Is climate change really a reason not to have children? Here’s four reasons why it’s not that simple

Should we consider having children to be the same as overconsumption?
Piyaset/Shutterstock

In 2009, statistician Paul Murtaugh and climate scientist Michael Schlax calculated that having just one child in a high-emitting country such as the United States will add around 10,000 tonnes of CO₂ to the atmosphere. That’s five times the emissions an average parent produces in their entire lifetime.

The reason this number is so large is because offspring are likely to have children themselves, perpetuating emissions for many generations to come.

According to one prominent argument from 2002, we should think of procreation in analogy to overconsumption. Just like overconsumption, procreation is an act in which you knowingly bring about more carbon emissions than is ethical. If we condemn overconsumption, then we should be consistent and raise an eyebrow at procreation too.

Given the potential climate impact of having even a single child, some ethicists argue that there are ethical boundaries on how big our families should be. Typically, they propose that we ought to have no more than two children per couple, or perhaps no more than one. Others have even argued that, in the current circumstances, it may be best not to have any children at all.

These ideas have gained traction through the efforts of activist groups such as the BirthStrike movement and UK charity Population Matters.

Climate ethicists broadly agree that the climate crisis is unprecedented and requires us to rethink what can be ethically demanded of individuals. But proposing ethical limits on family size has struck many as unpalatable due to a number of concerns.

Parents playing with their daughter in a park.
Some ethicists propose limits on family size.
Liderina/Shutterstock

1. Blaming certain groups

Philosopher Quill Kukla has warned of the danger of stigmatisation. Affirming a duty to have fewer children might suggest that certain groups, which have or are perceived to have more children than average, are to blame for climate change. These groups tend to be ethnic minorities and socioeconomically disadvantaged people.

Kukla has also expressed concern that if we start talking about limiting how many kids we have, the burden might end falling disproportionately on women’s shoulders. Women are already pressured to live up to society’s idea of how many children they should or shouldn’t have.

These worries do not directly concern what actual moral obligations to reduce emissions we have. However, they do highlight the fraught nature of talking about ethical limits to procreation.

2. Who’s really responsible?

A philosophical worry we’ve raised in the past challenges the conception of responsibility that underlies arguments for limits to procreation. We usually only think that people are responsible for what they do themselves, and not what others do, including their adult children.

From this perspective, parents might have some responsibility for the emissions generated by their underage children. It’s conceivable that they might also bear some responsibility for the emissions their adult children cannot avoid. But they’re not responsible for their children’s luxury emissions, or for the emissions of their grandchildren and beyond.

When broken down like this, the carbon footprint of having a child is much less drastic and no longer stands out compared to other consumption choices. According to one estimate that follows this logic, each parent bears responsibility for about 45 tonnes of additional CO₂ emissions. This is the same as taking one transatlantic return flight every four years of one’s lifetime.

A plane taking off.
A plane departing from Manchester Airport, UK.
Plane Photography/Shutterstock

3. Simply too slow

We are already seeing signs of climate breakdown. The ice is melting, oceans are warming and many climate records have tumbled already this summer.

To avoid the escalating impacts of climate change, climate scientists are in agreement that we must urgently reach net zero emissions. The most commonly proposed targets for this goal are by 2050 or 2070. In many countries, these targets have been written into law.

But, given the pressing need for urgent emissions reductions, limiting procreation is a woefully inadequate response. This is because the resulting emissions reductions will come into effect only over a much longer period. It is simply the wrong place to look for the emissions savings that we need to make now.

4. Path to net zero

Since limiting procreation does not reduce emissions quickly enough, per capita emissions need to drop – and fast. But that is not solely in the power of individual consumers or would-be parents.

What we are facing is a collective action problem. The ethical responsibility for reducing emissions rests on the shoulders of not just individuals, but also with societies, their institutions and businesses.

In fact, if we collectively manage to reduce our per capita emissions to net zero by 2050, then having a child today leads to only a small amount of emissions. After 2050, they and their descendants would cease to add to net emissions.

However, despite political commitments to achieve this target, the jury is still out on whether this target will be met. More than US$1.7 (£1.3) trillion is expected to be invested in clean energy technologies globally this year – by far the most ever spent on clean energy in a year. Yet, the UK continues to grapple with how to fund its net zero transition – a predicament they’re unlikely to be alone in.

Philosophical arguments that we should have fewer children challenge our understanding of what morality can demand in an age of climate change. They also call into question whether the most meaningful choices we can make as individuals are simple consumption choices (for example, between meat and plant-based alternatives). But the philosophical debate about whether there is a duty to have fewer children is complex – and remains open.

——————————

This blog is written by Dr Martin Sticker, Lecturer in Ethics, University of Bristol and Dr Felix Pinkert, Tenure-track Assistant Professor, Universität Wien. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Martin Sticker
Martin Sticker

Bats are avoiding solar farms and scientists aren’t sure why

The common pipistrelle. Rudmer Zwerver/Shutterstock

As our planet continues to warm, the need for renewable energy is becoming increasingly urgent. Almost half of the UK’s electricity now comes from renewable sources. And solar accounts for one-fifth of the energy capacity installed since 2019.

Solar farms are now a striking feature of the British landscape. But despite their growth, we’re still largely in the dark about how solar farms impact biodiversity.

This was the focus of a recent study that I co-authored alongside colleagues from the University of Bristol. We found that bat activity is reduced at solar farms compared to neighbouring sites without solar panels.

This discovery is concerning. Bats are top predators of nighttime insects and are sensitive to changes in their habitats, so they are important indicators of ecosystem health. Bats also provide valuable services such as suppressing populations of insect pests.

Nonetheless, our results should not hinder the transition to renewable energy. Instead, they should help to craft strategies that not only encourage bat activity but also support the necessary expansion of clean energy sources.

An aerial shot of a solar farm in south Wales.
Solar farms are now a striking feature of the British landscape. steved_np3/Shutterstock

Reduced activity

We measured bat activity by recording their ultrasonic echolocation calls on bat detectors. Many bat species have distinctive echolocation calls, so we could identify call sequences for each species in many cases. Some species show similar calls, so we lumped them together in species groups.

We placed bat detectors in a solar farm field and a similar neighbouring field without solar panels (called the control site). The fields were matched in size, land use and boundary features (such as having similar hedges) as far as possible. The only major difference was whether they contained solar panels.

We monitored 19 pairs of these sites, each for a week, observing bat activity within the fields’ centre and along their boundaries. Field boundaries are used by bats for navigation and feeding.

Six of the eight bat species or groups studied were less active in the fields with solar panels compared to the fields without them. Common pipistrelles, which made up almost half of all bat activity, showed a decrease of 40% at the edges of solar panel fields and 86% in their centre. Other bat species or groups like soprano pipistrelles, noctules, serotines, myotis bats and long-eared bats also saw their activity drop.

Total bat activity was almost halved at the boundaries of solar panel fields compared to that of control sites. And at the centre of solar panel fields, bat activity dropped by two-thirds.

Why are bats avoiding solar farms?

Conflict between clean energy production and biodiversity isn’t just limited to solar farms; it’s an issue at wind farms too. Large numbers of bats are killed by colliding with the blades of wind turbines. In 2012, for example, one academic estimated that around 888,000 bats may have been killed at wind energy facilities in the United States.

The way solar farms affect bats is probably more indirect than this. Solar panels could, in theory, inadvertently reduce the abundance of insects by lowering the availability of the plants they feed on. We’re currently investigating whether there’s a difference in insect numbers at the solar farm sites compared to the control sites.

Solar panels may also reflect a bats’ echolocation calls, making insect detection more difficult. Reduced feeding success around the panels may result in fewer bats using the surrounding hedgerows for commuting, potentially explaining our findings.

However, bats are also known to collide with smooth vertical flat surfaces because they reflect echolocation calls away from bats and hence appear as empty space. Research has also found that bats sometimes attempt to drink from horizontal smooth surfaces because they interpret the perpendicular echoes as coming from still water. But, given the sloped orientation of solar panels, these potential direct effects may not be of primary concern.

Improving habitats

An important lesson from the development of wind energy is that win-win solutions exist. Ultrasonic acoustic deterrents can keep bats away from wind turbines, while slightly reducing the wind speed that turbines become operational at (known as “cut-in speeds”) has reduced bat fatality rates with minimal losses to energy production. Research suggests that increasing turbine cut-in speeds by 1.5 metres per second can reduce bat fatalities by at least 50%, with an annual loss to power output below 1%.

A slightly different approach could be applied to solar farms. Improving habitats by planting native trees along the boundaries of solar farm fields could potentially increase the availability of insects for bats to feed on.

Research that I have co-authored in recent years supports this theory. We found that the presence of landscape features such as tall hedgerows and even isolated trees on farmland has a positive effect on bat activity.

Carefully selecting solar sites is also important. Prior to construction, conducting environmental impact assessments could indicate the value of proposed sites to bat populations.

More radically, rethinking the siting of these sites so that most are placed on buildings or in areas that are rarely visited by bats, could limit their impact on bat populations.

Solar power is the fastest-growing source of renewable energy worldwide. Its capacity is projected to overtake natural gas by 2026 and coal by 2027. Ensuring that its ecological footprint remains minimal is now particularly important.

——————————

This blog is written by Gareth Jones, Professor of Biological Sciences, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Britain’s next election could be a climate change culture war

Signs indicating Ultra Low Emission Zone (ULEZ) on a street in London, UK.

A byelection in a London suburb has placed environmental policy at the centre of political debate in the UK, and could make it a key battleground in the next general election.

The Conservative party narrowly held former prime minister Boris Johnson’s seat in Uxbridge and South Ruislip, vacated after his resignation from parliament. The win has been cast as a victory driven by popular anger against climate policy, particularly London’s ultra-low emissions zone (Ulez) – an area where drivers of the highest-polluting vehicles must pay a fee.

The winning candidate positioned himself as the anti-Ulez choice, tapping into local anger at the policy. But as comments from media and politicians show, the Uxbridge story signals a new stage of national politics that demonises environmental policies. And my research suggests this could develop into an important new front in the culture war, with the power to help determine the next election.

The Ulez, created by Boris Johnson as mayor of London in 2015, is a restricted area covering central London, where vehicles must meet emissions standards or pay £12.50 to enter. Most petrol cars registered after 2005 and diesel cars registered after 2015 meet the standards. It’s primarily a public health policy, with the goal to reduce air pollution and encourage the use of low-emission vehicles.

It is due to expand into London’s outer boroughs in August 2023 – an area 18 times larger than the original zone. Legal battles and public protests have blamed London’s Labour mayor, Sadiq Khan, for the expansion of the policy.

The opposition to Ulez is highly partisan. Nationally, 59% of Conservatives oppose Ulez schemes compared to 23% of Labour voters. In London, 72% of those who voted Leave in the 2016 Brexit referendum opposed the Ulez expansion. Former Remain voters are evenly split, with 44% in support and 44% against the policy.

The Conservative prime minister, Rishi Sunak, has now distanced the government from green policies that could contribute to household expenses. Labour leader Keir Starmer acknowledged the role that Ulez played in the loss, saying that “policy matters” in elections. He also called on Khan to “reflect” on the Ulez expansion.

Climate change culture wars

My research shows net-zero policies are the next target of right-wing populism and culture wars in the UK. Narratives are emerging that tie complaints about climate policies being undemocratic or expensive to issues of Brexit, energy security and a “green elite”.

Last year, Nigel Farage called for a referendum on net-zero, policies that, in his words, had “been imposed upon people without any public discussion.”

This narrative is evident in the opposition to Ulez, despite evidence for the scheme. Air pollution has dropped dramatically one year into the Ulez expansion across inner London, and most cars in London’s outer boroughs fulfil the Ulez standards and would be unaffected by the expansion.

Yet videos of anti-Ulez protests show placards reading “Stop the toxic air lie”, a cardboard coffin with “democracy” written across it and protesters complaining about a lack of fairness and transparency in the policy.

Climate and public health measures are now linked in broader ideological battles about political and economic priorities. These policies have become fertile ground for anybody seeking to rally new supporters. Those supporters will come from groups whose day-to-day lives are impacted by these policies.

Green policies

The Ulez is not the first environmental policy to face public opposition. In 2009, the UK saw a popular campaign against the replacement of incandescent lightbulbs with LEDs.

More recently, bollards that designate low-traffic neighbourhoods have been set on fire. Opposition to these schemes has also been co-opted by conspiracy theorists arguing that climate policies are an attempt to take away personal freedoms.

We have seen the consequences of such debates before. A decade before Sunak, Conservative prime minister David Cameron stepped back from environmental policies, calling for ministers to “ditch the green crap”. This arguably led to a “lost decade” in climate policy, as well as the slowing of policies that would have reduced vulnerability in the recent energy crisis.

There is reason to hope that the coming election will be different. Public concern about the climate remains high: 67% of British people surveyed worried about climate breakdown.

And people are more likely to think that the government should do more, not less, in climate policy. New polling shows that climate concern is likely to pay off for Labour.

As I’ve argued, green policies can transform neighbourhoods. But governments must also recognise how such policies affect people’s everyday struggles, like cost of living, which are likely to dominate the next electoral cycle.

Policies must minimise impacts that disproportionately impact some groups over others. People living in London’s outer suburbs, without wide access to public transport, are more likely to own a car – driving local opposition to the Ulez in places like Uxbridge.

Ways to address this include paying people to scrap older vehicles. This is something Khan has put in place for Londoners, but has not had the government support to expand it to people living around London who would be affected when they drive into the capital.

Khan has spoken about opposition to the Ulez expansion as an “orchestrated campaign” that has moved beyond many Londoners’ “genuine concerns”. But concerns about Ulez aren’t limited to those engaging in conspiracy theories. They include residents worried about the getting to work, the school run, or caring for elderly relatives. These are problems that should be ironed out by comprehensive and sensitive policies that maximise the benefits of any change.

The coming election

The fact that a candidate can win on an anti-Ulez platform shows the effectiveness of simplifying climate action and its outcomes into what people can lose, and failing to emphasise the benefits.

The current debates miss a key point of climate action: it is never just about emissions. Opposition to the Ulez is not exclusively resistance to climate policy. It is dissent over who it impacts, and how.

The Labour party must decide whether to retreat from or double down on climate action. If the latter, the next general election will be fought as a climate change culture war.

On one side will be a group seeking to portray climate action as a costly, undemocratic and unfair exercise. On the other must be a call for climate policy that is about cleaner air, warmer homes and healthier neighbourhoods, without disproportionately impacting certain groups of people.


This blog is written by Dr Ed Atkins, Senior Lecturer, School of Geographical Sciences, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Ed Atkins
Ed Atkins

Limiting global warming to 2℃ is not enough – why the world must keep temperature rise below 1℃

Warming of more than 1℃ risks unsafe and harmful outcomes for humanity.
Ink Drop/Shutterstock

The Paris Climate agreement represented a historic step towards a safer future for humanity on Earth when it was adopted in 2015. The agreement strove to keep global heating below 2℃ above pre-industrial levels with the aim of limiting the increase to 1.5℃ if possible. It was signed by 196 parties around the world, representing the overwhelming majority of humanity.

But in the intervening eight years, the Arctic region has experienced record-breaking temperatures, heatwaves have gripped many parts of Asia and Australia has faced unprecedented floods and wildfires. These events remind us of the dangers associated with climate breakdown. Our newly published research argues instead that humanity is only safe at 1℃ of global warming or below.

While one extreme event cannot be solely attributed to global heating, scientific studies have shown that such events are much more likely in a warmer world. Since the Paris agreement, our understanding of the impacts of global heating have also improved.

A fishing boat surrounded by icebergs that have come off a glacier.
Fishing boat dwarfed by icebergs that came off Greenland’s largest glacier, Jakobshavn Isbrae.
Jonathan Bamber, Author provided

Rising sea levels are an inevitable consequence of global warming. This is due to the combination of increased land ice melting and warmer oceans, which cause the volume of ocean water to increase. Recent research shows that in order to eliminate the human-induced component of sea-level rise, we need to return to temperatures last seen in the pre-industrial era (usually taken to be around 1850).

Perhaps more worrying are tipping points in the climate system that are effectively irreversible on human timescales if passed. Two of these tipping points relate to the melting of the Greenland and West Antarctic ice sheets. Together, these sheets contain enough ice to raise the global sea level by more than ten metres.

The temperature threshold for these ice sheets is uncertain, but we know that it lies close to 1.5℃ of global heating above pre-industrial era levels. There’s even evidence that suggests the threshold may already have been passed in one part of west Antarctica.

Critical boundaries

A temperature change of 1.5℃ might sound quite small. But it’s worth noting that the rise of modern civilisation and the agricultural revolution some 12,000 years ago took place during a period of exceptionally stable temperatures.

Our food production, global infrastructure and ecosystem services (the goods and services provided by ecosystems to humans) are all intimately tied to that stable climate. For example, historical evidence shows that a period called the little ice age (1400-1850), when glaciers grew extensively in the northern hemisphere and frost fairs were held annually on the River Thames, was caused by a much smaller temperature change of only about 0.3℃.

A sign marking the retreat of a glacier since 1908.
Jasper National Park, Canada. Glaciers used to grow extensively in the Northern Hemisphere.
Matty Symons/Shutterstock

A recent review of the current research in this area introduces a concept called “Earth system boundaries”, which defines various thresholds beyond which life on our planet would suffer substantial harm. To avoid passing multiple critical boundaries, the authors stress the need to limit temperature rise to 1℃ or less.

In our new research, we also argue that warming of more than 1℃ risks unsafe and harmful outcomes. This potentially includes sea level rise of multiple metres, more intense hurricanes and more frequent weather extremes.

More affordable renewable energy

Although we are already at 1.2℃ above pre-industrial temperatures, reducing global temperatures is not an impossible task. Our research presents a roadmap based on current technologies that can help us work towards achieving the 1℃ warming goal. We do not need to pull a technological “rabbit out of the hat”, but instead we need to invest and implement existing approaches, such as renewable energy, at scale.

Renewable energy sources have become increasingly affordable over time. Between 2010 and 2021, the cost of producing electricity from solar energy reduced by 88%, while wind power saw a reduction of 67% over the same period. The cost of power storage in batteries (for when the availability of wind and sunlight is low) has also decreased, by 70% between 2014 and 2020.

An aerial photograph of a photovoltaic power plant on a lush hillside.
A photovoltaic power plant in Yunnan, China.
Captain Wang/Shutterstock

The cost disparity between renewable energy and alternative sources like nuclear and fossil fuels is now huge – there is a three to four-fold difference.

In addition to being affordable, renewable energy sources are abundantly available and could swiftly meet society’s energy demands. Massive capacity expansions are also currently underway across the globe, which will only further bolster the renewable energy sector. Global solar energy manufacturing capacity, for example, is expected to double in 2023 and 2024.

Removing carbon dioxide from the atmosphere

Low-cost renewable energy will enable our energy systems to transition away from fossil fuels. But it also provides the means of directly removing CO₂ from the atmosphere at a large scale.

CO₂ removal is crucial for keeping warming to 1℃ or less, even though it requires a significant amount of energy. According to research, achieving a safe climate would require dedicating between 5% and 10% of total power generation demand to effective CO₂ removal. This represents a realistic and attainable policy option.

Various measures are used to remove CO₂ from the atmosphere. These include nature-based solutions like reforestation, as well as direct air carbon capture and storage. Trees absorb CO₂ from the atmosphere through photosynthesis and then lock it up for centuries.

A group of people planting a mangrove forest next to the sea.
A mangrove forest being planted in Klong Khone Samut Songkhram Province, Thailand.
vinai chunkhajorn/Shutterstock

Direct air capture technology was originally developed in the 1960s for air purification on submarines and spacecrafts. But it has since been further adapted for use on land. When combined with underground storage methods, such as the process of converting CO₂ into stone, this technology provides a safe and permanent method of removing CO₂ from the atmosphere.

Our paper demonstrates that the tools and technology exist to achieve a safer, healthier and more prosperous future – and that it’s economically viable to do so. What appears to be lacking is the societal will and, as a consequence, the political conviction and commitment to achieve it.

————————-

 

This blog is written Cabot Institute for the Environment member Jonathan Bamber, Professor of Glaciology and Earth Observation, University of Bristol and Christian Breyer, Professor of Solar Economy, Lappeenranta University of TechnologyThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber
Jonathan Bamber

Arctic Ocean could be ice-free in summer by 2030s, say scientists – this would have global, damaging and dangerous consequences

Ice in the Chukchi Sea, north of Alaska and Siberia.
NASA Goddard Space Flight Center

The Arctic Ocean could be ice-free in summer by the 2030s, even if we do a good job of reducing emissions between now and then. That’s the worrying conclusion of a new study in Nature Communications.

Predictions of an ice-free Arctic Ocean have a long and complicated history, and the 2030s is sooner than most scientists had thought possible (though it is later than some had wrongly forecast). What we know for sure is the disappearance of sea ice at the top of the world would not only be an emblematic sign of climate breakdown, but it would have global, damaging and dangerous consequences.

The Arctic has been experiencing climate heating faster than any other part of the planet. As it is at the frontline of climate change, the eyes of many scientists and local indigenous people have been on the sea ice that covers much of the Arctic Ocean in winter. This thin film of frozen seawater expands and contracts with the seasons, reaching a minimum area in September each year.

Animation of Arctic sea ice from space
Arctic sea ice grows until March and then shrinks until September.
NASA

The ice which remains at the end of summer is called multiyear sea ice and is considerably thicker than its seasonal counterpart. It acts as barrier to the transfer of both moisture and heat between the ocean and atmosphere. Over the past 40 years this multiyear sea ice has shrunk from around 7 million sq km to 4 million. That is a loss equivalent to roughly the size of India or 12 UKs. In other words, it’s a big signal, one of the most stark and dramatic signs of fundamental change to the climate system anywhere in the world.

As a consequence, there has been considerable effort invested in determining when the Arctic Ocean might first become ice-free in summer, sometimes called a “blue ocean event” and defined as when the sea ice area drops below 1 million sq kms. This threshold is used mainly because older, thicker ice along parts of Canada and northern Greenland is expected to remain long after the rest of the Arctic Ocean is ice-free. We can’t put an exact date on the last blue ocean event, but one in the near future would likely mean open water at the North Pole for the first time in thousands of years.

Annotated map of Arctic
The thickest ice (highlighted in pink) is likely to remain even if the North Pole is ice-free.
NERC Center for Polar Observation and Modelling, CC BY-SA

One problem with predicting when this might occur is that sea ice is notoriously difficult to model because it is influenced by both atmospheric and oceanic circulation as well as the flow of heat between these two parts of the climate system. That means that the climate models – powerful computer programs used to simulate the environment – need to get all of these components right to be able to accurately predict changes in sea ice extent.

Melting faster than models predicted

Back in the 2000s, an assessment of early generations of climate models found they generally underpredicted the loss of sea ice when compared to satellite data showing what actually happened. The models predicted a loss of about 2.5% per decade, while the observations were closer to 8%.

The next generation of models did better but were still not matching observations which, at that time were suggesting a blue ocean event would happen by mid-century. Indeed, the latest IPCC climate science report, published in 2021, reaches a similar conclusion about the timing of an ice-free Arctic Ocean.

As a consequence of the problems with the climate models, some scientists have attempted to extrapolate the observational record resulting in the controversial and, ultimately, incorrect assertion that this would happen during the mid 2010s. This did not help the credibility of the scientific community and its ability to make reliable projections.

Ice-free by 2030?

The scientists behind the latest study have taken a different approach by, in effect, calibrating the models with the observations and then using this calibrated solution to project sea ice decline. This makes a lot of sense, because it reduces the effect of small biases in the climate models that can in turn bias the sea ice projections. They call these “observationally constrained” projections and find that the Arctic could become ice-free in summer as early as 2030, even if we do a good job of reducing emissions between now and then.

Walruses on ice floe
Walruses depend on sea ice. As it melts, they’re being forced onto land.
outdoorsman / shutterstock

There is still plenty of uncertainty around the exact date – about 20 years or so – because of natural chaotic fluctuations in the climate system. But compared to previous research, the new study still brings forward the most likely timing of a blue ocean event by about a decade.

Why this matters

You might be asking the question: so what? Other than some polar bears not being able to hunt in the same way, why does it matter? Perhaps there are even benefits as the previous US secretary of state, Mike Pompeo, once declared – it means ships from Asia can potentially save around 3,000 miles of journey to European ports in summer at least.

But Arctic sea ice is an important component of the climate system. As it dramatically reduces the amount of sunlight absorbed by the ocean, removing this ice is predicted to further accelerate warming, through a process known as a positive feedback. This, in turn, will make the Greenland ice sheet melt faster, which is already a major contributor to sea level rise.

The loss of sea ice in summer would also mean changes in atmospheric circulation and storm tracks, and fundamental shifts in ocean biological activity. These are just some of the highly undesirable consequences and it is fair to say that the disadvantages will far outweigh the slender benefits.

 


This blog is written by Cabot Institute for the Environment member Jonathan Bamber, Professor of Physical Geography, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber
Jonathan Bamber

Why 40°C is bearable in a desert but lethal in the tropics

Phew: heat plus humidity can make Bangkok an uncomfortable place in a heatwave.
Pavel V.Khon/SHutterstock

This year, even before the northern hemisphere hot season began, temperature records were being shattered. Spain for instance saw temperatures in April (38.8°C) that would be out of the ordinary even at the peak of summer. South and south-east Asia in particular were hammered by a very persistent heatwave, and all-time record temperatures were experienced in countries such as Vietnam and Thailand (44°C and 45°C respectively). In Singapore, the more modest record was also broken, as temperatures hit 37°C. And in China, Shanghai just recorded its highest May temperature for over a century at 36.7°C.

We know that climate change makes these temperatures more likely, but also that heatwaves of similar magnitudes can have very different impacts depending on factors like humidity or how prepared an area is for extreme heat. So, how does a humid country like Vietnam cope with a 44°C heatwave, and how does it compare with dry heat, or a less hot heatwave in even-more-humid Singapore?

Weather and physiology

The recent heatwave in south-east Asia may well be remembered for its level of heat-induced stress on the body. Heat stress is mostly caused by temperature, but other weather-related factors such as humidity, radiation and wind are also important.

Our bodies gain heat from the air around us, from the sun, or from our own internal processes such as digestion and exercise. In response to this, our bodies must lose some heat. Some of this we lose directly to the air around us and some through breathing. But most heat is lost through sweating, as when the sweat on the surface of our skin evaporates it takes in energy from our skin and the air around us in the form of latent heat.

annotated diagram of person
How humans heat up and cool down.
Take from Buzan and Huber (2020) Annual Review of Earth and Planetary Sciences, Author provided

Meteorological factors affect all this. For example, being deprived of shade exposes the body to heat from direct sunlight, while higher humidity means that the rate of evaporation from our skin will decrease.

It’s this humidity that meant the recent heatwave in south-east Asia was so dangerous, as it’s already an extremely humid part of the world.

The limit of heat stress

Underlying health conditions and other personal circumstances can lead to some people being more vulnerable to heat stress. Yet heat stress can reach a limit above which all humans, even those who are not obviously vulnerable to heat risk – that is, people who are fit, healthy and well acclimatised – simply cannot survive even at a moderate level of exertion.

One way to assess heat stress is the so-called Wet Bulb Globe Temperature. In full sun conditions, that is approximately equivalent to 39°C in temperature combined with 50% relative humidity. This limit will likely have been exceeded in some places in the recent heatwave across south-east Asia.

In less humid places far from the tropics, the humidity and thus the wet bulb temperature and danger will be much lower. Spain’s heatwave in April with maximum temperatures of 38.8°C had WBGT values of “only” around 30°C, the 2022 heatwave in the UK, when temperatures exceeded 40°C, had a humidity of less than 20% and WBGT values of around 32°C.

Two of us (Eunice and Dann) were part of a team who recently used climate data to map heat stress around the world. The research highlighted regions most at risk of exceeding these thresholds, with literal hotspots including India and Pakistan, south-east Asia, the Arabian peninsula, equatorial Africa, equatorial South America and Australia. In these regions, heat stress thresholds are exceeded with increased frequency with greater global warming.

In reality, most people are already vulnerable well below the survivability thresholds, which is why we can see large death tolls in significantly cooler heat waves. Furthermore, these global analyses often do not capture some very localised extremes caused by microclimate processes. For example a certain neighbourhood in a city might trap heat more efficiently than its surroundings, or might be ventilated by a cool sea breeze, or be in the “rain shadow” of a local hill, making it less humid.

Variability and acclimatisation

The tropics typically have less variable temperatures. For example, Singapore sits almost on the equator and its daily maximum is about 32°C year round, while a typical maximum in London in mid summer is just 24°C. Yet London has a higher record temperature (40°C vs 37°C in Singapore).

Given that regions such as south-east Asia consistently have high heat stress already, perhaps that suggests that people will be well acclimatised to deal with heat. Initial reporting suggests the intense heat stress of the recent heatwave lead to surprisingly few direct deaths – but accurate reporting of deaths from indirect causes is not yet available.

On the other hand, due to the relative stability in year-round warmth, perhaps there is less preparedness for the large swings in temperature associated with the recent heatwave. Given that it is not unreasonable, even in the absence of climate change, that natural weather variability can produce significant heatwaves that break local records by several degrees Celsius, even nearing a physiological limit might be a very risky line to tread.

—————————–

 

This blog is written by Cabot Institute for the Environment members: Dr Alan Thomas Kennedy-Asser, Research Associate in Climate Science; Professor Dann Mitchell, Professor of Climate Science, and Dr Eunice Lo, Research Fellow in Climate Change and Health, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Alan Kennedy-Asser
Alan Kennedy-Asser
Dann Mitchell
Dann Mitchell
Eunice Lo
Eunice Lo

Nearly a quarter of people in the UK flush wet wipes down the toilet – here’s why they shouldn’t

Shutterstock/BigLike Images

Charlotte Lloyd, University of Bristol

Whether you’re cleaning your house, your car or your child, there are a variety of wet wipes manufactured for the job. Wet wipes are small, lightweight and extremely convenient. They have become a staple in most of our lives, particularly so during and since the COVID-19 pandemic.

But according to Water UK, an organisation representing the water industry, flushing wet wipes down the toilet is responsible for 93% of sewer blockages and costs around £100 million each year to sort out. And the majority of these wipes, about 90%, contain plastic.

Water UK also found that 22% of people admit to flushing wipes down the toilet, even though most of them knew they posed a hazard. And it’s estimated that 300,000 sewer blockages occur every year because of “fatbergs”, with wet wipes one of the main causes.

But it seems wet wipes could soon be banned in England – well, at least the ones that contain plastic – as the government has said it will launch a public consultation on wet wipes in response to mounting concerns about water pollution and blockages. This follows pledges made by major retailers, including Boots and Tesco, to discontinue the sale of such products.

Market projections show that 1.63 million tons of material will be produced in 2023 for wet wipes globally – an industry worth approximately $2.84 billion (£2.04 billion). Though these figures are likely to be on the conservative side as manufacturers increased the production of disinfecting wipes in 2020 during the pandemic – and have remained at the same level since.

Despite the popularity and wide use of wet wipes, not a lot is known about their environmental footprint. This is because manufacturers are not obliged to state what the wipes are made from on the packaging, only the intentionally added ingredients. This creates a challenge for both scientists and consumers alike.

What we know

Wet wipes are made from non-woven fibres that are fused together either mechanically or with the aid of chemicals or heat. The individual fibres can be made from either natural (regenerated cellulose or wood pulp) or petroleum-based (plastic) materials, including polyester and polypropylene.

Most wet wipes are a mixture of natural and synthetic fibres – and the majority contain plastic. As well as the fibres, wet wipes also contain chemicals, including cleaning or disinfecting agents which are impregnated into the material.

Wet wipes, disinfecting wipes.
Wet wipes can cause a lot of issues for our sewerage system.
JoyImage/Shutterstock

Some wipes are designed to be “flushable” and contain chemical binding agents that are designed to release the fibres of the wipe when they are exposed to water. This means that if wipes are not disposed of correctly, they can create both a plastic and a chemical hazard to the environment.

It’s well known that plastic breaks down extremely slowly and persists for centuries in landfill. And if plastic-containing wipes are released into the environment – either through littering or via the sewerage system – they can pose a number of hazards.

The plastic problem

When wet wipes reach the environment – including soil, rivers and the ocean – they generate microplastic pollution in the form of microfibers. Microfibers are one of the most prevalent types of plastic pollution in the aquatic environment and affect ecosystems as well as potentially human health through their introduction into the food chain.

The problem has been exacerbated by these “flushable” wipes. One study identified seven different types of plastics as potential components of flushable wipes – meaning that they still risk being a source of microplastic pollution. Recent work has confirmed that wet wipes (along with sanitary products) are an underestimated source of white microfibers found in the marine environment.

Data on the environmental impact of the associated chemicals is lacking, but this is something my research group is currently working on. What is known though is that plastics have the ability to absorb other contaminants such as metals and pesticides as well as pathogens. And this provides a way for pollution to be transported large distances through the environment.

Flushable wipe going down the toilet.
Are flushable wipes really flushable?
Shutterstock/nito

Driven by environmental concerns as well as impending legislation, many plastic-free wipe products are now available or being developed. But even products made from natural fibres can still pose a problem to sewerage systems and so safe disposal – in a bin – is key.

The scientific evidence surrounding the environmental effects of bio-based plastics (plastics made from non-petroleum sources such as corn or potato starch) is also lacking, so caution is needed when thinking about simply switching from petroleum-based to bio-based plastics.

With this in mind, reusable washable products are a great alternative to disposables and have a much smaller environmental footprint. They are particularly handy around the home when washing is convenient.

That said, there will remain a market for disposables, but manufacturers should have to clearly label what the wipes are made from so that consumers can make a more informed choice.The Conversation


This blog is written by Cabot Institute for the Environment member Dr Charlotte Lloyd, Royal Society Dorothy Hodgkin Research Fellow and Lecturer in Environmental Chemistry, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Charlotte Lloyd
Dr Charlotte Lloyd

What it means to be of the mountains: ethnography of social embrace in Nivica, Albania

Aisling Tierney (right) with local Albanians during her research trip.
Aisling Tierney (right) with local Kurvalesh during her research trip to Albania.

In 2022, I made my fifth visit to the village of Nivica in the heart of the Kurvelesh mountainscape. It was a quick trip for lunch and to say hello to the community that has made me welcome there since 2017. Upon visiting the house of the first couple who hosted me, I was greeted with hot tea, sharp raki and sweet cakes. The older couple, Bame and Trendefille, cannot stop themselves from treating me like family. They embrace me. They take my hand to lead me to the indoor seating area. They hug me constantly.  

Just a week before the visit I lost my father after a long and terrible illness. There was something profound about feeling so loved in a familiar domestic setting. I was different now. How I received their outpourings of love felt more meaningful than ever. When they asked about my father they were heartbroken to hear of his death. Both my parents were invited innumerable times by the couple, but there was never a chance my mother would make the trip up the wild rocky roads! 

During the visit they shared stories of time together with my travel companions. My ego was certainly entertained by their generosity of spirit in these retellings. Amongst their chats, the man of the house said something so lovely and unexpected that I was left speechless. He said that I am Kurveleshi – that is, I am of the Kurvelesh, I am one of them. Coming from one of the most respected members of the community, it meant the world to me. 

To be of the Kurvelesh means a lot of things and will be different depending on who you ask. What seemed to be important to Bame was that I showed respect. Concepts like Besa and Kanun are important in the region. The former is all about keeping promises and acting honourably, like a pledge to do right by people. The latter is an overarching customary law governing all aspects of traditional life, passed on through oral tradition for centuries. The Kurvelesh is the last remaining area where Kanun survives beyond the Ottoman era and into the modern age. 

Bame compared my team of archaeological researchers to other foreign groups from a range of disciplines. He said we were different, we embraced the mountains and the local culture. We took a different mindset into our research practice that included the community in both personal and professional terms. It is not an exaggeration to say that the team feels like Kurvelesh is a second home. It is no longer a remote foreign place full of the unknown. For us, it is now a place of familiar and familial faces and friendships. 

We love the people of the mountains and they love us back. 

Mountains in Albania.
Mountains in Albania.

One of the most unexpected comments I received was why my team laughs so much! We are a jovial bunch, always singing and joking around. It seems less easy to laugh in the Kurvelesh. Life has been hard in the wake of Communism, which is still a sensitive subject for most of the older community. People do not like to talk about their experiences in forced labour groups and the suppression of cultural traditions. We do not push the subject. Like much of Albania, this is also a site of several war fronts, not least of which saw the razing of the whole village by the Greeks in 1913. Remnants of these warfronts constitute a large body of our collection of artefacts from fieldwalking surveys. These objects tell stories themselves. The bullet casings from one misfiring gun are found in several locations adjacent to the modern village. Decorative uniform badges are found in local fields. Artillery shells and rusted guns are even collected and hung on display in homes and the single village café. The past is visible, even if it is unspoken. 

We also received comments about how the team is managed. Curious locals asked me how I get my team to work without shouting at them. They were surprised that we were all volunteering our time unpaid and at our expense to investigate local heritage. The fact that we were not renumerated seemed to change their perspective on our intentions in a positive manner.  

The community were outwardly pleased that we were fully open about our research. They talked about their assumptions about foreign groups and how the archaeology of the country has been pillaged by others. Our efforts included welcoming anyone to visit the site at their leisure. We were frequently visited by the young and old alike, sometimes as a detour from a walk or while passing with a herd of goats to laugh at us working in the rain. We made our work even more visible by taking finds for cataloguing to tables in the local café, so that the whole community could see everything we had and how we worked with it. Informal lessons and visualisations helped the community to understand the breadth of our work. They were delighted to learn of our multi-period approach and began to bring objects for us to record. 

Over time, the community began to trust us. Through friendships and openness, they could see we were there for the right reasons. One local man showed up one day with a purple plastic bag filled with pottery sherds and bronze coins. He allowed us to photograph and record them onto our database. Every item was handed back to him the next day in perfect condition. This happened a few times. Each instance proved we meant what we said – we were not there to take anything, we were there to observe, learn and record only. At the end of each season, we handed all the finds to the local leadership for storage, with some pottery samples collected by the national Institute of Archaeology for their archives. 

The community were also surprised that we value their knowledge and insights. We were positively enthused when offered tours of sites that might interest our archaeological endeavors. Every suggestion and prompt from the community was cherished and integrated into our research, valued as of equal value to anything considered more “academic”. This respect for local knowledge also helped our reputation. 

The reports compiled after each season were hugely beneficial in communicating the value of the compiled data. They included drawings and maps that showed the community how the data comes together to tell their stories. They were also keen to see how we used LiDAR and drone imaging with our GPS records to map concentrations of finds across the landscape. The visual stories transcended linguistic barriers and helped everyone see why our work was useful and relevant to them. For example, local B&B owners typically spend the most time with visitors and our data is helpful in conveying the history of the landscape to those eager to learn, whether domestic or foreign. The community hopes that the information plaques that we have contributed to and walking trails supported by other international groups, created in recent years, will help foster better understanding of their local history. In the future, they will create a museum featuring artefacts collected by us and the community alike.  

Goats being herded in Albania along a winding mountain road.
Goats being herded in Albania along a winding mountain road.

What makes our research fieldwork a bit different than most is that we take with us interdisciplinary perspectives. The Sustainable Development Goals (SDGs) are the lens by which we evaluate our work and contributions. This maps well onto local and national initiatives that seek to offset long-standing issues facing mountain communities. These issues include depopulation, losing traditional intangible cultural heritage, lack of attractive jobs, and environmental sustainability. Our heritage story is a small part of a much bigger picture. Rather than consider our work on our terms, we embrace domestic value systems and methods of seeing value. 

One of our team has undertaken a project interviewing the community about their lives and experiences culminating in an MLitt dissertation, How do rural communities negotiate the legacy of a contested landscape in contemporary southern Albania? (A. Donnelly 2020, 95pps). Her work explores the landscape, agricultural practices, ethnobotanical knowledge, local recipes, conflict and rebellion, unique worship practices, folklore, and music. A taught masters student also produced a dissertation, How can social media function as a tool for initial tourist development? Lessons from rural Albania (R. Sanders 2020, 77pps). Her research reviewed the multivocality of tourists, the power of word-of-mouth marketing, and authenticity of touristic experience as demarcated by local business owners. Other outputs include fieldwork reports in 2018 (Tierney et al. 131pps) and 2019 (Tierney et al. 41pps), and multimedia engagement through public-engagement videos and at conferences. Additionally, I have integrated learnings from fieldwork into both undergraduate and postgraduate teaching at two universities. Several peer reviewed papers are underway and will be published soon. They include a comprehensive overview of the SDGs at Nivica, fieldwork survey analysis and artefact analysis.  

In academia, quantifiable outputs and impacts are championed. Even in the realm of public engagement academic discourse, the value of authentic, deep and personal trusting relationships are muted. For me, hearts and minds in a framework of respect are worth more than anything else. If our research work enables us to contribute positively to a community that we adore, then our work is a success. I am optimistic that this personal narrative helps to contribute something to how we view ourselves as fieldwork researchers in relation to the places and communities that we encounter and, hopefully, embrace. In a world replete with mental health strain and professional angst, as the higher education system pinches more and more, there are things more valuable than traditional academic milestones. It is one thing to love one’s work, it is another to be truly loved back by the people we work for. 

 ———————————

This blog is written by Cabot Institute for the Environment member, Dr Aisling Tierney.

Dr Aisling Tierney
Dr Aisling Tierney

Intense downpours in the UK will increase due to climate change – new study

A flash flood in London in October 2019.
D MacDonald/Shutterstock

Elizabeth Kendon, University of Bristol

In July 2021, Kew in London experienced a month’s rain in just three hours. Across the city, tube lines were suspended and stations closed as London experienced its wettest day in decades and flash floods broke out. Just under two weeks later, it happened again: intense downpours led to widespread disruption, including the flooding of two London hospitals.

Colleagues and I have created a new set of 100-year climate projections to more accurately assess the likelihood of heavy rain downpours like these over the coming years and decades. The short answer is climate change means these extreme downpours will happen more often in the UK – and be even more intense.

To generate these projections, we used the Met Office operational weather forecast model, but run on long climate timescales. This provided very detailed climate projections – for every 2.2km grid box over the UK, for every hour, for 100 years from 1981 to 2080. These are much more detailed than traditional climate projections and needed to be run as a series of 20-year simulations that were then stitched together. Even on the Met Office supercomputer, these still took about six months to run.

We ran 12 such 100-year projections. We are not interested in the weather on a given day but rather how the occurrence of local weather extremes varies year by year. By starting the model runs in the past, it is also possible to verify the output against observations to assess the model’s performance.

At this level of detail – the “k-scale” – it is possible to more accurately assess how the most extreme downpours will change. This is because k-scale simulations better represent the small-scale atmospheric processes, such as convection, that can lead to destructive flash flooding.

The fire service attending to a vehicle stuck in floodwater.
Flash flooding can be destructive.
Ceri Breeze/Shutterstock

More emissions, more rain

Our results are now published in Nature Communications. We found that under a high emissions scenario downpours in the UK exceeding 20mm per hour could be four times as frequent by the year 2080 compared with the 1980s. This level of rainfall can potentially produce serious damage through flash flooding, with thresholds like 20mm/hr used by planners to estimate the risk of flooding when water overwhelms the usual drainage channels. Previous less detailed climate models project a much lower increase of around two and a half times over the same period.

We note that these changes are assuming that greenhouse gas emissions continue to rise at current rates. This is therefore a plausible but upper estimate. If global carbon emissions follow a lower emissions scenario, extreme rain will still increase in the UK – though at a slower rate. However, the changes are not inevitable, and if we emit less carbon in the coming decades, extreme downpours will be less frequent.

The increases are significantly greater in certain regions. For example, extreme rainfall in north-west Scotland could be almost ten times more common, while it’s closer to three times more frequent in the south of the UK. The greater future increases in the number of extreme rainfall events in the higher resolution model compared with more traditional lower resolution climate models shows the importance of having k-scale projections to enable society to adapt to climate change.

As the atmosphere warms, it can hold more moisture, at a rate of 7% more moisture for every degree of warming. On a simple level, this explains why in many regions of the world projections show an increase in precipitation as a consequence of human-induced climate change. This new study has shown that, in the UK, the intensity of downpours could increase by about 5% in the south and up to about 15% in the north for every degree of regional warming.

Group of girls with an umbrella walking through a city.
The projected increase in the intensity of rainfall is significantly greater in certain regions.
NotarYES/Shutterstock

However, it is far from a simple picture of more extreme events, decade by decade, as a steadily increasing trend. Instead, we expect periods of rapid change – with records being broken, some by a considerable margin – and periods when there is a pause, with no new records set.

This is simply a reflection of the complex interplay between natural variability and the underlying climate change signal. An analogy for this is waves coming up a beach on an incoming tide. The tide is the long-term rising trend, but there are periods when there are larger waves, followed by lulls.

Despite the underlying trend, the time between record-breaking events at the local scale can be surprisingly long – even several decades.

Our research marks the first time that such a high-resolution data set has spanned over a century. As well as being a valuable asset for planners and policymakers to prepare for the future, it can also be used by climate attribution scientists to examine current extreme rainfall events to see how much more likely they will have been because of human greenhouse gas emissions. The research highlights the importance of meeting carbon emissions targets and also planning for increasingly prevalent extreme rainfall events, which to varying degrees of intensity, look highly likely in all greenhouse gas emissions scenarios.

The tendency for extreme years to cluster poses challenges for communities trying to adapt to intense downpours and risks infrastructure being unprepared, since climate information based on several decades of past observations may not be representative of the following decades.


This blog is written by Cabot Institute for the Environment member Elizabeth Kendon, Professor of Climate Science, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Lizzie Kendon
Professor Lizzie Kendon

COP27: Egyptian student perspectives and insight

One of the privileges of being a student at the University of Bristol (UoB) is belonging to a diverse academic community comprised of students from many cultural, social and religious backgrounds. With the hosting of COP27 in Egypt this year, the Sustainability Network sought the opportunity to gain insight and perspectives first-hand from Egyptian UoB students around the significance and implications of the climate change focused conference being hosted in their country. Below is a recount of the respondents’ views and opinions.

Disclaimer: Views do not represent the University of Bristol nor the Sustainability Network. Names have been removed to protect the anonymity and privacy of the students who chose to speak. 

The significance of climate change

Climate change is one of the most important issues the world is currently facing and will have wide ranging impacts that will influence our daily lives. Climate change, however, is often viewed as a future concern to be dealt with later – despite consequences and impacts thereof already being felt globally and locally making it a current and time sensitive issue. Climate change is also a complex, intersectional issue which coincides with issues of race, class, gender and inequality to name a few. The importance of speaking about climate change, even as non-experts, was highlighted by respondent A. Ultimately, as shared by respondent C, when thinking about climate change, we need to remember that the Earth is our only home (for now) and should be treated with care as we are borrowing it from future generations.

Climate change and Egypt

All respondents shared that either they themselves, or their families, have directly been affected by the impacts of climate change in Egypt. Respondent C shared that when speaking to parents and grandparents about the historical climate of Egypt, many changes to patterns and averages can be observed. This is in line with the scientific evidence that extreme weather events are getting more frequent, severe and widespread. Recurrent examples of climate change risks for Egypt mentioned by respondents and aligning to scientific consensus include:

Heat – Extreme temperatures driven by global warming impact the physical heat tolerance of individuals as well as affects infrastructure and agriculture negatively. Unlike other regional players who have the financial capacity for adaptation measures such as ubiquitous air conditioning, Egypt has less financial and infrastructural resilience to this concern.

Water scarcity – Water supply is a major a concern given climate change driven changing rainfall patterns in what is already an arid country. This issue was linked to regional geopolitical issues such as the contentious building of dams in nearby countries that alter regional water availability patterns.

Food security – The climate change risk to agriculture as a livelihood as well as for food availability was highlighted. The transboundary nature of climate change was reiterated as negative impacts to agriculture could affect food exports such as citrus and grains, thereby impacting global food supply chains. Should agriculture be detrimentally impacted, the cost of food associated with increasing food import dependency for Egypt would also impact local Egyptian food security as food would become less affordable.

Flooding – The threat of sea level rise as well as storm related flooding is of major concern, with many locations having limited financial and infrastructural adaptation capacity, thus posing a risk to infrastructure and human lives. The concerns of climate change refugees and regional migration motivated by climatic and economic variables were brought out in these discussions, once again demonstrating the global scope of climate change concerns.

Air pollution – Air quality, particularly in densely populated areas, is a major concern. Respondents attributed this to overpopulation, major car usage prevalence and general city congestion. Air pollution has health concerns as well as impacts natural weather patterns.

Despite first hand experiences and the extreme risks faced by many communities – particularly coastal communities such as Alexandria and densely populated regions such as Cairo – many respondents noted that climate change has not been a major focus for the Egyptian government over the past few years. This was perceived to be a result of conflicting urgent priorities such as unemployment, healthcare, poverty and education, as well as limited financial capacity and/or political will to address climate change simultaneously to these issues. It was pointed out that there are often financial incentives behind government investment decisions, with money often only being invested into projects that would see immediate returns. Others pointed out, however, that there has been significant progress made over recent years including reductions in plastic consumption, better waste management, investment into sustainable energy sources and biodiversity protection programs. Concerns around political stability and corruption hampering climate change action were noted – in line with the concerns of many LEDCs (Less Economically Developed Countries). The links between climate change and social disparities were demonstrated as the poorest and most vulnerable people would likely be impacted by climate change first.

The COP27 Conference

Respondents shared mixed feelings about the hosting of COP27 in Egypt. On one hand, this event does represent a significant geopolitical win and the bringing of Egypt and the MENA region to the global stage. This was a source of great pride to respondents, as representation of non-western countries in these typically Eurocentric global discussions was viewed to matter greatly. Moreover, the potential benefits to tourism and shaping of perceptions of Egypt as an innovative, up-and-coming and metropolitan country were seen to be positive. On the other hand, some respondents shared concerns about the efficacy of previous COP conferences and noted that the event tends to be overhyped and lead to very little meaningful impact – with goals of previous conferences such as a 1.5⁰C warning reduction targets not on track to being met. The risk of the conference becoming a blame-game or having little effect on the behaviour of large corporations that hold significant power were also mentioned. This COP conference is therefore viewed a make-or break opportunity in the climate change battle. Hopes for the setting of ambitious standards and legal precedents were shared. All respondents concluded by hoping this conference would be different and better than previous conferences, leading to tangible change and positive outcomes. (see the Sustainability Network Post-COP debrief for a reflection on the conference).

Looking forward

So where to from here? Whilst climate change is a global issue that will affect different places in different ways, respondents noted that everyone has a role to play in reaching towards a common goal. Respondent A reflected on the importance of critical thinking and communication, reminding us that disagreement is a common phenomenon that can be leveraged to understand the opinions and perspectives of others. All respondents reflected on the importance of education and awareness surrounding climate change. There were concerns surrounding the influence that COVID-19, the Russia-Ukraine conflict and other socioeconomic or geopolitical current affairs may have on the success of climate change action.

Generally, respondents reiterated the importance of incremental change and encouraged action and implementation over policies and legislation. The importance of international collaboration was revealed, as movements are stronger when we all work together and leverage the unique strengths of individuals and countries alike. Respondent C encouraged us to hold governments accountable, because as they pointed out, if we don’t, who will? The success of the COP27 conference will likely only be seen retroactively over longer time scales, so whilst one respondent urged dramatic outcomes and action to come from the discussions, another respondent viewed success as even one person acting better.

—————————–

The Sustainability Network thanks the respondents for their time, honesty and patriotism. The kindness, care and passion of the Egyptian people was well demonstrated and we definitely want to visit the incredible beauty and culture of Egypt you shared with us.