Voices from Small Island Developing States: priorities for COP26 and beyond

The School of Education’s, Education in Small States Research Group (ESSRG) in collaboration with the Cabot Institute for the Environment and the Centre for Comparative and International Research in Education (CIRE), have produced a short (15 minute) video as a direct contribution to COP26 in Glasgow. This has been developed from the zoom recording of a joint online event titled ‘Voices from SIDS at the Sharp End of Environmental Uncertainty: Small Island Developing States (SIDS) Speak to COP26’ held on 5 October 2021.

This professionally developed video highlights the ‘voices’, views and climate change priorities held by youth, community members, traditional village elders and national leaders ‘Living at the Sharp End of Environmental Uncertainty’ in all three global regions of SIDS: the Caribbean, the Indian Ocean and the Pacific (see www.smallstates.net).

The video also includes a response from Professor Dann Mitchell from the Cabot Institute, and a commentary from University of Bristol Alumni and long-time Governor-General of St Lucia (1997-2018), Dame Pearlette Louisy.

To maintain our input for COP26 discussions, this Cabot Institute blog reinforces the key messages from the video presentation in the words of the lead participants from Saint Lucia, The Maldives and Tuvalu: messages that we hope others will continue to share and support.

Saint Lucia

COP26 – Can Glasgow deliver?

“One Point Five to Stay Alive”. This was perhaps the most memorable phrase on the minds and lips of delegates when the Conference of Parties (COP 21) ended in Paris a few short years ago. The small island developing states seemed to have punched above their weight when they persuaded the international community to commit in principle to keep world temperatures and sea level rise below the 1.5 degree-level so that they could survive. The euphoria then was palpable and undeniable.

(Artist: Jonathan Gladding)

But, as we engage in Glasgow and COP 26, what was hailed as an infectious rallying cry must not be allowed to lose its lustre and become just another catchy phrase or worn-out platitude. The United Nations Secretary General’s fears that “Glasgow may not be able to deliver” could be seen as salt on an already open wound … but let us hope that it is a timely warning to others worldwide, a plea that helps to keep alive the hopes that SIDS are holding on to.

What then lies in store for small island developing states? Surely, they cannot be faulted for sitting idly by, for they have been very proactive in addressing climate change issues in order to build their resilience against this existential threat. The Caribbean region, for example, has recently released The State of the Caribbean Climate Report which is aimed at strengthening the strategic planning and decision-making processes that will be required to accelerate their resilience building efforts. The projections for the region are not at all encouraging. They point to rising sea levels, hotter temperatures (predicted to reach a rise of 1.76 degrees by the end of the century), more variable rainfall with increased drying (by almost 17%), increased sea surface temperatures and more intense Category 4 and 5 hurricanes. (See: Climate Studies Group Mona (Eds.) 2020, The State of the Caribbean Climate. Produced for the Caribbean Development Bank).

These predictions will undoubtedly adversely affect the core livelihoods of Caribbean people already living in a very vulnerable geographic space, who must learn how to live both now and in the future. The international community meeting in Glasgow must therefore make every effort to facilitate the sustainable development of our small island developing states. Education for resilience and sustainable development must take centre stage now, for time is not at all on our side.

In 1993, one of Saint Lucia’s Nobel Laureates, Sir Derek Walcott (Literature 1992), warned in his Nobel Lecture that “a morning could come when governments might ask what happened not only to our forests and our bays, but to a whole people”.

We appeal therefore to COP 26 to heed these warnings to ensure that such a morning never comes. Living at the sharp end of environmental uncertainty, as small island developing states are, cannot be considered sustainable living.

The time to act decisively is now. Glasgow must deliver. Failing which, we will have nullified the very concept of sustainable development proposed by the Brundtland Report … that is, development that meets the needs of the present without compromising the ability of future generations to meet their own needs.

In referring readers back to the video, we wish to thank Curtis Raphael who helped to put the Saint Lucia section together, and Crispin d’Auvergne, the Programme Director of the Climate Change and Disaster Risk Management of the Organisation of Eastern Caribbean States (OECS) who provided access to the two Reports cited in our presentation.

Maldives

The contribution to the video from the Maldives aims to bring multiple and diverse voices from the islands of the Maldives to Glasgow and COP26. It highlights their everyday experiences and anxieties about the environment and climate change. These voices come from a range of contributors from different levels of the society, including school children, fishermen, a grandfather, divers, surfers, environmentalists, farmers, entrepreneurs, policy makers and politicians.

It is clear there is a keen awareness of the fragility of the local biophysical environment and the existential threat posed by climate change on livelihoods and the very survival of the nation and the population. As is evident, climate anxiety is up close and personal for all who live in the country. There is an acute awareness of the importance of protecting the environment to mitigate a potential catastrophe caused by rising sea levels.

While Maldivian authorities continue to develop domestic policies to mitigate the worst effects of climate change, these actions at the local level are woefully insufficient. The larger polluters worldwide also need to commit to real action in their pledges, and act now to reduce harmful emissions at the same time as they assist smaller nations to convert to and adapt to low carbon economies.

Image credit: savefainu

Tuvalu

We hope our video from Tuvalu will speak for itself. We are one of the most vulnerable nations in the world, facing a 2-meter rise in sea levels that will inundate our nation. Our plea to the international community highlights the fact that we are relational beings, what we do today one way or the other will affect people around us, people around the globe and even you and me, someday. Therefore, as global citizens, this is the time that we must work towards building a safe, healthy and resilient world so that one day we can proudly say, Yes ! We were the generation that made it happen – we set aside our differences and as a kaiga (family) we created this fantastic world for our children, our future.

This professionally developed video and the full, 90 minute, Zoom recording are also available on the Cabot YouTube Channel. See http://www.bristol.ac.uk/cabot/news/2021/soe-cop26.html.

———————————

This blog is written by Dame Pearlette Louisy; Dr Merle St Clair-Auguste; Dr Aminath Muna; Dr Aminath Shiyama; Dr Rosiana Lagi; and the ESSRG Leadership Team.

 

 

 

 

 

 

 

 

 

 

 

 

Read all blogs in our COP26 blog series:

 

Humanity is compressing millions of years of natural change into just a few centuries

The near future may be similar to the mid-Pliocene warm period a few million years ago.
Daniel Eskridge / shutterstock

Many numbers are swirling around the climate negotiations at the UN climate summit in Glasgow, COP26. These include global warming targets of 1.5℃ and 2.0℃, recent warming of 1.1℃, remaining CO₂ budget of 400 billion tonnes, or current atmospheric CO₂ of 415 parts per million.

It’s often hard to grasp the significance of these numbers. But the study of ancient climates can give us an appreciation of their scale compared to what has occurred naturally in the past. Our knowledge of ancient climate change also allows scientists to calibrate their models and therefore improve predictions of what the future may hold.

Recent climate changes in context.
IPCC AR6, chapter 2

Recent work, summarised in the latest report of the Intergovernmental Panel on Climate Change (IPCC), has allowed scientists to refine their understanding and measurement of past climate changes. These changes are recorded in rocky outcrops, sediments from the ocean floor and lakes, in polar ice sheets, and in other shorter-term archives such as tree rings and corals. As scientists discover more of these archives and get better at using them, we have become increasingly able to compare recent and future climate change with what has happened in the past, and to provide important context to the numbers involved in climate negotiations.

For instance one headline finding in the IPCC report was that global temperature (currently 1.1℃ above a pre-industrial baseline) is higher than at any time in at least the past 120,000 or so years. That’s because the last warm period between ice ages peaked about 125,000 years ago – in contrast to today, warmth at that time was driven not by CO₂, but by changes in Earth’s orbit and spin axis. Another finding regards the rate of current warming, which is faster than at any time in the past 2,000 years – and probably much longer.

But it is not only past temperature that can be reconstructed from the geological record. For instance, tiny gas bubbles trapped in Antarctic ice can record atmospheric CO₂ concentrations back to 800,000 years ago. Beyond that, scientists can turn to microscopic fossils preserved in seabed sediments. These properties (such as the types of elements that make up the fossil shells) are related to how much CO₂ was in the ocean when the fossilised organisms were alive, which itself is related to how much was in the atmosphere. As we get better at using these “proxies” for atmospheric CO₂, recent work has shown that the current atmospheric CO₂ concentration of around 415 parts per million (compared to 280 ppm prior to industrialisation in the early 1800s), is greater than at any time in at least the past 2 million years.

chart showing climate changes over history
An IPCC graphic showing climate changes at various points since 56 million years ago. Note most rows show changes over thousands or millions of years, while the top row (recent changes) is just a few decades.
IPCC AR6, chapter 2 (modified by Darrell Kaufman)

Other climate variables can also be compared to past changes. These include the greenhouse gases methane and nitrous oxide (now greater than at any time in at least 800,000 years), late summer Arctic sea ice area (smaller than at any time in at least the past 1,000 years), glacier retreat (unprecedented in at least 2,000 years) sea level (rising faster than at any point in at least 3,000 years), and ocean acidity (unusually acidic compared to the past 2 million years).

In addition, changes predicted by climate models can be compared to the past. For instance an “intermediate” amount of emissions will likely lead to global warming of between 2.3°C and 4.6°C by the year 2300, which is similar to the mid-Pliocene warm period of about 3.2 million years ago. Extremely high emissions would lead to warming of somewhere between 6.6°C and 14.1°C, which just overlaps with the warmest period since the demise of the dinosaurs – the “Paleocene-Eocene Thermal Maximum” kicked off by massive volcanic eruptions about 55 million years ago. As such, humanity is currently on the path to compressing millions of years of temperature change into just a couple of centuries.

Small animals in a forest
Many mammals, like these horse-ancestors ‘Eohippus’, first appeared after a sudden warm period 55 million years ago.
Daniel Eskridge / shutterstock

Distant past can held predict the near future

For the first time in an IPCC report, the latest report uses ancient time periods to refine projections of climate change. In previous IPCC reports, future projections have been produced simply by averaging results from all climate models, and using their spread as a measure of uncertainty. But for this new report, temperature and rainfall and sea level projections relied more heavily on those models that did the best job of simulating known climate changes.

Part of this process was based on each individual model’s “climate sensitivity” – the amount it warms when atmospheric CO₂ is doubled. The “correct” value (and uncertainty range) of sensitivity is known from a number of different lines of evidence, one of which comes from certain times in the ancient past when global temperature changes were driven by natural changes in CO₂, caused for example by volcanic eruptions or change in the amount of carbon removed from the atmosphere as rocks are eroded away. Combining estimates of ancient CO₂ and temperature therefore allows scientists to estimate the “correct” value of climate sensitivity, and so refine their future projections by relying more heavily on those models with more accurate climate sensitivities.

Overall, past climates show us that recent changes across all aspects of the Earth system are unprecedented in at least thousands of years. Unless emissions are reduced rapidly and dramatically, global warming will reach a level that has not been seen for millions of years. Let’s hope those attending COP26 are listening to messages from the past.

——————————

This blog is written by Cabot Institute for the Environment member Dan Lunt, Professor of Climate Science, University of Bristol and Darrell Kaufman, Professor of Earth and Environmental Sciences, Northern Arizona University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dan Lunt

 

 

Read all blogs in our COP26 blog series:

Fracking and poorer surface water quality link established

During fracking, water is mixed with fluids and injected into the ground.
Wikimedia Commons

Fracking – hailed by some as the greatest recent advance in energy production, criticised by others for the threat it poses to local life – continues to divide opinion.

The term fracking refers to the high-pressure injection of water mixed with fluid chemical additives – including friction reducers, gels and acids – and “propping agents” such as sand to create fractures in deep rock formations such as shale, allowing oil or gas to flow out.

Tens of thousands of hydraulic fracturing wells have been drilled across the US, generating huge benefits for its energy industry and economy: yet the practice remains globally controversial. It is not permitted in numerous other countries, such as France, Germany, Ireland and, since 2019, the UK.

While some see fracking as the most important change in the energy sector since the introduction of nuclear energy more than 50 years ago, others raise health and environmental concerns: in particular, the threat fracking could pose to our water.

A fracking diagram
Fracking works by injecting fluid into cracks in the earth to extract oil or gas.
Wikimedia

Starting in 2010, many US states began to regulate fracking, obliging operators to disclose the substances used in their fluid mix. As economists, we were curious to see whether mandatory disclosures of what’s in fracturing fluids made the practice cleaner, or reduced potential water contamination.

To do that, we needed to compare the environmental impact from fracking before and after the new disclosure rules. We assembled a database that put together existing measurements of surface water quality with the location of fracking wells, and analysed changes in surface water quality around new wells over an 11-year period.

We noticed some strong associations, but also discovered that these associations had not been previously documented. Deciding to study the link between new hydraulic fracturing wells and surface water quality, we were able to provide evidence for a relationship between the two.

Equipment used for fracking
A fracking platform designed to extract oil.
Jwigley/Pixabay, CC BY

The link

Our study, published in Science, uses a statistical approach to identify changes in the concentration of certain salts associated with new wells. We discovered a very small but consistent increase in barium, chloride and strontium – for bromide, our results were more mixed and not as robust.

Salt concentrations were most increased at monitoring stations that were located within 15 km and downstream from a well, and in measurements taken within a year of fracking activity.

A figure showing the association between salt concentrations and new fracking wells
This figure plots the associations between salt concentrations and a new fracking well located within 15km and likely upstream of the water monitor.

The increases in salt we discovered were small and within the bounds of what the US Environmental Protection Agency considers safe for drinking water. However, since our water measurements were mostly taken from rivers, not all of the public surface water monitors we used are close to wells, or are in locations where they can detect the effects of fracking: for example, they may be located upstream of new wells. That means the salt concentrations in water flowing downstream from new wells could be even higher.

Our study was also limited by the public data available. We were not able to investigate potentially more toxic substances found in the fracturing fluids or in the produced water, such as radium or arsenic. Public databases do not widely include measurements of these other substances, making it hard for researchers to carry out the statistical analysis needed to detect anomalous concentrations related to new wells.

That said, the salts we analysed are not exactly innocuous. High concentrations of barium in drinking water may lead to increases in blood pressure, while chloride can potentially threaten aquatic life. Elevated strontium levels can even have adverse impacts on human bone development, especially in the young.

Next steps

It is undeniable that fracking has played a big role in replacing the fossil fuel coal as a source of energy. Some studies show that, relative to periods of massive coal-burning, the overall quality of surface water has improved. Fracking has also brought an economic boost to underdeveloped areas. Still, the question remains as to whether it is safe for local communities.

A heavy fracking area, with wells connected by roads
Where fracking is heavy, roads and pipelines make a web across the landscape.
Simon Fraser University/Flickr

While our study is an important step towards understanding the environmental impact of fracking, more data are needed to truly answer these safety concerns. The good news is, with new disclosure rules, we have a better awareness of exactly which chemicals are being used.

The next step is for policymakers to make sure that government agencies systematically track these chemicals in fracking fluids and produced waters, place monitoring stations in locations where they can better track surface water impacts, and increase the frequency of water quality measurement around the time new wells are drilled.

A more targeted approach could go a long way in enabling research and helping to protect the public health of communities for whom fracking could yet be a blessing or a curse.

—————————The Conversation

This blog is written by Giovanna Michelon, Professor of Accounting, University of Bristol; Christian Leuz, Professor of International Economics, Finance and Accounting, University of Chicago, and Pietro Bonetti, Assistant Professor of Accounting and Control, IESE Business School (Universidad de Navarra)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dune: we simulated the desert planet of Arrakis to see if humans could survive there

Dune, the epic series of sci-fi books by Frank Herbert, now turned into a movie of the same name, is set in the far future on the desert planet of Arrakis. Herbert outlined a richly-detailed world that, at first glance, seems so real we could imagine ourselves within it.

However, if such a world did exist, what would it actually be like?

We are scientists with specific expertise in climate modelling, so we simulated the climate of Arrakis to find out. We wanted to know if the physics and environment of such a world would stack up against a real climate model.

Here’s a visualisation of our climate model of Arrakis:

You can zoom in on particular features and highlight things like temperature or wind speed at our website Climate Archive.

When we were done, we were very pleased to discover that Herbert had envisioned an environment that for the most part meets expectations. We might need to occasionally suspend disbelief, but much of Arrakis itself would indeed be habitable, albeit inhospitable.

How do you build a fantasy world like Arrakis?

We started with a climate model commonly used to predict weather and climate here on Earth. To use these sorts of models you have to decide on the physical laws (well-known in the case of planet Earth) and then input data on everything from the shape of mountains to the strength of the sun or the makeup of the atmosphere. The model can then simulate the climate and tell you roughly what the weather might be like.

We decided to keep the same fundamental physical laws that govern weather and climate here on Earth. If our model presented something completely strange and exotic, this could suggest those laws were different on Arrakis, or Frank Herbert’s fantastical vision of Arrakis was just that, fantasy.

Height map (in metres) of Arrakis.
Farnsworth et al, Author provided

We then needed to tell the climate model certain things about Arrakis, based on the detailed information found in the main novels and the accompanying Dune Encyclopedia. These included the planet’s topography and its orbit, which was was essentially circular, akin to the Earth today. The shape of an orbit can really impact the climate: see the long and irregular winters in Game of Thrones.

Finally, we told the model what the atmosphere was made of. For the most part it is quite similar to that of the Earth today, although with less carbon dioxide (350 parts per million as opposed to our 417 ppm). The biggest difference is the ozone concentration. On Earth, there is very little ozone in the lower atmosphere, only around 0.000001%. On Arrakis it is 0.5%. Ozone is important as it is around 65 times more effective at warming the atmosphere than CO₂ over a 20-year period.

Having fed in all the necessary data, we then sat back and waited. Complex models like this take time to run, in this case more than three weeks. We needed a huge supercomputer to be able to crunch the hundreds of thousands of calculations required to simulate Arrakis. However, what we found was worth the wait.

Arrakis’s climate is basically plausible

The books and film describe a planet with unforgiving sun and desolate wastelands of sand and rock. However, as you move closer to the polar regions towards the cities of Arrakeen and Carthag, the climate in the book begins to change into something that might be inferred as more hospitable.

Yet our model tells a different story. In our model of Arrakis, the warmest months in the tropics hit around 45°C, whereas in the coldest months they do not drop below 15°C. Similar to that of Earth. The most extreme temperatures would actually occur in the mid-latitudes and polar regions. Here summer can be as hot as 70°C on the sand (also suggested in the book). Winters are just as extreme, as low as -40°C in the mid-latitudes and down to -75°C in the poles.

This is counter intuitive as the equatorial region receives more energy from the sun. However, in the model the polar regions of Arrakis have significantly more atmospheric moisture and high cloud cover which acts to warm the climate since water vapour is a greenhouse gas.

gif of temperatures
Monthly temperatures on Arrakis, according to the model. Both poles have very cold winters and very hot summers.
Author provided

The book says that there is no rain on Arrakis. However, our model does suggest that very small amounts of rainfall would occur, confined to just the higher latitudes in the summer and autumn, and only on mountains and plateaus. There would be some clouds in the tropics as well as polar latitudes, varying from season to season.

The book also mentions that polar ice caps exist, at least in the northern hemisphere, and have for a long time. But this is where the books perhaps differ the most from our model, which suggests summer temperatures would melt any polar ice, and there would be no snowfall to replenish the ice caps in winter.

Hot but habitable

Could humans survive on such a desert planet? First, we must make an assumption that the human-like people in the book and film share similar thermal tolerances to humans today. If that’s the case then, contrary to the book and film, it seems the tropics would be the most habitable area. As there is so little humidity there, survivable wet-bulb temperatures – a measure of “habitability” that combines temperature and humidity – are never exceeded.

The mid-latitudes, where most people on Arrakis live, are actually the most dangerous in terms of heat. In the lowlands, monthly average temperatures are often above 50-60°C, with maximum daily temperatures even higher. Such temperatures are deadly for humans.

Four people in black rubbery suits in desert
Stillsuit models, autumn 10191 collection.
Chiabella James / Warner Bros

We do know that all humanoid life on Arrakis outside of habitable places must wear “stillsuits”, designed to keep the wearer cool and reclaim body moisture from sweating, urination and breathing to provide drinkable water. This is important as stated in the book that there is no rainfall on Arrakis, no standing bodies of open water and little atmospheric moisture that can be reclaimed.

The planet also gets very cold outside of the tropics, with winter temperatures that would also be uninhabitable without technology. Cities like Arrakeen and Carthag would suffer from both heat and cold stress, like a more extreme version of parts of Siberia on Earth which can have both uncomfortably hot summers and brutally cold winters.

It’s important to remember that Herbert wrote the first Dune novel way back in 1965. This was two years before recent Nobel-winner Syukuro Manabe published his seminal first climate model, and Herbert did not have the advantage of modern supercomputers, or indeed any computer. Given that, the world he created looks remarkably consistent six decades on.


The authors modified a well-used climate model for exoplanet research and applied it to the planet in Dune. The work was carried out in their spare time and is intended as an appropriate outreach piece to demonstrate how climate scientists use mathematical models to better understand our world and exoplanets. It will feed into future academic outputs on desert worlds and exoplanets.The Conversation

This blog is written by Cabot Institute for the Environment members, Dr Alex Farnsworth, Senior Research Associate in Meteorology and Dr Sebastian Steinig, Research Associate in Paleoclimate Modelling, University of Bristol; and Michael Farnsworth, Research Lead Future Electrical Machines Manufacturing Hub, University of Sheffield.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Violence and mental health are likely to get worse in a warming world

As heat levels increase, mental health conditions are likely to worsen.
Pxfuel

Extreme weather has been the cause of some of the biggest public health crises across the world in recent years. In many cases, these have been enhanced by human-induced climate change. For instance, in 2003, high summer temperatures in Europe were believed to cause 50,000 to 70,000 excess deaths across 16 European countries.

Globally, it’s been estimated that a total of 296,000 deaths over the past two decades have been related to heat.

But heat doesn’t just affect physical health. It can have equally serious effects on mental health conditions. Research has shown that rising temperatures are associated with an increase in suicides and in violent behaviour, as well as exacerbating mood and anxiety disorders.

Studies in England and Wales conducted between 1993 and 2003 have revealed that, when temperatures were above 18°C, every 1°C rise in temperature was associated with a 3.8% increased risk of suicide across the population.

Between 1996 and 2013 in Finland, every 1°C increase in temperature accounted for a 1.7% increase in violent crime across the country. It has even been estimated that 1.2 million more assaults might occur in the United States between 2010 to 2099 than would without climate change.

The association between high temperatures and mental health is an active area of research. Scientists have found that some health consequences of increased heat, like disturbed sleep and levels of serotonin – a hormone critical for adjusting our feelings, emotions and behaviours – might play a role in triggering the appearance of mental health conditions.

A world map coloured red, with darker areas indicating greater temperature rises (up to 6°C).
This map shows the projected changes in daily temperature extremes at 1.5°C of global warming compared to the pre-industrial period (since 1861).
Author provided

Sleep deprivation often occurs during heatwaves, which then may lead to frustration, irritability, impulsive behaviours and even violence.

Extreme temperatures, such as those observed during heatwaves, are also found to be associated with some forms of dementia and disturbed mental health states, especially for those who are already in vulnerable conditions such as psychiatric patients.

And low levels of serotonin are associated with depression, anxiety, impulsivity, aggression and occurrence of violent incidents.

Implications

In the future, heatwaves will be hotter and last longer. Temperature records are likely to be broken ever more frequently as the world continues to warm. In north-west Asia, for example, temperatures could increase by 8.4°C by 2100.

A world that is on average 1.5°C warmer will see many average regional temperatures rise by more than this. This problem is compounded as the population – and therefore the number of people living in cities – increases. By 2050, it is projected that two thirds of the world’s population will live in urban areas.

A city in summer
Cities are often hotter than rural regions, exacerbating negative mental health effects caused by heat.
PedroFigueras/Pixabay

Urban environments are known to be warmer than their rural surroundings, a phenomenon known as the “urban heat island”. Climate projections show not only that cities will warm faster than rural areas, but that this effect is increased at night. This may further exacerbate the effects of heat extremes on our sleep.

Both adaptation to and mitigation of climate change will be necessary to lessen these potentially devastating effects as much as possible.

Options for adapting our lives to a warmer world could include increasing air circulation within buildings and adjusted work hours in times of extreme heat. Paris, for example, has already created a network of “cool islands”: green and blue spaces such as parks, ponds and swimming pools which provide places to seek refuge from the heat.

Most simply, educating people on the potential impacts of heat on mental health, aggression and violence – allowing them to understand exactly why it is so important to support initiatives that help keep our planet cool – could support better mental health at the same time as fighting the climate crisis.

—————————————–The Conversation

This blog is written by Cabot Institute for the Environment members Dr Mary Zhang, Senior Research Associate in Policy Studies, University of Bristol; Professor Dann Mitchell, Associate Professor in Atmospheric Sciences, University of Bristol, and Dr Vikki Thompson, Senior Research Associate in Geographical Sciences, University of Bristol

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dann Mitchell
Mary Zhang
Vikki Thompson

 

 

Read all blogs in our COP26 blog series:

Are you a journalist looking for climate experts? We’ve got you covered

We’ve got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via Victoria Tagg, our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489.

Climate change / climate emergency / climate science / climate-induced disasters

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports. Dani will be at COP26.

Dr Katerina Michalides – expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_kmichaelides.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Dann will be at COP26. Follow on Twitter @ClimateDann.

Professor Dan Lunt – expert on past climate change, with a focus on understanding how and why climate has changed in the past and what we can learn about the future from the past. Dan is also a Lead Author on IPCC AR6. Dan will be at COP26. Follow on Twitter @ClimateSamwell.

Professor Jonathan Bamber – expert on the impact of melting land ice on sea level rise (SLR) and the response of the ocean to changes in freshwater forcing. Jonathan will be at COP26. Follow on Twitter @jlbamber

Professor Paul Bates CBE – expert in the science of flooding, risk and reducing threats to life and economic losses worldwide. Follow on Twitter @paul_d_bates

Professor Tony Payne – expert in the effects of climate change on earth systems and glaciers.

Dr Matt Palmer – expert in sea level and ocean heat content research at the Met Office Hadley Centre and University of Bristol. Follow on Twitter @mpclimate.

Net Zero / Energy / Renewables

Professor Valeska Ting – Engineer and expert in net zero, low carbon technologies, low carbon energy and flying. Also an accomplished STEM communicator, is an BAME Expert Voice for the BBC Academy. Follow on Twitter @ProfValeskaTing.

Professor Philip Taylor – Expert in net zero, energy systems, energy storage, utilities, electric power distribution. Also Pro-Vice Chancellor at the University of Bristol. Philip will be at COP26. Follow on Twitter @rolyatlihp.

Dr Colin Nolden – expert in sustainable energy policy, regulation and business models and interactions with secondary markets such as carbon markets and other sectors such as mobility. Colin will be at COP26.

Climate finance

Dr Rachel James – Expert in climate finance, damage, loss and decision making. Also has expertise in African climate systems and contemporary and future climate change. Follow on Twitter @_RachelJames

Climate justice

Dr Alix Dietzel – climate justice and climate policy expert. Focusing on the global and local scale and interested in how just the response to climate change is and how we can ensure a just transition. Alix will be at COP26. Follow on Twitter @alixdietzel

Dr Ed Atkins – expert on environmental and energy policy, politics and governance and how they must be equitable and inclusive. Also interested in local politics of climate change policies and energy generation and consumption. Follow on Twitter @edatkins_.

Climate activism / Extinction Rebellion

Dr Oscar Berglund – expert on climate change activism and particularly Extinction Rebellion (XR) and the use of civil disobedience. Follow on Twitter @berglund_oscar.

Air pollution / Greenhouse gases

Dr Aoife Grant – expert in greenhouse gases and methane. Has set up a monitoring station at Glasgow for COP26 to record emissions.

Professor Matt Rigby – expert on sources and sinks of greenhouse gases and ozone depleting substances. Follow on Twitter @TheOtherMRigby.

Land, nature and food

Dr Jo House – expert on land and climate interactions, including emissions of carbon dioxide from land use change (e.g. deforestation), climate mitigation potential from the land (e.g. afforestation, bioenergy), and implications of science for policy. Previously Government Office for Science’s Head of Climate Advice. Follow on Twitter @Drjohouse.
Dr Taro Takahashi – expert on farming, livestock production systems as well as progamme evaluation and general equilibrium modelling of pasture and livestock-based economies.

Climate change and infrastructure

Dr Maria Pregnolato – expert on effects of climate change and flooding on infrastructure. Follow on Twitter @MariaPregnolat1.

Plastic and the environment

Dr Charlotte Lloyd – expert on the fate of chemicals in the terrestrial environment, including plastics, bioplastics and agricultural wastes. Follow on Twitter @DrCharlLloyd.

What else the Cabot Institute for the Environment is up to for COP26

Find out what we’re doing for COP26 on our website at bristol.ac.uk/cabot/cop26.
Watch our Cabot Conversations – 10 conversations between 2 experts on a climate change issue, all whilst an artist listens in the background and interprets the conversation into a beautiful piece of art in real time. Find out more at bristol.ac.uk/cabot/conversations.
——————————
This blog was written by Amanda Woodman-Hardy, Communications and Engagement Officer at the Cabot Institute for the Environment. Follow on Twitter @Enviro_Mand and @cabotinstitute.
 

What Europe’s exceptionally low winds mean for the future energy grid

 

Shaggyphoto / shutterstock

Through summer and early autumn 2021, Europe experienced a long period of dry conditions and low wind speeds. The beautifully bright and still weather may have been a welcome reason to hold off reaching for our winter coats, but the lack of wind can be a serious issue when we consider where our electricity might be coming from.

To meet climate mitigation targets, such as those to be discussed at the upcoming COP26 event in Glasgow, power systems are having to rapidly change from relying on fossil fuel generation to renewables such as wind, solar and hydropower. This change makes our energy systems increasingly sensitive to weather and climate variability and the possible effects of climate change.

That period of still weather badly affected wind generation. For instance, UK-based power company SSE stated that its renewable assets produced 32% less power than expected. Although this may appear initially alarming, given the UK government’s plans to become a world leader in wind energy, wind farm developers are aware these low wind “events” are possible, and understanding their impact has become a hot topic in energy-meteorology research.

A new type of extreme weather

So should we be worried about this period of low wind? In short, no. The key thing here is that we’re experiencing an extreme event. It may not be the traditional definition of extreme weather (like a large flood or a hurricane) but these periods, known in energy-meteorology as “wind-droughts”, are becoming critical to understand in order to operate power systems reliably.

Recent research I published with colleagues at the University of Reading highlighted the importance of accounting for the year-to-year variability in wind generation as we continue to invest in it, to make sure we are ready for these events when they do occur. Our team has also shown that periods of stagnant high atmospheric pressure over central Europe, which lead to prolonged low wind conditions, could become the most difficult for power systems in future.

Climate change could play a role

When we think about climate change we tend to focus much more on changes in temperature and rainfall than on possible variations in near-surface wind speed. But it is an important consideration in a power system that will rely more heavily on wind generation.

The latest IPCC report suggests that average wind speeds over Europe will reduce by 8%-10% as a result of climate change. It is important to note that wind speed projections are quite uncertain in climate models compared with those for near-surface temperatures, and it is common for different model simulations to show quite contrasting behaviour.

Colleagues and I recently analysed how wind speeds over Europe would change according to six different climate models. Some showed wind speeds increasing as temperatures warm, and others showed decreases. Understanding this in more detail is an ongoing topic of scientific research. It is important to remember that small changes in wind speed could lead to larger changes in power generation, as the power output by a turbine is related to the cube of the wind speed (a cubic number is a number multiplied by itself three times. They increase very fast: 1, 8, 27, 64 and so on).

World map with dark blue (less wind) in Europe, North America and China
Change in wind speed compared to 1986-2005 if we were to limit global warming to 1.5C. Areas in blue will have less wind; areas in green, more wind.
IPCC Interactive Atlas, CC BY-SA

The reductions in near-surface wind speeds seen in the above map could be due to a phenomenon called “global stilling”. This can be explained by the cold Arctic warming at a faster rate than equatorial regions, which means there is less difference in temperature between hot and cold areas. This temperature difference is what drives large-scale winds around the globe through a phenomenon called thermal wind balance.

With all the talk of wind power being the answer to our energy needs, amid spiralling gas prices and the countdown to COP26, the recent wind drought is a clear reminder of how variable this form of generation can be and that it cannot be the sole investment for a reliable future energy grid. Combining wind with other renewable resources such as solar, hydropower and the ability to smartly manage our electricity demand will be critical at times like this summer when the wind is not blowing.The Conversation

——————————

This blog was written the Cabot Institute for the Environment member Dr Hannah Bloomfield, Postdoctoral Researcher in Climate Risk Analytics, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Read all blogs in our COP26 blog series:

The ‘Ecological Emergency’ and what The Cabot Institute for the Environment are doing about it

The white rhino. Image credit: Meg Barstow, Postgraduate Student at the University of Bristol.

Biodiversity loss and ecological decline pose enormous threats to humans and ecosystems alike, yet due to human activity they are occurring on a scale not seen since the last mass extinction. As part of our campaign running alongside the UN Biodiversity Conference (COP15), this blog will highlight The Cabot Institute for the Environment’s research contributions to the fight against the ‘Ecological Emergency’. 

The Ecological Emergency and the need for evidence 

Human activity is pushing the natural world beyond the limits of its own resilience, causing populations of species to plummet and ecosystems to collapse. As well as the widely appreciated beauty of the natural world and our responsibility to protect it, our reliance on ecosystems makes their survival essential to our own. Ecosystems provide us with food, oxygen, carbon capture, air and water purification, nutrient cycling as well as protection from erosion, floods and droughts. Under current trends, we could see ecosystems and the fundamental services they provide disintegrate within a lifetime.

The urgent need for action is starting to be recognised; a number of UK councils and organizations have declared ‘Ecological Emergency’ and the Climate and Ecological Emergency bill has recently been put forward to replace the ‘outdated’ 2008 Climate Change Act. Last year’s UN Summit on Biodiversity saw leaders from all regions of the world take the ‘Leader’s Pledge for Nature’, which commits to reversing alarming global trends and putting biodiversity and nature on the path to recovery by 2030. If ambitious but necessary targets are to be met, a strong evidence base surrounding ecological decline and its drivers will be fundamental in devising effective restoration and conservation strategies.

Caboteers have made significant contributions to global knowledge, directly influencing both local, national and international policy. Using statements from our experts, this blog will highlight some of our key research contributions to the field and discuss why they are so important in the fight against the ecological emergency. This is as part of the Cabot ‘Ecological Emergency’ Campaign, which is running alongside COP15, the UN Biodiversity Conference, which is taking place this week.

A coral reef. Image credit: Meg Barstow, Postgraduate Student at the University of Bristol.

Restoration ecology 

Restoration ecology is the science which underpins ecological restoration – the much-needed repair of damaged and degraded ecosystems. Professor Jane Memmott, leader of the restoration ecology group, explained, “We work on the links betweenspecies, things like pollination, seed dispersal and predation, as it’s really important to reinstate these links between species, as well as the species themselves. We are particularly interested in species that have disproportionately beneficial effects – keystone species – as these can be used to help jump start restoration programmes.”

Identifying which habitats are the most effective to target in restoration strategies is another key element of the Memmott groups research. For example, ‘The Urban Pollinators Project’ led by Jane, was a inter-city, study surveying urban, natural and farmland pollinator habitats run over four years, with the aim of establishing urban restoration opportunities.

While urbanisation is known to be one of the drivers of biodiversity loss, the project found that cities in fact provide unique restoration opportunities. It found that the most beneficial actions for supporting pollinator networks were increasing the area of allotments, which were pollinator hot-spots, as well as strategic management of gardens and green space through incorporation of pollinator-supporting flower margins and meadows. Our reliance on insects to pollinate 75% of our crops and the alarming rate at which their populations are declining make this research particularly fundamental, and the findings have gone on to advise both local and national policy.

A bee, or ‘pollinator’.  Image credit: Meg Barstow, Postgraduate Student at the University of Bristol.

Experimental conservation 

Experimental conservation is research involving the testing and optimisation of conservation strategies. The experimental ecology and conservation group use mathematical models, small-scale experimental systems and long-term wild population data to do this. These techniques have the advantage of being generally non-invasive, leaving the ecosystems largely undisturbed, while giving huge amounts of crucial conservation information.

Dr Chris Clements, the experimental conservation group leader, explains, “My group develops and tests models which might help us to make more reliable conservation decisions. Our work covers a range of topics, including trying to predict what species and populations might be at most risk of collapse or extinction to understanding how multiple anthropogenically derived stressors might interact to increase extinction risk.” As time is limited and extinction is irreversible, ensuring conservation strategies are optimized and supported by a strong scientific evidence base is crucial to their success.

Forest ecosystems 

Forests are home to more than 80% of all land species of animals, plants and insects and are fundamental to our climate, as an integral part of the carbon cycle. Numerous global changes are causing their coverage to rapidly decline, and as well as this exacerbating climate change through reducing their ability to sequester carbon, it poses an extinction threat to the many species that call them home.

Dr Tommaso Jucker leads research investigating forests and the processes which shape their structure, composition and function. Tommaso explains “We hope to not only understand how forest ecosystems are responding to rapid global change, but also lead research that directly informs the conservation and restoration of the world’s forests.” Establishing a clear picture of what the world’s forests might look like in future is crucial to the conservation of the creatures which inhabit them, as well as for preparing for the impacts on people and climate.

A sloth in its forest habitat. Image credit: Sam J. England, PhD student at the University of Bristol.

Aquatic habitats and oceans 

The ocean constitutes over 90% of habitable space on the planet and the ecosystems within it contribute enormously to biodiversity, livelihoods, the carbon cycle and our food supply. This makes understanding the impact of human activity on these submerged worlds essential. As well as the pressure put on ecosystems by over-exploitation, pollution and habitat destruction, rising CO2 levels and are causing environmental changes in oceans, including warming and acidification.

Microbial ecologist, Professor Marian Yallop, and her group investigate aquatic microorganisms, such as algae and cyanobacteria, and their responses to environmental changes such as temperature, pH and pollutants. These often invisible microorganisms are pivotal to global oxygen production and carbon dioxide absorption, as well as occupying a critical position at the base of many food chains. This makes their fate crucial to that of the planet and all of the organisms on it.

Under the sea. Image credit: Meg Barstow, Postgraduate Student at the University of Bristol.

Behavioral and evolutionary ecology 

Evolution and adaptations are at the core of a species ability to survive. In animals, a key element of this is behaviour. Rapid global changes are having complex implications on species and in many cases, the implications of human activity on animal behaviour are only just starting to be realised. Cabot has a number of behavioural experts working to better understand a variety of species behavioural responses to human activity, in order to understand how we can better manage our environment for their conservation.

Professor Gareth Jones, who predominantly works on bats, investigates their behaviour, evolution and responses to human activity, for example, how anthropogenic light can affect them and their insect pray, as well as how they can be deterred from dangerous infrastructure, such as wind turbines.

Professor Andrew Radford is a behavioural ecologist working on bioacoustics, so the production and reception of sound, on species from all across the animal kingdom. Anthropogenic, or ‘man-made’ noise has significantly altered the sound scape of habitats throughout land and sea, therefore, it is essential to understand how this might interfere with development and behaviour so that negative effects can be mitigated. Incorporation of behavioural insights into conservation and restoration strategies can contribute significantly to their success, therefore, research in the field is a key pillar of conservation.

A bat in flight. Image credit: Meg Barstow,  Postgraduate Student at the University of Bristol.

Conservation Law 

If scientific research is to have a positive impact translated into the real world, it must be implemented in policy, meaning law is a hugely important element of conservation. Dr Margherita Pieraccini from the School of Law, who works predominantly on marine conservation law, explains “My research investigates the socio-legal aspects around ecological governance, with the aim of providing a critical understanding of existing conservation laws and envisaging ecologically just ways of governance.” Ecological decline will negatively affect everyone, however the consequences do not affect communities equally, therefore, evidence based conservation laws are essential to prevent inequality and poverty being exacerbated.

The Nocturnal Problem 

Establishing a full and accurate picture of where evidence is available, and where it is missing, is fundamental to shaping the future path of research and enabling us to protect all ecosystems. Dr Andrew Flack, an environmental and animal historian, is investigating what is known as ‘The Nocturnal Problem’, which is the significant underrepresentation of night-time ecologies in research. Dr Flack explains “My own historical research draws attention to the ways in which nocturnal ecologies and the threats to them have been understood, and that until very recently, scientists have neglected the impact of human activity on night-time ecologies.” Half of everything that has happened or will happen has happened in the night, therefore, nocturnal species make up significant proportions of our ecosystems. Neglecting nocturnal species in research can therefore have catastrophic consequences not only to those species, but to the diurnal (day-time) species that they are intertwined with through ecosystems.

A fox cub. Image credit: Adam Hearne, Student at the University of Bristol.

The University of Bristol’s action on ecology and climate 

As well as being at the forefront of research, Cabot’s home institute, the University of Bristol, has taken a number of actions to support ecology. Wildlife supporting infrastructure, such as wild-flower meadows, bug hotels and ‘living buildings’ are dotted strategically around the campus. The Universities green space, Royal Fort Garden, is a hub of wildlife and supports a variety of species, as well as hosting an installation, ‘Hollow’, made of fragments of 10,000 species of tree from all over the world, inspiring interest in global biodiversity. The University was also the first UK university to declare a climate emergency in April 2019, and has set world-leading targets to reach net-zero by 2030. Mitigating climate change is fundamental to protecting ecosystems, however, as ecological decline could continue alongside decarbonization, or even be exacerbated by the means to get to net-zero, it is essential that it is not overlooked in sustainability strategies.

—————————-

This blog was written by Hilary McCarthy, a University of Bristol PhD Student and part of the Cabot Communicators group.

 

Thank you to University of Bristol students and staff for wildlife photography submissions used in this blog and across the campaign: 
Adam Hearne (UoB Zoology student and wildlife photographer, www.adamhearnewildlife.co.uk, Instagram: @adamhearnewildlife) 
Meg Barstow (UoB, wildlife photographer, Instagram: @cardboard.rocket) 
Sam J. England (PhD student researching aerial electroreception in insects and wildlife photographer, Instagram @sam.j.england, https://www.samjengland.com)

Ecological decline: an overlooked emergency?

A blue tit landing. Image credit: Adam Hearne, Student at the University of Bristol.
The words ‘Ecological Emergency’ are appearing in an increasing number of environmental declarations, strategies and parliamentary bills. This blog will discuss the need to recognise ecological decline as an emergency in its own right, as well as being an element of the climate emergency. This will be part of an ‘Ecological Emergency’ Cabot Campaign which will run alongside the United Nations Convention on Biological Diversity (COP15), which is happening this week.

Last year, The Cabot Institute for the Environment’s home city Bristol became the first major city to declare an ecological emergency. This declaration came only two years after Bristol became the first European city to declare a climate emergency. Many UK councils and organizations have since declared joint “Climate and Ecological” emergencies, and the Climate and Ecological Emergency Bill has been put forward to replace the ‘outdated’ 2008 Climate Change Act. These declarations show that while climate and ecology are intrinsically linked, there is increasing recognition of ecological decline as an emergency in its own right as well as being a consequence of and contributor to the climate emergency. Climate mitigation is fundamental to safeguarding ecosystems, however, ecological decline could continue alongside decarbonisation and even be exacerbated by the means to get to net-zero, if the ecological emergency is overlooked in sustainability strategies and policy.

The UN Convention on Biodiversity (COP15) is taking place this week and a Cabot Campaign on the ‘Ecological Emergency’ will run alongside it. The campaign will include a series of blogs and posts across our website and social media. Using statements from Cabot researchers in relevant fields, this blog will discuss the ecological emergency and the need for targeted action.

 

Bristol suspension bridge. Image credit: Meg Barstow, Postgraduate Student at the University of Bristol.
 
What is the ecological emergency?

Biodiversity is being lost on a scale not seen since the last mass extinctionDr Chris Clements Caboteer and leader of the experimental conservation group explains. While Dr Andrew Flack, an environmental and animal historian, described the ecological emergency as “among the most profound crises of our time, diminishing not only planetary diversity but also the very experience of being human on our beautiful, rich planet“.

More quantitively, the statistics which drove Bristol’s pioneering ‘Ecological Emergency’ declaration include:

  • 60% of the worlds wild animals have been lost since 1970
  • One in seven UK wildlife species are at risk of extinction
  • More locally in Bristol and the surrounding areas, swift and starling populations have dropped by more than 96% since 1994
  • 41% of insects are threatened with extinction, posing a huge threat to our global food supply due to 75% of our crops being reliant on pollination by insects
  • Three-quarters of land and two-thirds of marine environment have been significantly altered by human actions
 
A honey bee on a flower. Image credit: Callum Mclellan, Student at the University of Bristol.

In their statements, many of our academics highlighted that, as well as the beauty of the natural world and our responsibility to preserve it, our reliance on ecosystems makes their survival essential to our own. Ecosystems provide us with food, oxygen, nutrient cycling, carbon absorption, air and water purification, and protection from erosion, floods and droughts. Many of these services are already under increased pressure due to climate change, which ecological decline is intertwined with. Destruction of ecosystems and exploitation of wildlife can also cause the emergence of infectious disease, as has been demonstrated by the occurrence of the current COVID-19 pandemic. Biodiversity loss and climate action failure both earned their own place in the top five threats to humanity in the next five years, according to the 2020 Global Risks Report from the World Economic Forum. Though these interdependent crises will drastically affect everyone, their consequences will not be felt equally among communities and are sadly already intensifying inequality and poverty.

Intertwined emergencies

 “The climate emergency is certainly exacerbating the ecological emergency” Professor Jane Memmott, a leading restoration ecologist, explained. Under current trends, climate change is projected to drive many ecosystems to collapse. Simultaneously, large-scale destruction of ecological carbon sinks, such as forests, wetlands and mangroves, is contributing to climate change. There are several feedback loops at play: destruction of carbon sinks is increasing atmospheric CO2, which drives climate change and in turn further ecological degradation, which then further debilitates natures ability to store carbon. This forms a vicious cycle, with profound consequences for the planet.

The interdependent emergencies share similar causes, consequences and solutions, however, Dr Tommaso Jucker, whose research is on forests and their responses to rapid global change, explains “it is not only climate change that threatens biodiversity, and the effects of biodiversity loss on people will not just be a subset of those brought on by climate change”. As well as climate change, threats to ecosystems include species over-exploitation, habitat destruction, pesticides and pollution of land, air and water. These could all continue simultaneously to our efforts to decarbonise, and even be exacerbated by the means to get to net-zero, if the ecological emergency is overlooked in sustainability strategies.
 
A forest. Image credit: Dr. Stephen Montgomery, Senior Research Fellow at the University of Bristol

A coordinated approach to climate and ecology

The climate emergency is becoming mainstream conversation and it is now widely accepted that huge changes in policy, infrastructure and behaviour are needed. However, while the climate emergency is gaining recognition, the ecological emergency is comparatively overlooked. If we are to avoid ecological collapse, a co-ordinated approach to the crises is essential; focusing purely on technological advancement and decarbonisation runs the risk of allowing and even exacerbating further ecosystem destruction.

Natural climate solutions, such as strategic management of forests, grasslands and wetlands, can offer around a third of the climate mitigation required by 2030 to keep warming below 2 °C. These environments are not only carbon sinks, but biodiversity havens, making them effective solutions for ecological decline as well as climate change. Protecting ecosystems is also often significantly more cost-effective than human-made climate interventions. However, due to our often unnatural lifestyles and a fast-growing population, nature alone will not be enough to mitigate human impact on the environment.  

A peacock butterfly. Image credit: Sam J. England, PhD Student at the University of Bristol.

The need for targeted action 

As well as the intrinsic links and coordinated solutions to the climate and ecological emergencies, there is a lot that can be done to specifically alleviate the ecological emergency. This is exemplified by Bristol’s ‘One City Ecological Emergency Strategy‘ which predominantly focuses on land management, pesticide use, water quality and consumption of products that undermine global ecosystems. This is in addition to climate mitigation, already covered in the Climate Emergency Action Plan.

Last year’s UN Summit for Biological Diversity saw leaders from all regions of the world take the ‘Leader’s Pledge for Nature’, which commits to reversing alarming global biodiversity loss trends by 2030. To achieve this ambitious but necessary goal, both climate action and targeted conservation and restoration strategies will be needed on both a local and global level. For these crises to be mitigated, some uncomfortable truths surrounding lifestyles many have become accustomed to will have to be faced.

The word ‘emergency’ from a scientific perspective 

Despite widespread agreement on the obvious threats posed by biodiversity loss and the need for action, the word ‘emergency’ can be controversial, especially amongst the scientific community. Professor Richard Wallexplained “As a research scientist, my view is that the sound-bite ‘ecological emergency’ is not sufficiently nuanced to be useful in scientific discourse and is best left to journalists and campaigners; it has no scale or quantification and what constitutes an ‘emergency’ is highly subjective.”

Public awareness surrounding our changing climate and declining ecosystems are important, however, if action doesn’t follow declarations, then they run the risk of being no more than empty PR stunt and can increase public immunity to the word as well as the impacts of the crisis itself. COP15, which is happening this week, will be pivotal in deciding the future of our own species, as well as all the other species that share our planet.

—————————-

This blog was written by Hilary McCarthy, a University of Bristol PhD Student and part of the Cabot Communicators group.

Thank you to University of Bristol students and staff for wildlife photography submissions used in this blog and across the campaign: Adam Hearne (UoB student and wildlife photographer, www.adamhearnewildlife.co.uk, Instagram: @adamhearnewildlife) Meg Barstow (UoB student, wildlife photographer, Instagram: @cardboard.rocket)
Dr Stephen Montgomery (Senior Research Fellow, Neurobiology and Behaviour, School of Biological Sciences) Sam J. England (PhD student researching aerial electroreception in insects and wildlife photographer, Instagram @sam.j.england, https://www.samjengland.com)