”, where they let out strands of silk that lift them up into the air like a balloon, and carry them away to disperse and find new homes. It turns out that static electricity in the atmosphere, the type that causes thunderstorms in extreme cases, actually helps spiders in their aviation efforts by statically attracting the charged silk strands upwards into the atmosphere.

It is not just animals that take advantage of these invisible electric forces either. Pollen has actually been shown to jump from flower to insect or bird pollinator without any contact between the two. The static charges of insects and hummingbirds are strong enough to pull pollen through the air, even over several centimetres in some cases.

Hummingbird feeding from red flower
Hummingbirds attract pollen thanks to static electric charges.
Jeffrey Eisen / Pexels, CC BY

Many animals can detect electricity too

Because naturally occurring electricity permeates the environment and lives of so many organisms – and has clear ecological value – it seemed likely that some animals may have evolved sensory systems to detect it.

Recent research has discovered that many animal species can indeed detect electricity when it is relevant to their natural ecology. We call this “aerial electroreception”.

Bumblebees and hoverflies can sense the electricity that exists around flowers, and use this information to learn which flowers might have the best nectar stocks. Similarly, part of the “waggle dance”, a series of movements performed by honeybees to communicate to each other where to forage, is also transmitted electrically by the detection of the statically charged bee body shaking around.

It has also now been shown that those flying spiders I mentioned earlier can detect how strong the local atmospheric electrical conditions are, and can then use this information to decide when to attempt take-off.

We are only just beginning to uncover the multiple strands of this newly discovered sense. There are likely hundreds, if not thousands, more species capable of aerial electroreception, and in many more ecological contexts; perhaps a prey animal can detect its approaching predators by the static charge on the predator, or vice versa. There is so much more to be discovered.

Possibly even more important though, is to assess to impact of human activity on this electric ecology.

The magnitude of many human-made electricity sources are comparable, if not greater, than the natural sources of electricity. We might be swamping the electrical senses of key pollinators or interfering with the natural world in other, as yet unknown, ways. While the discovery of this electrical sense is incredibly exciting, it also highlights how little we really know about the ways in which we could be hurting and disturbing the natural world.

————————-

This blog is by Sam England, PhD researcher in Biological Sciences, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Sam England