Regenerative agriculture: lessons learnt at Groundswell

Do people realise the extent to which they rely upon farming? In many other professions, such as medicine, those who enjoy good health can have years between visits to healthcare professionals. In contrast, it is hard to imagine how we could live without UK farmers. For instance, UK farmers produce 60% of all food eaten in the UK (Contributions of UK Agriculture, 2017). Despite the importance of UK farmers for our national infrastructure, there is little understanding of the web of issues facing farmers today. Drawing from our recent experiences at Groundswell, we hope to highlight some of the surprises that we discovered during our conversations with farmers, agronomists, charities, and even film producers!

Our first surprise was appreciating the complexities between agronomists and farmers. We knew from our interviews that farmers are often cautious of the advice from agronomists because some receive commission for the chemical companies they represent. In one sense, the polarisation between agronomists and farmers was exacerbated at Groundswell because many farmers who have adopted the principles of regenerative agriculture (Regen Ag) on their farms either have background expertise as agronomists themselves, or have needed to learn much of the expert of knowledge of soil and arable health required for agronomy. In this sense, many farmers invested in the principles of Regen Ag are expanding their knowledge and reducing their need to appeal to agronomists. In contrast, the majority of  farmers outside of the Regen Ag movement still depend on the knowledge and guidance of agronomists.

The problem is that the legacy of the relationship between agronomists and farmers has itself become a barrier against behaviour change. Without complete trust between agronomists and farmers agronomists are hesitant to suggest innovative changes to farming practices which may result in short term losses in yields and profits for farmers. The concern is that farmers will cease the contracts with their agronomists if their advice results in a loss in profits or even yields. We listened to many anecdotes about farmers who are worried about how the judgment from local farmers if their yields look smaller from the roadside.  The message that is difficult to convey is if you reduce your input, maintenance, and labour costs, then profitability can increase despite the reduction in yields. In short, “yields are for vanity, profits are for sanity!”

The five principles of Regen Ag are diversity, livestock integration, minimise soil disturbance, maintain living roots, and protect soil surface. Regen Ag provides simple accessible guidelines for farmers who want to adopt more sustainable practices. It offers an alternative approach to the binary division between conventional and organic farmer by encouraging farmers to make changes where possible, whilst understanding that chemical inputs on farms remain a last resort for managing soil health.

Establishing effective pathways to increase the number of farmers integrating the principles of Regen Ag is far from simple. It is not merely about increasing knowledge between farmers and agronomists, without building robust networks of trust between agronomists and farmers there is very little possibility for change. One suggestion from agronomists to help build these networks of trust was for agronomists to invest in profit shares so that there are incentives in place for both agronomists and farmers to increase the overall profitability of farms. We must recognise that any strategies for behaviour change need to account for the underlying caution toward the industry of agronomy by significant numbers of the farming community. Some agronomists consider this fundamentally as a psychological issue. Building from this perspective it seems obvious there is a space for psychologists to develop therapeutic techniques to develop and consolidate trust between farmers and agronomists. Currently many farmers and agronomists are stuck in status quo where it seems easier not to “rock the boat” on either side. The problem is that long-term this is not sustainable for various reasons.

The sustained use of chemicals alongside conventional farming practices (such as tilling) is a significant factor for reductions in soil health and soil biodiversity. In turn it creates a feedback cycle whereby larger quantities of chemical input is required to sustain yield levels, but these chemicals inadvertently create the conditions for increased antimicrobial resistance. One way to reduce chemical inputs is to adopt practices such as intercropping and crop rotation. These practices can have a number of immediate benefits including planting crops that deter pests, improving soil health, creating resilience by encouraging selective pressures between crops.

Tilling not only reduces biodiversity but it also compacts soils increasing risks associated with flooding. Public awareness has tended to focus on the increasing amount of concrete as one of the leading contributors of flash flooding. However, water retention differs significantly between different soil management systems. The rainfall simulator demonstrated how water runoff from even 2 inches of rain on cultivated soils were significantly higher than permanent pastures, no-till soils and herbal leys. Issues associated with cultivated soils such as compaction and lack of biodiversity significantly reduce water retention. The need for solutions to flash flooding are rapidly increasing given the rise in unstable and unpredictable weather system associated with climate change. The tendency to frame the solution to flash flooding solely as the need for more fields and less concrete overlooks the important relationship between soil health and water retention, which should be at the centre of flood prevention schemes. Although the number of fields is an important factor for flood prevention, we should be focusing on what’s happening in these fields – or more precisely underneath them. Encouraging robust and established root systems and soil biodiversity through co-cropping, crop rotations, and reduction in chemicals significantly increases soil retention. In this sense, there is clearly a role for farmers to adopt soil management practices that increase water retention within their farms, but these potential environmental protections from farmers need to translate into subsidies and incentives at the local and national levels.

The central message of Groundswell is that Regen Ag is providing the opportunity for farmers to build resilience both in their farms and in their communities. New technologies and avenues of funding are providing opportunities for farmers to exchange knowledge and increase their autonomy together by engaging in new collaborative ventures. Cluster farming initiatives have provided opportunities for farmers to build local support networks and identify longer-term goals and potential funding sources. The future development of resilience at these levels requires communities to support one another to encourage farmers to become indispensably rooted in communities. Some cluster farm leads are specialists offering support to farmers to help establish their long-term goals, secure funding opportunities, and increase the autonomy and security from the ground-up. In fact, there are a number of organisations seeking to support farmers by working with academics, policy makers, and industry. To name a handful of the organisations, we connected with representatives from Innovation for Agriculture, AHDB, FWAG, and Soil Heroes.

We have returned from Groundswell with a deeper appreciation of the complexity of issues that farmers are currently tackling. From navigating their complex relationships with agronomists to uncertainties about how government will account for their needs in the upcoming Environmental Land Management Schemes (ELMS). There is a clear sense in which farmers feel that ELMS current focus on agroforestry and rewilding creates potential obstacles to providing sufficient support for farmers in the economic and environmental uncertainties on the horizon. Regen Ag demonstrates the crucial role for farmers.

Find out more about our project on the use of fungicides in arable farming.

——————————-

This blog is written by Dr Andrew Jones, University of Exeter. Andrew works on a Cabot Institute funded project looking at understanding agricultural azole use, impacts on local water bodies and antimicrobial resistance.

Is extreme heat an underestimated risk in Bristol?

Evidence that the Earth is warming at an alarming rate is indisputable, having almost doubled per decade since 1981 (relative to 1880-1981). In many countries, this warming has been accompanied by more frequent and severe heatwaves – prolonged periods of significantly above-average temperatures – especially during summer months.

Heatwaves pose significant threats to human health including discomfort, heatstroke and in extreme cases, death. In the summer of 2003 (one that I am sure many remember for its tropical temperatures), these threats were clear. A European heatwave event killed over 70,000 people across the continent – over 2,000 of these deaths were in England alone. As if these statistics weren’t alarming enough, projections suggest that by 2050, such summers could occur every other year and by 2080, a similar heatwave could kill three times as many people.

Cities face heightened risks

Heat-health risks are not equally distributed. Cities face heightened risks due to the urban heat island (UHI) effect, where urban areas exhibit warmer temperatures than surrounding rural areas. This is primarily due to the concentration of dark, impervious surfaces. In the event of a heatwave, cities are therefore not only threatened by even warmer temperatures, but also by high population densities which creates greater exposure to such extreme heat.

UHIs have been observed and modelled across several of the UK’s largest cities. For example, in Birmingham an UHI intensity (the difference between urban and rural temperatures) of 9°C has been recorded. Some estimates for Manchester and London reach 10°C. However, little research has been conducted into the UK’s smaller cities, including Bristol, despite their rapidly growing populations.

Heat vulnerability

In the UK an ageing population implies that heat vulnerability will increase, especially in light of warming projections. Several other contributors to heat vulnerability are also well-established, including underlying health conditions and income. However, the relative influence of different factors is extremely context specific. What drives heat vulnerability in one city may play an insignificant role in another, making the development of tailored risk mitigation policies particularly difficult without location-specific research.

Climate resilience in Bristol

In 2018, Bristol declared ambitious intentions to be climate resilient by 2030. To achieve this, several specific targets have been put in place, including:

  • The adaptation of infrastructure to cope with extreme heat
  • The avoidance of heat-related deaths

Yet, the same report that outlines these goals also highlights an insufficient understanding of hotspots and heat risk in Bristol. This poses the question – how will Bristol achieve these targets without knowing where to target resources?

Bristol’s urban heat island

Considering the above, over the summer I worked on my MSc dissertation with two broad aims:

  1. Quantify Bristol’s urban heat island
  2. Map heat vulnerability across Bristol wards

Using a cloud-free Landsat image from a heatwave day in June 2018, I produced one of the first high-resolution maps of Bristol’s UHI (see below). The results were alarming, with several hotspots of 7-9°C in the central wards of Lawrence Hill, Easton and Southville. Maximum UHI intensity was almost 12°C, recorded at a warehouse in Avonmouth and Lawrence Weston. Though this magnitude may be amplified by the heatwave event, these findings still suggest Bristol exhibits an UHI similar to that of much larger cities including London, Birmingham and even Paris.

Image credit: Vicky Norton

Heat vulnerability in Bristol

Exploratory statistics revealed two principal determinants of an individual’s vulnerability to extreme heat in Bristol:

  1. Their socioeconomic status
  2. The combined effects of isolation, minority status and housing type.

These determinants were scored for each ward and compiled to create a heat vulnerability index (HVI). Even more concerning than Bristol’s surprising UHI intensity is that wards exhibiting the greatest heat vulnerability coincide with areas of greatest UHI intensity – Lawrence Hill and Easton (see below).

What’s also interesting about these findings is the composition of heat vulnerability in Bristol. Whilst socioeconomic status is a common determinant in many studies, the influential role of minority status and housing type appears particularly specific to Bristol. Unlike general UK projections, old age was also deemed an insignificant contributor to heat vulnerability in Bristol. Instead, the prevalence of a younger population suggests those under five years of age are of greater concern.

Image credit: Vicky Norton

Implications

But what do these findings mean for Bristol’s climate resilience endeavours? Firstly, they suggest Bristol’s UHI may be a much greater concern than previously thought, necessitating more immediate, effective mitigation efforts. Secondly, they reiterate the context specific nature of heat vulnerability and the importance of conducting location specific research. Considering UHI intensity and ward-level heat vulnerability, these findings provide a starting point for guiding adaptive and mitigative resource allocation. If Bristol is to achieve climate resilience by 2030, initial action may be best targeted towards areas most at risk – Lawrence Hill and Easton – and tailored to those most vulnerable.

—————————

This blog is written by Vicky Norton, who has recently completed an MSc in Environmental Policy and Management run by Caboteer Dr Sean Fox.

Vicky Norton

 

 

Predicting the hazards of weather and climate; the partnering of Bristol and the Met Office

Image credit Federico Respini on Unsplash

When people think of the University of Bristol University, or indeed any university, they sometimes think of academics sitting in their ivy towers, researching into obscurities that are three stages removed from reality, and never applicable to the world they live in. Conversely, the perception of the Met Office is often one of purely applied science, forecasting the weather; hours, days, and weeks ahead of time. The reality is far from this, and today, on the rather apt Earth Day 2020, I am delighted to announce a clear example of the multidisciplinary nature of both institutes with our newly formed academic partnership.

This new and exciting partnership brings together the Met Office’s gold standard weather forecasts and climate projections, with Bristol’s world leading impact and hazard models. Our partnership goal is to expand on the advice we already give decision makers around the globe, allowing them to make evidence-based decisions on weather-related impacts, across a range of timescales.

By combining the weather and climate data from the Met Office with our hazard and impact models at Bristol, we could, for instance, model the flooding impact from a storm forecasted a week ahead, or estimate the potential health burden from heat waves in a decade’s time. This kind of advanced knowledge is crucial for decision makers in many sectors. For instance, if we were able to forecast which villages might be flooded from an incoming storm, we could prioritise emergency relief and flood defenses in that area days ahead of time. Or, if we projected that hospital admissions would increase by 10% due to more major heatwaves in London in the 2030s, then decision makers could include the need for more resilient housing and infrastructure in their planning. Infrastructure often lasts decades, so these sorts of decisions can have a long memory, and we want our decision makers to be proactive, rather than reactive in these cases.

While the examples I give are UK focussed, both the University of Bristol and the Met Office are internationally facing and work with stakeholders all over the world. Only last year, while holding a workshop in the Caribbean on island resilience to tropical cyclones; seeing the importance of our work the prime minister of Jamaica invited us to his residence for a celebration. While I don’t see this happening with Boris Johnson anytime soon, it goes to show the different behaviours and levels of engagement policy makers have in different countries. It’s all very well being able to do science around the world, but if you don’t get the culture, they won’t get your science. It is this local knowledge and connection that is essential for an international facing partnership to work, and that is where both Bristol and the Met Office can pool their experience.

To ensure we get the most out of this partnership we will launch a number of new joint Bristol-Met Office academic positions, ranging from doctoral studentships all the way to full professorships. These positions will work with our Research Advisory Group (RAP), made up of academics across the university, and be associated with both institutes. The new positions will sit in this cross-disciplinary space between theory and application; taking a combined approach to addressing some of the most pressing environmental issues of our time.

As the newly appointed Met Office Joint Chair I will be leading this partnership at Bristol over the coming years, and I welcome discussions and ideas from academics across the university; some of the best collaborations I’ve had have come from a random knock on the door, so don’t be shy in sharing your thoughts.

———————————
This blog is written by Dr Dann Mitchell – Met Office Joint Chair and co-lead of the Cabot Institute for the Environment’s Natural Hazards and Disaster Risk research.
You can follow him on Twitter @ClimateDann.

Dann Mitchell

Sharing routine statistics must continue post-Brexit when tackling health and climate change

Post-Brexit vote, we are posting some blogs from our Cabot Institute members outlining their thoughts on Brexit and potential implications for environmental research, environmental law and the environment.  
————————————————

It has been argued that one of the EU’s major contributions has been its legislation regarding environmental protection. Some of these bear directly on human health (for example, concerning air pollution levels). Looking forwards, moves to adapt and mitigate the effects of climate change may be greatly facilitated by sharing data on emerging trends across Europe.

An excellent example is provided by analysis carried out on “excess winter deaths” across Europe. Every country in the world displays seasonal patterns of mortality whereby more deaths occur in winter than at other times of year. However the extent of this excess varies between countries even within Europe. Intuitively one might have expected the excess to be greater in countries where winter temperatures are more extreme, yet this is not so. Healy (2003) used data from 14 European countries to demonstrate that in 1988-97, the relative Excess Winter Deaths Index (EWDI) was greatest for Portugal, where the mean winter temperature was highest. Conversely Finland with the lowest mean winter temperature showed the lowest EWDI. Data on mortality were available from the United Nations Statistics Databank and the World Bank, as well as some macro-economic indicators, but Healy also availed himself of the European Community Household Panel survey on socioeconomic indicators and housing conditions. This revealed that high EWDI was associated with lower expenditure on public health per head of population, as well as income poverty, inequality, deprivation, and fuel poverty. Furthermore, several indicators of residential thermal standards appeared to carry influence, whereby countries where houses had better insulation experienced lower EWDI.

A similar study was reported in 2014 by Fowler et al, partly as an update of Healy’s work, this time on 31 countries across Europe for the years 2002-11. The same geographic pattern still seemed to be present, with southern European countries faring worse in terms of winter deaths. However a few countries such as Greece, Spain and Ireland demonstrated a reduction in their EWDI. It is possible that Healy’s study had highlighted the need for improvement in those countries. All 27 countries who by that time were members of the European Union were included in analysis, and use was made of the Eurostat database.

In view of the projected increases in global temperature in coming decades, it might be hoped that the problem of excess deaths in winter will gradually disappear from Europe. Yet the greater susceptibility of warmer European countries to winter deaths compared with colder countries suggests such an assumption may be mistaken. It will be important for carefully collected routine data to be analysed, to investigate any changes in the patterns previously seen in Europe.

My colleagues and I were led to consider whether relatively low temperatures were more threatening to older people than absolute temperature level, and whether this might hold for individuals, as well as at a national level as highlighted by Healy’s and Fowler et al’s studies. We carried out analyses of two European cohort studies, of around 10,000 people aged 60 or over, followed over 10 years. Using daily temperature data for the localities of where these participants lived, we investigated weather patterns experienced by those who suffered major heart attacks and strokes. There was some evidence that cold spells (cold in relation to the month of the year) increased people’s risk over a 3-4 day period. We hope to replicate this finding in other datasets.

Reflecting on the data used by Healy and Fowler et al, it is noticeable that most (though not all) came from EU countries. Some of the data in Healy’s study was held by the United Nations or World Bank. Yet the Eurostat database was a major contributor to these enlightening analyses. Eurostat was established as long ago as 1953, initially to meet the requirements of the Coal and Steel Community. Over the years its task has broadened, and when accessed on 29 June 2016 displayed detailed comparative data on many domains including aspects of health.

It would be deeply disappointing as well as surprising if the UK were in future to withhold such valuable information, or conversely if such pan-European data were to become unavailable to UK-based researchers. This would seem unlikely, as Eurostat seems to draw upon data from EFTA nations as well as the EU, and advertises its data as freely available. It behoves the UK research community to continue to use these valuable data in a collaborative way with EU-based partners, and also to encourage continuing provision of UK data so that our EU-colleagues (both academics and policymakers) may benefit from this common enterprise.

——————————————-
This blog is by Professor Richard Morris, from the University of Bristol’s School of Social and Community Medicine.  Richard’s research focuses around statistics applied to epidemiology, primary care and public health research.