Limiting global warming to 2℃ is not enough – why the world must keep temperature rise below 1℃

Warming of more than 1℃ risks unsafe and harmful outcomes for humanity.
Ink Drop/Shutterstock

The Paris Climate agreement represented a historic step towards a safer future for humanity on Earth when it was adopted in 2015. The agreement strove to keep global heating below 2℃ above pre-industrial levels with the aim of limiting the increase to 1.5℃ if possible. It was signed by 196 parties around the world, representing the overwhelming majority of humanity.

But in the intervening eight years, the Arctic region has experienced record-breaking temperatures, heatwaves have gripped many parts of Asia and Australia has faced unprecedented floods and wildfires. These events remind us of the dangers associated with climate breakdown. Our newly published research argues instead that humanity is only safe at 1℃ of global warming or below.

While one extreme event cannot be solely attributed to global heating, scientific studies have shown that such events are much more likely in a warmer world. Since the Paris agreement, our understanding of the impacts of global heating have also improved.

A fishing boat surrounded by icebergs that have come off a glacier.
Fishing boat dwarfed by icebergs that came off Greenland’s largest glacier, Jakobshavn Isbrae.
Jonathan Bamber, Author provided

Rising sea levels are an inevitable consequence of global warming. This is due to the combination of increased land ice melting and warmer oceans, which cause the volume of ocean water to increase. Recent research shows that in order to eliminate the human-induced component of sea-level rise, we need to return to temperatures last seen in the pre-industrial era (usually taken to be around 1850).

Perhaps more worrying are tipping points in the climate system that are effectively irreversible on human timescales if passed. Two of these tipping points relate to the melting of the Greenland and West Antarctic ice sheets. Together, these sheets contain enough ice to raise the global sea level by more than ten metres.

The temperature threshold for these ice sheets is uncertain, but we know that it lies close to 1.5℃ of global heating above pre-industrial era levels. There’s even evidence that suggests the threshold may already have been passed in one part of west Antarctica.

Critical boundaries

A temperature change of 1.5℃ might sound quite small. But it’s worth noting that the rise of modern civilisation and the agricultural revolution some 12,000 years ago took place during a period of exceptionally stable temperatures.

Our food production, global infrastructure and ecosystem services (the goods and services provided by ecosystems to humans) are all intimately tied to that stable climate. For example, historical evidence shows that a period called the little ice age (1400-1850), when glaciers grew extensively in the northern hemisphere and frost fairs were held annually on the River Thames, was caused by a much smaller temperature change of only about 0.3℃.

A sign marking the retreat of a glacier since 1908.
Jasper National Park, Canada. Glaciers used to grow extensively in the Northern Hemisphere.
Matty Symons/Shutterstock

A recent review of the current research in this area introduces a concept called “Earth system boundaries”, which defines various thresholds beyond which life on our planet would suffer substantial harm. To avoid passing multiple critical boundaries, the authors stress the need to limit temperature rise to 1℃ or less.

In our new research, we also argue that warming of more than 1℃ risks unsafe and harmful outcomes. This potentially includes sea level rise of multiple metres, more intense hurricanes and more frequent weather extremes.

More affordable renewable energy

Although we are already at 1.2℃ above pre-industrial temperatures, reducing global temperatures is not an impossible task. Our research presents a roadmap based on current technologies that can help us work towards achieving the 1℃ warming goal. We do not need to pull a technological “rabbit out of the hat”, but instead we need to invest and implement existing approaches, such as renewable energy, at scale.

Renewable energy sources have become increasingly affordable over time. Between 2010 and 2021, the cost of producing electricity from solar energy reduced by 88%, while wind power saw a reduction of 67% over the same period. The cost of power storage in batteries (for when the availability of wind and sunlight is low) has also decreased, by 70% between 2014 and 2020.

An aerial photograph of a photovoltaic power plant on a lush hillside.
A photovoltaic power plant in Yunnan, China.
Captain Wang/Shutterstock

The cost disparity between renewable energy and alternative sources like nuclear and fossil fuels is now huge – there is a three to four-fold difference.

In addition to being affordable, renewable energy sources are abundantly available and could swiftly meet society’s energy demands. Massive capacity expansions are also currently underway across the globe, which will only further bolster the renewable energy sector. Global solar energy manufacturing capacity, for example, is expected to double in 2023 and 2024.

Removing carbon dioxide from the atmosphere

Low-cost renewable energy will enable our energy systems to transition away from fossil fuels. But it also provides the means of directly removing CO₂ from the atmosphere at a large scale.

CO₂ removal is crucial for keeping warming to 1℃ or less, even though it requires a significant amount of energy. According to research, achieving a safe climate would require dedicating between 5% and 10% of total power generation demand to effective CO₂ removal. This represents a realistic and attainable policy option.

Various measures are used to remove CO₂ from the atmosphere. These include nature-based solutions like reforestation, as well as direct air carbon capture and storage. Trees absorb CO₂ from the atmosphere through photosynthesis and then lock it up for centuries.

A group of people planting a mangrove forest next to the sea.
A mangrove forest being planted in Klong Khone Samut Songkhram Province, Thailand.
vinai chunkhajorn/Shutterstock

Direct air capture technology was originally developed in the 1960s for air purification on submarines and spacecrafts. But it has since been further adapted for use on land. When combined with underground storage methods, such as the process of converting CO₂ into stone, this technology provides a safe and permanent method of removing CO₂ from the atmosphere.

Our paper demonstrates that the tools and technology exist to achieve a safer, healthier and more prosperous future – and that it’s economically viable to do so. What appears to be lacking is the societal will and, as a consequence, the political conviction and commitment to achieve it.

————————-

 

This blog is written Cabot Institute for the Environment member Jonathan Bamber, Professor of Glaciology and Earth Observation, University of Bristol and Christian Breyer, Professor of Solar Economy, Lappeenranta University of TechnologyThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber
Jonathan Bamber

Arctic Ocean could be ice-free in summer by 2030s, say scientists – this would have global, damaging and dangerous consequences

Ice in the Chukchi Sea, north of Alaska and Siberia.
NASA Goddard Space Flight Center

The Arctic Ocean could be ice-free in summer by the 2030s, even if we do a good job of reducing emissions between now and then. That’s the worrying conclusion of a new study in Nature Communications.

Predictions of an ice-free Arctic Ocean have a long and complicated history, and the 2030s is sooner than most scientists had thought possible (though it is later than some had wrongly forecast). What we know for sure is the disappearance of sea ice at the top of the world would not only be an emblematic sign of climate breakdown, but it would have global, damaging and dangerous consequences.

The Arctic has been experiencing climate heating faster than any other part of the planet. As it is at the frontline of climate change, the eyes of many scientists and local indigenous people have been on the sea ice that covers much of the Arctic Ocean in winter. This thin film of frozen seawater expands and contracts with the seasons, reaching a minimum area in September each year.

Animation of Arctic sea ice from space
Arctic sea ice grows until March and then shrinks until September.
NASA

The ice which remains at the end of summer is called multiyear sea ice and is considerably thicker than its seasonal counterpart. It acts as barrier to the transfer of both moisture and heat between the ocean and atmosphere. Over the past 40 years this multiyear sea ice has shrunk from around 7 million sq km to 4 million. That is a loss equivalent to roughly the size of India or 12 UKs. In other words, it’s a big signal, one of the most stark and dramatic signs of fundamental change to the climate system anywhere in the world.

As a consequence, there has been considerable effort invested in determining when the Arctic Ocean might first become ice-free in summer, sometimes called a “blue ocean event” and defined as when the sea ice area drops below 1 million sq kms. This threshold is used mainly because older, thicker ice along parts of Canada and northern Greenland is expected to remain long after the rest of the Arctic Ocean is ice-free. We can’t put an exact date on the last blue ocean event, but one in the near future would likely mean open water at the North Pole for the first time in thousands of years.

Annotated map of Arctic
The thickest ice (highlighted in pink) is likely to remain even if the North Pole is ice-free.
NERC Center for Polar Observation and Modelling, CC BY-SA

One problem with predicting when this might occur is that sea ice is notoriously difficult to model because it is influenced by both atmospheric and oceanic circulation as well as the flow of heat between these two parts of the climate system. That means that the climate models – powerful computer programs used to simulate the environment – need to get all of these components right to be able to accurately predict changes in sea ice extent.

Melting faster than models predicted

Back in the 2000s, an assessment of early generations of climate models found they generally underpredicted the loss of sea ice when compared to satellite data showing what actually happened. The models predicted a loss of about 2.5% per decade, while the observations were closer to 8%.

The next generation of models did better but were still not matching observations which, at that time were suggesting a blue ocean event would happen by mid-century. Indeed, the latest IPCC climate science report, published in 2021, reaches a similar conclusion about the timing of an ice-free Arctic Ocean.

As a consequence of the problems with the climate models, some scientists have attempted to extrapolate the observational record resulting in the controversial and, ultimately, incorrect assertion that this would happen during the mid 2010s. This did not help the credibility of the scientific community and its ability to make reliable projections.

Ice-free by 2030?

The scientists behind the latest study have taken a different approach by, in effect, calibrating the models with the observations and then using this calibrated solution to project sea ice decline. This makes a lot of sense, because it reduces the effect of small biases in the climate models that can in turn bias the sea ice projections. They call these “observationally constrained” projections and find that the Arctic could become ice-free in summer as early as 2030, even if we do a good job of reducing emissions between now and then.

Walruses on ice floe
Walruses depend on sea ice. As it melts, they’re being forced onto land.
outdoorsman / shutterstock

There is still plenty of uncertainty around the exact date – about 20 years or so – because of natural chaotic fluctuations in the climate system. But compared to previous research, the new study still brings forward the most likely timing of a blue ocean event by about a decade.

Why this matters

You might be asking the question: so what? Other than some polar bears not being able to hunt in the same way, why does it matter? Perhaps there are even benefits as the previous US secretary of state, Mike Pompeo, once declared – it means ships from Asia can potentially save around 3,000 miles of journey to European ports in summer at least.

But Arctic sea ice is an important component of the climate system. As it dramatically reduces the amount of sunlight absorbed by the ocean, removing this ice is predicted to further accelerate warming, through a process known as a positive feedback. This, in turn, will make the Greenland ice sheet melt faster, which is already a major contributor to sea level rise.

The loss of sea ice in summer would also mean changes in atmospheric circulation and storm tracks, and fundamental shifts in ocean biological activity. These are just some of the highly undesirable consequences and it is fair to say that the disadvantages will far outweigh the slender benefits.

 


This blog is written by Cabot Institute for the Environment member Jonathan Bamber, Professor of Physical Geography, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber
Jonathan Bamber

Arctic is warming nearly four times faster than the rest of the world – new research

New research estimates that the Arctic may be warming four times faster than the rest of the world.
Netta Arobas/Shutterstock

The Earth is approximately 1.1℃ warmer than it was at the start of the industrial revolution. That warming has not been uniform, with some regions warming at a far greater pace. One such region is the Arctic.

A new study shows that the Arctic has warmed nearly four times faster than the rest of the world over the past 43 years. This means the Arctic is on average around 3℃ warmer than it was in 1980.

This is alarming, because the Arctic contains sensitive and delicately balanced climate components that, if pushed too hard, will respond with global consequences.

Why is the Arctic warming so much faster?

A large part of the explanation relates to sea ice. This is a thin layer (typically one metre to five metres thick) of sea water that freezes in winter and partially melts in the summer.

The sea ice is covered in a bright layer of snow which reflects around 85% of incoming solar radiation back out to space. The opposite occurs in the open ocean. As the darkest natural surface on the planet, the ocean absorbs 90% of solar radiation.

When covered with sea ice, the Arctic Ocean acts like a large reflective blanket, reducing the absorption of solar radiation. As the sea ice melts, absorption rates increase, resulting in a positive feedback loop where the rapid pace of ocean warming further amplifies sea ice melt, contributing to even faster ocean warming.

This feedback loop is largely responsible for what is known as Arctic amplification, and is the explanation for why the Arctic is warming so much more than the rest of the planet.

Blocks of melting sea ice revealing a deep blue sea.
Melting sea ice in the Arctic Ocean.
Nightman1965/Shutterstock

Is Arctic amplification underestimated?

Numerical climate models have been used to quantify the magnitude of Arctic amplification. They typically estimate the amplification ratio to be about 2.5, meaning the Arctic is warming 2.5 times faster than the global average. Based on the observational record of surface temperatures over the last 43 years, the new study estimates the Arctic amplification rate to be about four.

Rarely do the climate models obtain values as high that. This suggests the models may not fully capture the complete feedback loops responsible for Arctic amplification and may, as a consequence, underestimate future Arctic warming and the potential consequences that accompany that.

How concerned should we be?

Besides sea ice, the Arctic contains other climate components that are extremely sensitive to warming. If pushed too hard, they will also have global consequences.

One of those elements is permafrost, a (now not so) permanently frozen layer of the Earth’s surface. As temperatures rise across the Arctic, the active layer, the topmost layer of soil that thaws each summer, deepens. This, in turn, increases biological activity in the active layer resulting in the release of carbon into the atmosphere.

Arctic permafrost contains enough carbon to raise global mean temperatures by more than 3℃. Should permafrost thawing accelerate, there is the potential for a runaway positive feedback process, often referred to as the permafrost carbon time bomb. The release of previously stored carbon dioxide and methane will contribute to further Arctic warming, subsequently accelerating future permafrost thaw.

A second Arctic component vulnerable to temperature rise is the Greenland ice sheet. As the largest ice mass in the northern hemisphere, it contains enough frozen ice to raise global sea levels by 7.4 metres if melted completely.

A man and woman standing on the edge of a flooded coastal road.
The Greenland ice sheet contains enough frozen ice to raise global sea levels by 7.4 metres if completely melted.
MainlanderNZ/Shutterstock

When the amount of melting at the surface of an ice cap exceeds the rate of winter snow accumulation, it will lose mass faster than it gains any. When this threshold is exceeded, its surface lowers. This will quicken the pace of melting, because temperatures are higher at lower elevations.

This feedback loop is often called the small ice cap instability. Prior research puts the required temperature rise around Greenland for this threshold to be be passed at around 4.5℃ above pre-industrial levels. Given the exceptional pace of Arctic warming, passing this critical threshold is rapidly becoming likely.

Although there are some regional differences in the magnitude of Arctic amplification, the observed pace of Arctic warming is far higher than the models implied. This brings us perilously close to key climate thresholds that if passed will have global consequences. As anyone who works on these problems knows, what happens in the Arctic doesn’t stay in the Arctic.The Conversation

——————————

This blog is written by Cabot Institute for the Environment member, Jonathan Bamber, Professor of Physical Geography, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Five satellite images that show how fast our planet is changing

 

Stocktrek Images, Inc. / Alamy

You have probably seen satellite images of the planet through applications like Google Earth. These provide a fascinating view of the surface of the planet from a unique vantage point and can be both beautiful to look at and useful aids for planning. But satellite observations can provide far more insights than that. In fact, they are essential for understanding how our planet is changing and responding to global heating and can do so much more than just “taking pictures”.

It really is rocket science and the kind of information we can now obtain from what are called Earth observation satellites is revolutionising our ability to carry out a comprehensive and timely health check on the planetary systems we rely on for our survival. We can measure changes in sea level down to a single millimetre, changes in how much water is stored in underground rocks, the temperature of the land and ocean and the spread of atmospheric pollutants and greenhouse gases, all from space.

Here I have selected five striking images that illustrate how Earth observation data is informing climate scientists about the changing characteristics of the planet we call home.

1. The sea level is rising – but where?

Map showing global sea level rise
The sea is rising quickly – but not evenly.
ESA/CLS/LEGOS, CC BY-SA

Sea level rise is predicted to be one of the most serious consequences of global heating: under the more extreme “business-as-usual” scenario, a two-metre rise would flood 600 million people by the end of this century. The pattern of sea surface height change, however, is not uniform across the oceans.

This image shows mean sea level trends over 13 years in which the global average rise was about 3.2mm a year. But the rate was three or four times faster in some places, like the south western Pacific to the east of Indonesia and New Zealand, where there are numerous small islands and atolls that are already very vulnerable to sea level rise. Meanwhile in other parts of the ocean the sea level has barely changed, such as in the Pacific to the west of North America.

2. Permafrost is thawing

Source: ESA

Permafrost is permanently frozen ground and the vast majority of it lies in the Arctic. It stores huge quantities of carbon but when it thaws, that carbon is released as CO₂ and an even more potent greenhouse gas: methane. Permafrost stores about 1,500 billion tonnes of carbon – twice as much as in the whole of the atmosphere – and it is incredibly important that carbon stays in the ground.

This animation combines satellite, ground-based measurements of soil temperature and computer modelling to map the permafrost temperature at depth across the Arctic and how it is changing with time, giving an indication of where it is thawing.

3. Lockdown cleans Europe’s skies

Source: ESA

Nitrogen dioxide is an atmospheric pollutant that can have serious health impacts, especially for those who are asthmatic or have weakened lung function, and it can increase the acidity of rainfall with damaging effects on sensitive ecosystems and plant health. A major source is from internal combustion engines found in cars and other vehicles.

This animation shows the difference in NO₂ concentrations over Europe before national pandemic-related lockdowns began in March 2020 and just after. The latter shows a dramatic reduction in concentration over major conurbations such as Madrid, Milan and Paris.

4. Deforestation in the Amazon

Credits: ESA/USGS/Deimos Imaging

Tropical forests have been described as the lungs of the planet, breathing in CO₂ and storing it in woody biomass while exhaling oxygen. Deforestation in Amazonia has been in the news recently because of deregulation and increased forest clearing in Brazil but it had been taking place, perhaps not so rapidly, for decades. This animation shows dramatic loss of rainforest in the western Brazilian state of Rondonia between 1986 and 2010, as observed by satellites.

5. A megacity-sized iceberg

Source: ESA

The Antarctic Ice Sheet contains enough frozen water to raise global sea level by 58 metres if it all ended up in the ocean. The floating ice shelves that fringe the continent act as a buffer and barrier between the warm ocean and inland ice but they are vulnerable to both oceanic and atmospheric warming.

This animation shows the break-off of a huge iceberg dubbed A-74, captured by satellite radar images that have the advantage they can “see” through clouds and operate day or night and are thus unaffected by the 24 hours of darkness that occurs during the Antarctic winter. The iceberg that forms is 1,270 km² in area which is about the same size as Greater London.

These examples illustrate just a few ways in which satellite data are providing unique, global observations of key components of the climate system and biosphere that are essential for our understanding of how the planet is changing. We can use this data to monitor those changes and improve models used to predict future change. In the run up to the vitally important UN climate conference, COP26 in Glasgow this November, colleagues and I have produced a briefing paper to highlight the role Earth observation satellites will play in safeguarding the climate and other systems that we rely on to make this beautiful, fragile planet habitable.The Conversation

————————–

This blog is written by Cabot Institute for the Environment member Jonathan Bamber, Professor of Physical Geography, University of Bristol.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Jonathan Bamber

Greenland is melting: we need to worry about what’s happening on the largest island in the world

Jonathan Bamber, Author provided

Greenland is the largest island in the world and on it rests the largest ice mass in the Northern Hemisphere. If all that ice melted, the sea would rise by more than 7 metres.

But that’s not going to happen is it? Well not any time soon, but understanding how much of the ice sheet might melt over the coming century is a critical and urgent question that scientists are trying to tackle using sophisticated numerical models of how the ice sheet interacts with the rest of the climate system. The problem is that the models aren’t that good at reproducing recent observations and are limited by our poor knowledge of the detailed topography of the subglacial terrain and fjords, which the ice flows over and in to.

One way around this problem is to see how the ice sheet responded to changes in climate in the past and compare that with model projections for the future for similar changes in temperature. That is exactly what colleagues and I did in a new study now published in the journal Nature Communications.

We looked at the three largest glaciers in Greenland and used historical aerial photographs combined with measurements scientists had taken directly over the years, to reconstruct how the volume of these glaciers had changed over the period 1880 to 2012. The approach is founded on the idea that the past can help inform the future, not just in science but in all aspects of life. But just like other “classes” of history, the climate and the Earth system in future won’t be a carbon copy of the past. Nonetheless, if we figure out exactly how sensitive the ice sheet has been to temperature changes over the past century, that can provide a useful guide to how it will respond over the next century.

A man walks over grassy land with glacier in background
Greenland’s glaciers contain around 8% of the world’s fresh water.
Jonathan Bamber, Author provided

We found that the three largest glaciers were responsible for 8.1mm of sea level rise, about 15% of the whole ice sheet’s contribution. Over the period of our study the sea globally has risen by around 20cm, about the height of an A5 booklet, and of that, about a finger’s width is entirely thanks to ice melting from those three Greenland glaciers.

Melting As Usual

So what does that tell us about the future behaviour of the ice sheet? In 2013, a modelling study by Faezeh Nick and colleagues also looked at the same “big three” glaciers (Jakobshavn Isbrae in the west of the island and Helheim and Kangerlussuaq in the east) and projected how they would respond in different future climate scenarios. The most extreme of these scenarios is called RCP8.5 and assumes that economic growth will continue unabated through the 21st century, resulting in a global mean warming of about 3.7˚C above today’s temperatures (about 4.8˚C above pre-industrial or since 1850).

This scenario has sometimes been referred to as Business As Usual (BAU) and there is an active debate among climate researchers regarding how plausible RCP8.5 is. It’s interesting to note, however, that, according to a recent study from a group of US scientists it may be the most appropriate scenario up to at least 2050. Because of something called polar amplification the Arctic will likely heat up by more than double the global average, with the climate models indicating around 8.3˚C warming over Greenland in the most extreme scenario, RCP8.5.

Despite this dramatic and terrifying hike in temperature Faezeh’s modelling study projected that the “big three” would contribute between 9 and 15 mm to sea level rise by 2100, only slightly more than what we obtained from a 1.5˚C warming over the 20th century. How can that be? Our conclusion is that the models are at fault, even including the latest and most sophisticated available which are being used to assess how the whole ice sheet will respond to the next century of climate change. These models appear to have a relatively weak link between climate change and ice melt, when our results suggest it is much stronger. Projections based on these models are therefore likely to under-predict how much the ice sheet will be affected. Other lines of evidence support this conclusion.

What does all of that mean? If we do continue along that very scary RCP8.5 trajectory of increasing greenhouse gas emissions, the Greenland ice sheet is very likely to start melting at rates that we haven’t seen for at least 130,000 years, with dire consequences for sea level and the many millions of people who live in low lying coastal zones.The Conversation

————————–

This blog is written by Cabot Institute member Jonathan Bamber, Professor of Physical Geography, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Professor Jonathan Bamber

 

 

Arctic Ocean: why winter sea ice has stalled, and what it means for the rest of the world

Ice floes in the Laptev Sea, Russia.
Olenyok/Shutterstock

Arctic sea ice plays a crucial role in the Earth’s energy balance. It is covered for most of the year by snow, which is the brightest natural surface on the planet, reflecting about 80% of the solar radiation that hits it back out to space.

Meanwhile, the ocean it floats on is the darkest natural surface on the planet, absorbing 90% of incident solar radiation. For that reason, changes in sea ice cover have a big impact on how much sunlight the planet absorbs, and how fast it warms up.

Each year a thin layer of the Arctic Ocean freezes over, forming sea ice. In spring and summer this melts back again, but some of the sea ice survives through the summer and is known as multi-year ice. It’s thicker and more resilient than the sea ice that forms and melts each year, but as the Arctic climate warms – at a rate more than twice that of the rest of the world – this multi-year ice is under threat.

In the last 40 years, multi-year ice has shrunk by about half. At some time in the next few decades, scientists expect the world will see an ice-free Arctic Ocean throughout the summer, with worrying consequences for the rest of the climate system. That prospect got much closer in 2020, due in part to the exceptional summer heatwave that roiled the Russian Arctic.

Shutting down the sea ice factory

The oceans have a large thermal capacity, which means they can store huge amounts of heat. In fact, the top metre of the oceans has about the same thermal capacity as the whole of the atmosphere. Many of us have experienced a balmy afternoon in autumn by the coast even though the air temperature inland is only a few degrees above freezing. That’s because the oceans accumulate heat slowly over the summer, releasing it equally slowly during winter.

So it is with the Laptev Sea, lying north of the Siberian coast. This part of the Arctic Ocean is usually a factory for new sea ice in autumn and winter as air temperatures dip below zero and surface water starts to freeze. That new ice is carried westward by persistent offshore winds in a kind of conveyor belt.

A map of the Laptev Sea with an inset world map.
The Laptev Sea lies off the coast of northern Siberia.
NormanEinstein/Wikipedia, CC BY-SA

This process is powered by the formation of polynyas: areas of open water surrounded by sea ice. Polynas act as engines of new sea ice production by exchanging heat with the colder atmosphere, causing the water to freeze. But if there is no sea ice to start with, the polynya cannot form and the whole process shuts down.

Sea ice in the Laptev Sea reached a record low in 2020, with no new ice through October, later than any previous year in the satellite record. The exceptional summer heatwave across Siberia will have resulted in heat accumulating in the adjacent ocean, which is now delaying the regrowth of sea ice.

In the 1980s, there was as much as 600,000 square kilometres of multi-year ice covering around two thirds of the Laptev Sea. In 2020, it has been ice-free for months with no multi-year ice left at all. The whole Arctic Ocean is heading for ice-free conditions in the future, defined as less than one million square kilometres of ice cover. That’s down from about 8 million square kilometres just 40 years ago. This year’s new record delay in ice formation in the Laptev Sea takes it a step closer.

A rapidly changing Arctic is a global cause for concern. Thawing permafrost releases methane, a greenhouse gas that is about 84 times more potent than CO₂ when measured over 20 years.

Meanwhile, the Greenland Ice Sheet, the largest ice mass in the northern hemisphere, is currently contributing more to sea levels rising than any other source, and has enough ice in it to raise global sea level by 7.4 metres. And if the machinations of a warming Arctic still seem remote, evidence suggests that even the weather across much of the northern hemisphere is heavily influenced by what happens in the rapidly changing roof of the world.The Conversation

————————————-

This blog is written by Cabot Institute member Jonathan Bamber, Professor of Physical Geography, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

 

Jonathan Bamber

 

Siberia heatwave: why the Arctic is warming so much faster than the rest of the world

Smoke from wildfires cloaks the skies over Siberia, June 23 2020.
EPA-EFE/NASA

On the eve of the summer solstice, something very worrying happened in the Arctic Circle. For the first time in recorded history, temperatures reached 38°C (101°F) in a remote Siberian town – 18°C warmer than the maximum daily average for June in this part of the world, and the all-time temperature record for the region.

New records are being set every year, and not just for maximum temperatures, but for melting ice and wildfires too. That’s because air temperatures across the Arctic have been increasing at a rate that is about twice the global average.

All that heat has consequences. Siberia’s recent heatwave, and high summer temperatures in previous years, have been accelerating the melting of Arctic permafrost. This is the permanently frozen ground which has a thin surface layer that melts and refreezes each year. As temperatures rise, the surface layer gets deeper and structures embedded in it start to fail as the ground beneath them expands and contracts. This is what is partly to blame for the catastrophic oil spill that occurred in Siberia in June 2020, when a fuel reservoir collapsed and released more than 21,000 tonnes of fuel – the largest ever spill in the Arctic.

So what is wrong with the Arctic, and why does climate change here seem so much more severe compared to the rest of the world?

The warming models predicted

Scientists have developed models of the global climate system, called general circulation models, or GCMs for short, that reproduce the major patterns seen in weather observations. This helps us track and predict the behaviour of climate phenomena such as the Indian monsoon, El Niño, Southern Oscillations and ocean circulation such as the gulf stream.

GCMs have been used to project changes to the climate in a world with more atmospheric CO₂ since the 1990s. A common feature of these models is an effect called polar amplification. This is where warming is intensified in the polar regions and especially in the Arctic. The amplification can be between two and two and a half, meaning that for every degree of global warming, the Arctic will see double or more. This is a robust feature of our climate models, but why does it happen?

Fresh snow is the brightest natural surface on the planet. It has an albedo of about 0.85, which means that 85% of solar radiation falling on it is reflected back out to space. The ocean is the opposite – it’s the darkest natural surface on the planet and reflects just 10% of radiation (it has an albedo of 0.1). In winter, the Arctic Ocean, which covers the North Pole, is covered in sea ice and that sea ice has an insulating layer of snow on it. It’s like a huge, bright thermal blanket protecting the dark ocean underneath. As temperatures rise in spring, sea ice melts, exposing the dark ocean underneath, which absorbs even more solar radiation, increasing warming of the region, which melts even more ice. This is a positive feedback loop which is often referred to as the ice-albedo feedback mechanism.

Melting Arctic sea ice is increasing warming in the region.
Jonathan Bamber, Author provided

This ice-albedo (really snow-albedo) feedback is particular potent in the Arctic because the Arctic Ocean is almost landlocked by Eurasia and North America, and it’s less easy (compared to the Antarctic) for ocean currents to move the sea ice around and out of the region. As a result, sea ice that stays in the Arctic for longer than a year has been declining at a rate of about 13% per decade since satellite records began in the late 1970s.

In fact, there is evidence to indicate that sea ice extent has not been this low for at least the last 1,500 years. Extreme melt events over the Greenland Ice Sheet, that used to occur once in every 150 years, have been seen in 2012 and now 2019. Ice core data shows that the enhanced surface melting on the ice sheet over the past decade is unprecedented over the past three and a half centuries and potentially over the past 7,000 years.

In other words, the record-breaking temperatures seen this summer in the Arctic are not a “one-off”. They are part of a long-term trend that was predicted by climate models decades ago. Today, we’re seeing the results, with permafrost thaw and sea ice and ice sheet melting. The Arctic has sometimes been described as the canary in the coal mine for climate breakdown. Well it’s singing pretty loudly right now and it will get louder and louder in years to come.The Conversation

——————————-
This blog is written by Cabot Institute member Jonathan Bamber, Professor of Physical Geography, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Professor Jonathan Bamber

Climate change: sea level rise could displace millions of people within two generations

A small boat in the Illulissat Icefjord is dwarfed by the icebergs that have calved from the floating tongue of Greenland’s largest glacier, Jacobshavn Isbrae. Image credit: Michael Bamber

Antarctica is further from civilisation than any other place on Earth. The Greenland ice sheet is closer to home but around one tenth the size of its southern sibling. Together, these two ice masses hold enough frozen water to raise global mean sea level by 65 metres if they were to suddenly melt. But how likely is this to happen?

The Antarctic ice sheet is around one and half times larger than Australia. What’s happening in one part of Antarctica may not be the same as what’s happening in another – just like the east and west coasts of the US can experience very different responses to, for example, a change in the El Niño weather pattern. These are periodic climate events that result in wetter conditions across the southern US, warmer conditions in the north and drier weather on the north-eastern seaboard.

The ice in Antarctica is nearly 5km thick in places and we have very little idea what the conditions are like at the base, even though those conditions play a key role in determining the speed with which the ice can respond to climate change, including how fast it can flow toward and into the ocean. A warm, wet base lubricates the bedrock of land beneath the ice and allows it to slide over it.

Though invisible from the surface, melting within the ice can speed up the process by which ice sheets slide towards the sea. Gans33/Shutterstock

These issues have made it particularly difficult to produce model simulations of how ice sheets will respond to climate change in future. Models have to capture all the processes and uncertainties that we know about and those that we don’t – the “known unknowns” and the “unknown unknowns” as Donald Rumsfeld once put it. As a result, several recent studies suggest that previous Intergovernmental Panel on Climate Change reports may have underestimated how much melting ice sheets will contribute to sea level in future.

What the experts say

Fortunately, models are not the only tools for predicting the future. Structured Expert Judgement is a method from a study one of us published in 2013. Experts give their judgement on a hard-to-model problem and their judgements are combined in a way that takes into account how good they are at assessing their own uncertainty. This provides a rational consensus.

The approach has been used when the consequences of an event are potentially catastrophic, but our ability to model the system is poor. These include volcanic eruptions, earthquakes, the spread of vector-borne diseases such as malaria and even aeroplane crashes.

Since the study in 2013, scientists modelling ice sheets have improved their models by trying to incorporate processes that cause positive and negative feedback. Impurities on the surface of the Greenland ice sheet cause positive feedback as they enhance melting by absorbing more of the sun’s heat. The stabilising effect of bedrock rising as the overlying ice thins, lessening the weight on the bed, is an example of negative feedback, as it slows the rate that the ice melts.

The record of observations of ice sheet change, primarily from satellite data, has also grown in length and quality, helping to improve knowledge of the recent behaviour of the ice sheets.

With colleagues from the UK and US, we undertook a new Structured Expert Judgement exercise. With all the new research, data and knowledge, you might expect the uncertainties around how much ice sheet melting will contribute to sea level rise to have got smaller. Unfortunately, that’s not what we found. What we did find was a range of future outcomes that go from bad to worse.

Reconstructed sea level for the last 2500 years. Note the marked increase in rate since about 1900 that is unprecedented over the whole time period. Robert Kopp/Kopp et al. (2016).

 

Rising uncertainty

We gathered together 22 experts in the US and UK in 2018 and combined their judgements. The results are sobering. Rather than a shrinking in the uncertainty of future ice sheet behaviour over the last six years, it has grown.

If the global temperature increase stays below 2°C, the experts’ best estimate of the average contribution of the ice sheets to sea level was 26cm. They concluded, however, that there is a 5% chance that the contribution could be as much as 80cm.

If this is combined with the two other main factors that influence sea level – glaciers melting around the world and the expansion of ocean water as it warms – then global mean sea level rise could exceed one metre by 2100. If this were to occur, many small island states would experience their current once-in-a-hundred–year flood every other day and become effectively uninhabitable.

A climate refugee crisis could dwarf all previous forced migrations. Punghi/Shutterstock

For a climate change scenario closer to business as usual – where our current trajectory for economic growth continues and global temperatures increase by 5℃ – the outlook is even more bleak. The experts’ best estimate average in this case is 51cm of sea level rise caused by melting ice sheets by 2100, but with a 5% chance that global sea level rise could exceed two metres by 2100. That has the potential to displace some 200m people.

Let’s try and put this into context. The Syrian refugee crisis is estimated to have caused about a million people to migrate to Europe. This occurred over years rather than a century, giving much less time for countries to adjust. Still, sea level rise driven by migration of this size might threaten the existence of nation states and result in unimaginable stress on resources and space. There is time to change course, but not much, and the longer we delay the harder it gets, the bigger the mountain we have to climb.


 

Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.The Conversation

This blog was written by Cabot Institute member Jonathan Bamber, Professor of Physical Geography, University of Bristol and Michael Oppenheimer, Professor of Geosciences and International Affairs, Princeton University.  This article is republished from The Conversation under a Creative Commons license. Read the original article.

Scanning the horizons: Our changing environment

Image credit: BBC

For the evening of 7 June 2016, the Watershed was transformed into vaults of the Horizon programme as Horizon editor Steve Crabtree and University of Bristol Professor Jonathan Bamber took us on an environmentally-flavoured tour of the show’s history.

The Horizon programme is one of the BBC’s longest running series. First broadcast in 1964, it provides a gloriously honest portrayal of both the evolution of television and of science. The event, organised by the British Science Association in partnership with the Festival of Nature and the University of Bristol’s Cabot Institute, meandered through the decades of footage providing a simultaneously amusing and sobering window into the progression of thinking in ecology and climate science.

The evening began with two near-identical snippets of footage; both taken from the bow of an icebreaker crashing through Antarctic sea ice but filmed 50 years apart. The older black and white version, broadcast in 1966, depicted the work of the British Antarctic Survey (BAS). The fuzzy monochrome pictures of dramatic Antarctic scenery were accompanied by Phantom of the Opera-style organ music and a narrator with an accent so archaically-British it would put the queen to shame.

The program explored the geology of the Antarctic, walking through the stages of continental drift before ending on the vast coal deposits that can be found in the Antarctic. The thought of coal mining in the world’s last pristine wilderness seems slightly mad by today’s standards but 1966, as Jonathan pointed out, was long before the 1991 environmental protocol was signed protecting the Antarctic from mineral exploration.

The clip was preceded by footage aired earlier this year. Apart from the addition of the swanky new Halley Research Station the only differences between the two were the colour and resolution: The Antarctic has preserved its natural habitat thanks to limited human interaction. The two clips were a great way to kick off the event and provided a stark contrast to the fast-changing world depicted in the rest of the Horizon episodes.

By far my favourite episode was from 1971 entitled ‘Due to lack of interest, tomorrow has been cancelled’. The footage taken at Lake Eerie comprised scenes of environmental devastation set to lively jazz. The combination drew a laugh from the audience and the dated feel was certainly comical in the context of today’s CGI mega-productions that air in the prime-time BBC slots.Despite this, it was surprisingly progressive; even in the 70s the BBC was reporting the long term, global effects of human interactions with the environment with an apocalyptic twist. As someone who grew up in the 90s I felt like the worst effects have only been realised in recent years, yet footage like this reminds me that these issues have been knocking around for decades.

The Horizon clips revealed just how vital the late 60s and early 70s were in the development of the environmental movement- suddenly it was fashionable to be interested in ecology. Jonathan attributed this in part to the 1968 Apollo space mission that took the first photograph of the earth from space. After the mission astronaut William Anders said 

we travelled all this way to explore the moon but the most important thing is that we discovered the earth”

In this era, Jonathan said, we developed a sense of the earth as a single place that we all inhabited; and a place we must look after.

The famous ‘Earthrise’ photo from Apollo 8, the first manned mission to the moon. The crew entered lunar orbit on Christmas Eve, Dec. 24, 1968. That evening, the astronauts held a live broadcast, showing pictures of the Earth and moon as seen from their spacecraft. Image credit: NASA.

In a further Horizon airing in 1971 ‘Vox pops’ (short interviews with members of the public) filmed on the streets of New York revealed the scale of the environmental movement coupled with footage of marches and protests. So prevalent was this voice that in 1970 President Nixon stated that the “price of goods should be made to include the cost of producing and disposing of them without damage to the environment”. How, I wonder, have we regressed so far from these aspirations of 40 years ago?

The 80s were all about energy production. As the decade progressed, the greenhouse effect was gaining recognition and the Horizon content mirrored this. An episode in 1982 revealed impressively large wind turbines built by Boeing in collaboration with NASA as a clean and sustainable energy solution. Rather comically, Britain’s only wind turbine at this time was a slightly decrepit looking windmill which paled into turbine-insignificance in comparison to the highly engineered US turbines. A further episode later in the decade, provided a snapshot of UK’s sources of carbon emissions immersed in a description of the carbon cycle. Despite humankind being in possession of knowledge of global warming for over a 100 years, public interest grew around this time; something that Jonathan attributed to the formation of the IPCC in 1988.

Wind turbine created by Boeing in 1982 with NASA. Image credit: Boeing.

Moving into the 90s and 00s, the television style underwent the change to digital content. As Steve described, special effects were now in the hands of TV-makers, not just big Hollywood producers. The appearance became more recognisable, although episodes in the early 90s definitely had an aged feel to them. The thinking was more modern, working on the assumption that climate change is already happening rather than convincing the audience of its authenticity. An episode in 2003 discussed not just the scientific implications of a changed planet, but the economic, political and social ones. The film, named ‘The Big Chill’, discussed what might happen if parts of the UK began to freeze. Steve commented that the content of the episodes was sometimes motivated by big Hollywood movies; in this case the blockbuster epic ‘The Day After Tomorrow’ was due for release the following year.

In all, the event was a wonderful glimpse into rarely seen BBC archives. While the evolution of thinking on climate change was what carried the discussions, I particularly enjoyed watching the interviews and narration from an era of television long gone. It made me realise what an invaluable tool it is in documenting past generations and I hope we are able to preserve much of the BBC content from the last five decades. As Steve pointed out, TV viewers in 40 years will probably look back at TV from today and laugh at the styles and fashions. Let’s hope they laugh at us from an even more progressive and sustainable future.  

——————————————————————–

This blog is written by Cabot Institute member Keri McNamara, a PhD student in the School of Earth Sciences at the University of Bristol.