Towards urban climate resilience: learning from Lusaka

 

“This is a long shot!”

These were the words used by Richard Jones (Science Fellow, Met Office) in August 2021 when he asked if I would consider leading a NERC proposal for a rapid six-month collaborative international research and scoping project, aligned to the COP26 Adaptation and Resilience theme. The deadline was incredibly tight but the opportunity was too good to pass up – we set to work!

Background to Lusaka and FRACTAL

Zambia’s capital city, Lusaka, is one of Africa’s fastest growing cities, with around 100,000 people in the early 1960s to more than 3 million people today. 70% of residents live in informal settlements and some areas are highly prone to flooding due to the low topography and highly permeable limestone sitting on impermeable bedrock, which gets easily saturated. When coupled with poor drainage and ineffective waste management, heavy rainfall events during the wet season (November to March) can lead to severe localised flooding impacting communities and creating serious health risks, such as cholera outbreaks. Evidence from climate change studies shows that heavy rainfall events are, in general, projected to increase in intensity over the coming decades (IPCC AR6, Libanda and Ngonga 2018). Addressing flood resilience in Lusaka is therefore a priority for communities and city authorities, and it became the focus of our proposal.

Lusaka was a focal city in the Future Resilience for African CiTies and Lands (FRACTAL) project funded jointly by NERC and DFID from 2015 to 2021. Led by the Climate System Analysis Group (CSAG) at the University of Cape Town, FRACTAL helped to improve scientific knowledge about regional climate in southern Africa and advance innovative engagement processes amongst researchers, practitioners, decision-makers and communities, to enhance the resilience of southern African cities in a changing climate. I was lucky enough to contribute to FRACTAL, exploring new approaches to climate data analysis (Daron et al., 2019) and climate risk communication (Jack et al., 2020), as well as taking part in engagements in Maputo, Mozambique – another focal city. At the end of FRACTAL there was a strong desire amongst partners to sustain relationships and continue collaborative research.

I joined the University of Bristol in April 2021 with a joint position through the Met Office Academic Partnership (MOAP). Motivated by the potential to grow my network, work across disciplines, and engage with experts at Bristol in climate impacts and risk research, I was excited about the opportunities ahead. So when Richard alerted me to the NERC call, it felt like an amazing opportunity to continue the work of FRACTAL and bring colleagues at the University of Bristol into the “FRACTAL family” – an affectionate term we use for the research team, which really has become a family from many years of working together.

Advancing understanding of flood risk through participatory processes

Working closely with colleagues at Bristol, University of Zambia, University of Cape Town, Stockholm Environment Institute (SEI – Oxford), Red Cross Climate Centre, and the Met Office, we honed a concept building on an idea from Chris Jack at CSAG to take a “deep dive” into the issues of flooding in Lusaka – an issue only partly explored in FRACTAL. Having already established effective relationships amongst those involved, and with high levels of trust and buy-in from key institutions in Lusaka (e.g., Lusaka City Council, Lusaka Water Security Initiative – LuWSI), it was far easier to work together and co-design the project; indeed the project conceived wouldn’t have been possible if starting from scratch. Our aim was to advance understanding of flood risk and solutions from different perspectives, and co-explore climate resilient development pathways that address the complex issue of flood risk in Lusaka, particularly in George and Kanyama compounds (informal settlements). The proposal centred on the use of participatory processes that enable different communities (researchers, local residents, city decision makers) to share and interrogate different types of knowledge, from scientific model datasets to lived experiences of flooding in vulnerable communities.

The proposal was well received and the FRACTAL-PLUS project started in October 2021, shortly before COP26; PLUS conveys how the project built upon FRACTAL but also stands for “Participatory climate information distillation for urban flood resilience in LUSaka”. The central concept of climate information distillation refers to the process of extracting meaning from multiple sources of information, through careful and open consideration of the assumptions, strengths and limitations in constructing the information.

The “Learning Lab” approach

Following an initial evidence gathering and dialogue phase at the end of 2021, we conducted two collaborative “Learning Labs” held in Lusaka in January and March 2022. Due to Covid-19, the first Learning Lab was held as a hybrid event on 26-27 January 2022. It was facilitated by the University of Zambia team with 20 in-person attendees including city stakeholders, the local project team and Richard Jones who was able to travel at short notice. The remainder of the project team joined via Zoom. Using interactive exercises, games (a great way to promote trust and exchange of ideas), presentations, and discussions on key challenges, the Lab helped unite participants to work together. I was amazed at the way participants threw themselves into the activities with such enthusiasm – in my experience, this kind of thing never happens when first engaging with people from different institutions and backgrounds. Yet because trust and relationships were already established, there was no apparent barrier to the engagement and dialogue. The Lab helped to further articulate the complexities of addressing flood risks in the city, and showed that past efforts – including expensive infrastructure investments – had done little to reduce the risks faced by many residents.

One of the highlights of the Labs, and the project overall, was the involvement of cartoon artist Bethuel Mangena, who developed a number of cartoons to support the process and extract meaning (in effect, distilling) the complicated and sensitive issues being discussed. The cartoon below was used to illustrate the purpose of the Lab, as a meeting place for ideas and conversations drawing on different sources of information (e.g., climate data, city plans and policies) and experiences of people from flood-affected communities. All of the cartoons generated in the project, including the feature image for this blog, are available in a Flickr cartoon gallery – well worth a look!

Image: Cartoon highlighting role of Learning Labs in FRACTAL-PLUS by Bethuel Mangena

Integrating scientific and experiential knowledge of flood risk

In addition to the Labs, desk-based work was completed to support the aims of the project. This included work by colleagues in Geographical Sciences at Bristol, Tom O’Shea and Jeff Neal, to generate high-resolution flood maps for Lusaka based on historic rainfall information and for future climate scenarios. In addition, Mary Zhang, now at the University of Oxford but in the School of Policy Studies at Bristol during the project, collaborated with colleagues at SEI-Oxford and the University of Zambia to design and conduct online and in-person surveys and interviews to elicit the lived experiences of flooding from residents in George and Kanyama, as well as experiences of those managing flood risks in the city authorities. This work resulted in new information and knowledge, such as the relative perceived roles of climate change and flood management approaches in the levels of risk faced, that was further interrogated in the second Learning Lab.

Thanks to a reduction in covid risk, the second lab was able to take place entirely in person. Sadly I was unable to travel to Lusaka for the Lab, but the decision to remove the virtual element and focus on in-person interactions helped further promote active engagement amongst city decision-makers, researchers and other participants, and ultimately better achieve the goals of the Lab. Indeed the project helped us learn the limits of hybrid events. Whilst I remain a big advocate for remote technology, the project showed it can be far more productive to have solely in-person events where everyone is truly present.

The second Lab took place at the end of March 2022. In addition to Lusaka participants and members of the project team, we were also joined by the Mayor of Lusaka, Ms. Chilando Chitangala. As well as demonstrating how trusted and respected our partners in Lusaka are, the attendance of the mayor showed the commitment of the city government to addressing climate risks in Lusaka. We were extremely grateful for her time engaging in the discussions and sharing her perspectives.

During the lab the team focused on interrogating all of the evidence available, including the new understanding gained through the project from surveys, interviews, climate and flood data analysis, towards collaboratively mapping climate resilient development pathways for the city. The richness and openness in the discussions allowed progress to be made, though it remains clear that addressing flood risk in informal settlements in Lusaka is an incredibly challenging endeavour.

Photo: Participants at March 2022 Learning Lab in Lusaka

What did we achieve?

The main outcomes from the project include:

  1. Enabling co-exploration of knowledge and information to guide city officials (including the mayor – see quote below) in developing Lusaka’s new integrated development plan.
  2. Demonstrating that flooding will be an ongoing issue even if current drainage plans are implemented, with projections of more intense rainfall over the 21st century pointing to the need for more holistic, long-term and potentially radical solutions.
  3. A plan to integrate flood modelling outputs into the Lusaka Water Security Initiative (LuWSI) digital flood atlas for Lusaka.
  4. Sustaining relationships between FRACTAL partners and building new links with researchers at Bristol to enable future collaborations, including input to a new proposal in development for a multi-year follow-on to FRACTAL.
  5. A range of outputs, including contributing to a FRACTAL “principles” paper (McClure et al., 2022) supporting future participatory projects.

It has been such a privilege to lead the FRACTAL-PLUS project. I’m extremely grateful to the FRACTAL family for trusting me to lead the project, and for the input from colleagues at Bristol – Jeff Neal, Tom O’Shea, Rachel James, Mary Zhang, and especially Lauren Brown who expertly managed the project and guided me throughout.

I really hope I can visit Lusaka in the future. The city has a special place in my heart, even if I have only been there via Zoom!

“FRACTAL-PLUS has done well to zero in on the issue of urban floods and how climate change pressures are making it worse. The people of Lusaka have continually experienced floods in various parts of the city. While the problem is widespread, the most affected people remain to be those in informal settlements such as George and Kanyama where climate change challenges interact with poor infrastructure, poor quality housing and poorly managed solid waste.” Mayor Ms. Chilando Chitangala, 29 March 2022

————————————————————————————-

This blog is written by Dr Joe Daron, Senior Research Fellow, Faculty of Science, University of Bristol;
Science Manager, International Climate Services, Met Office; and Cabot Institute for the Environment member.
Find out more about Joe’s research at https://research-information.bris.ac.uk/en/persons/joe-daron.

 

COP27: how the fossil fuel lobby crowded out calls for climate justice

COP27 has just wrapped up. Despite much excitement over a new fund to address “loss and damage” caused by climate change, there is also anger about perceived backsliding on commitments to lower emissions and phase out fossil fuels.

As an academic expert in climate justice who went along this year, hoping to make a difference, I share this anger.

“Together for Implementation” was the message as COP27 got underway on November 6 and some 30,000 people descended on the Egyptian resort town of Sharm El Sheik. The UNFCCC strictly regulates who can attend negotiations. Parties (country negotiation teams), the media and observers (NGOs, IGOs and UN special agencies) must all be pre-approved.

I went along as an NGO observer, to represent the University of Bristol Cabot Institute for the Environment. Observers have access to the main plenaries and ceremonies, the pavilion exhibition spaces and side events. The negotiation rooms, however, are largely off limits. Most of the day is spent listening to speeches, networking and asking questions at side-events.

Woman sits in large conference room
The author at the COP27 opening plenary.
Colin Nolden, Author provided

The main role of observers, then, is to apply indirect pressure on negotiators, report on what is happening and network. Meaningful impact on and participation in negotiations seems out of reach for many of the passionate people I met.

Who does – and doesn’t – get a say

It has long been known that who gets a say in climate change governance is skewed. As someone working on fair decision making as part of a just transition to less carbon-intensive lifestyles and a climate change-adapted society, it is clear that only the most powerful voices are reflected in treaties such as the Paris Agreement. At last year’s COP26, men spoke 74% of the time, indigenous communities faced language barriers and racism and those who could not obtain visas were excluded entirely.

Despite being advertised as “Africa’s COP”, COP27 further hampered inclusion. The run up was dogged by accusations of inflated hotel prices and concerns over surveillance, and warnings about Egypt’s brutal police state. The right to protest was limited, with campaigners complaining of intimidation and censorship.

Conference area with 'AfricaCOP27' sign
Africa’s COP?
Alix Dietzel, Author provided

Arriving in Sharm El Sheik, there was an air of intimidation starting at the airport, where military personnel scrutinised passports. Police roadblocks featured heavily on our way to the hotel and military officials surrounded the COP venue the next morning.

Inside the venue, there were rumours we were being watched and observers were urged not to download the official app. More minor issues included voices literally not being heard due to unreliable microphones and the constant drone of aeroplanes overhead, and a scarcity of food with queues sometimes taking an hour or more. Sponsored by Coca Cola, it was also difficult to access water to refill our bottles. We were sold soft drinks instead.

Outside of the venue, unless I was with a male colleague, I faced near constant sexual harassment, hampering my ability to come and go from the summit. All these issues, major and minor, affect who is able to contribute at COP.

Fossil fuel interests dominated

In terms of numbers, the United Arab Emirates (UAE) registered the largest party delegation with more than 1,000 people. The oil and gas-rich nation of just 9 million people had a delegation almost twice the size of the next biggest, Brazil. More troublingly, the oil and gas lobby representatives were registered in the national delegations of 29 different countries and were larger than any single national delegation (outside of the UAE). According to one NGO, at least 636 of those attending COP27 were lobbyists for the fossil-fuel industry.

Large oil tanker goes past city skyline
The UAE has some of the world’s largest reserves of both oil and gas.
Nick Fox / shutterstock

Despite the promise that COP27 would foreground African interests, the fossil lobby outnumbers any delegation from Africa. These numbers give a sense of who has power and say at these negotiations, and who does not.

Protecting the petrostates

The main outcomes of COP27 are a good illustration of the power dynamics at play. There is some good news on loss and damage, which was added to the agenda at the last moment. Nearly 200 countries agreed that a fund for loss and damage, which would pay out to rescue and rebuild the physical and social infrastructure of countries ravaged by extreme weather events, should be set up within the next year. However, there is no agreement yet on how much money should be paid in, by whom, and on what basis.

Much more worryingly, there had been a push to phase out all fossil fuels by countries including some of the biggest producers: the EU, Australia, India, Canada, the US and Norway. However, with China, Russia, Brazil, Saudi Arabia and Iran pushing back, several commitments made at COP26 in Glasgow were dropped, including a target for global emissions to peak by 2025. The outcome was widely judged a failure on efforts to cut emissions: the final agreed text from the summit makes no mention of phasing out fossil fuels and scant reference to the 1.5℃ target.

Laurence Tubiana, one of the architects of the Paris Agreement, blamed the host country, Egypt, for allowing its regional alliances to sway the final decision, producing a text that clearly protects oil and gas petrostates and the fossil fuel industries.

The final outcomes demonstrate that, despite the thousands who were there to advocate for climate justice, it was the fossil fuel lobby that had most influence. As a climate justice scholar, I am deeply worried about the processes at COPs, especially given next year’s destination: Dubai. It remains to be seen what happens with the loss and damage fund, but time is running out and watered down commitments on emissions are at this stage deeply unjust and frankly dangerous.The Conversation

———————-

This blog is written by Cabot Institute for the Environment member Dr Alix Dietzel, Senior Lecturer in Climate Justice, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

The Horn of Africa has had years of drought, yet groundwater supplies are increasing – why?

 

Harvepino / shutterstock

The Horn of Africa – which includes Somalia, Ethiopia, Kenya and some surrounding countries – has been hit by increasingly frequent and devastating droughts. Despite this, it seems the region has an increasing amount of groundwater. And this water could help support drought-stricken rural communities.

That’s the key finding from our new research, in which we discovered that while overall rainfall is decreasing, an increase in “high-intensity” rainfall has led to more water being stored deep underground. It’s a paradoxical finding, yet one that may help one of the world’s most vulnerable regions adapt to climate change.

In the Horn of Africa, rural communities live in a constant state of water scarcity punctuated by frequent periods of food insecurity. People there rely on the “long rains” between March and May and the “short rains” between October and December to support their lives and livelihoods.

As we write this, the region’s drylands are experiencing a fifth consecutive season of below-average rainfall. This has left 50 million people in acute food insecurity. The droughts have caused water shortages, livestock deaths, crop failures, conflict and even mental health challenges.

The drought is so severe that it is even affecting zebras, giraffes and other wildlife, as all surface waters are drying up and edible vegetation is becoming scarce. Worryingly, a sixth failed rainy season has already been predicted for March to May 2023.

Long rains down, short rains up

In a new paper we investigated changes in seasonal rainfall in the Horn of Africa over the past 30 years. We found the total rainfall within the “long rains” season is declining, perhaps related to the warming of a particular part of the Pacific Ocean. However, rainfall is increasing in the “short rains”. That’s largely due to a climate phenomenon known as the Indian Ocean Dipole, when a warmer-than-usual Indian Ocean produces higher rainfall in east Africa, similar to El Niño in the Pacific.

We then investigated what these rainfall trends mean for water stored below ground. Has it decreased in line with declining “long rains”, or risen due to the increasing “short rains”?

Map of East Africa
The Horn of Africa borders the Red Sea, the Gulf of Aden and the Indian Ocean.
Peter Hermes Furian / shutterstock

To do this we made use of a pair of satellites which orbit repeatedly and detect small changes in the Earth’s gravitational field that can be interpreted as changes in the mass of water storage. If there’s a significant increase in water storage underground, then the satellite will record a stronger gravity field at that location compared to the previous measurement, and vice versa. From this, the mass of water added or lost in that location can be determined.

Using these satellite-derived estimates, we found that water storage has been increasing in recent decades. The increase correlates with the increasing “short rains”, and has happened despite the “long rains” getting drier.

Given that the long rains deliver more seasonal rain than the short rains, we wanted to understand the paradoxical finding that underground water is increasing. A clue is given by examining how rainfall is converted into groundwater in drylands.

When rain is light and drizzly, much of the water that reaches the ground dampens the soil surface and soon evaporates back into the warm, dry atmosphere. To become groundwater, rainfall instead needs to be intense enough so that water will quickly infiltrate deep into the soil. This mostly happens when lots of rain falls at once and causes dry riverbeds to fill with water which can then leak into underground aquifers.

People stand in river, rainy sky.
Heavy rains fill a dry river bed in the Somali region of Ethiopia.
Stanley Dullea / shutterstock

These most intense rainfall events are increasing in the “short rains”, in line with the overall increase in total rain in that season. And despite a decrease in overall rainfall in the “long rains”, intense rainfall has remained consistently high over time. This means that both rainy seasons have enough intense rainfall to increase the amount of water stored underground.

Finally, we demonstrated that the increasing water storage in this region is not connected to any rise in soil moisture near the surface. It therefore represents “banked” water that resides deep below ground and likely contributes to a growing regional groundwater aquifer in this region.

Groundwater can help people adapt to climate change

While early warning networks and humanitarian organisations focus on the urgent impacts of drought, our new research points to a silver lining that may support long-term climate adaptation. Those rising groundwater supplies we have identified may potentially be exploited to support people in rural areas whose food and water are increasingly insecure.

But there are some caveats. First, we have not assessed the depth of the available groundwater across the region, but we suggest that the water table is shallow enough to be affected by seasonal rainfall. This means it may also be shallow enough to support new bore holes to extract it. Second, we do not know anything about the quality of the stored groundwater and whether it can be deemed suitable for drinking. Finally, we do not know exactly what will happen if the most extreme droughts of the past few seasons continue and both long and short rains fail, causing intense rainfall to decrease too.

Nevertheless, our findings point to the need for extensive groundwater surveys across the Horn of Africa drylands to ascertain whether this increasing water resource may be viable enough to offset the devastating droughts. Groundwater could potentially irrigate fields and provide drinking water for humans and livestock, as part of a strategy to help this vulnerable region adapt to the effects of climate change.The Conversation

————————

This blog was written by Cabot Institute for the Environment member Katerina Michaelides, Associate Professor, School of Geographical Sciences, University of BristolMichael Singer, Professor in Physical Geography (Hydrology and Geomorphology), Cardiff University; and Markus Adloff, PostDoctoral Researcher, Earth System Modelling, Université de BerneThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Are you a journalist looking for climate experts? We’ve got you covered

We’ve got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via Victoria Tagg, our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489.

Climate change / climate emergency / climate science / climate-induced disasters

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports.

Dr Vikki Thompson – expert on climate extremes, particularly heat extremes. Follow on Twitter @ClimateVikki

Dr Katerina Michalides – expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_kmichaelides.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Follow on Twitter @ClimateDann.

Professor Dan Lunt – expert on past climate change, with a focus on understanding how and why climate has changed in the past and what we can learn about the future from the past. Dan is also a Lead Author on IPCC AR6. Follow on Twitter @ClimateSamwell.

Professor Jonathan Bamber – expert on the impact of melting land ice on sea level rise (SLR) and the response of the ocean to changes in freshwater forcing. Follow on Twitter @jlbamber

Professor Paul Bates CBE – expert in the science of flooding, risk and reducing threats to life and economic losses worldwide. Follow on Twitter @paul_d_bates

Professor Tony Payne – expert in the effects of climate change on earth systems and glaciers.

Dr Matt Palmer – expert in sea level and ocean heat content research at the Met Office Hadley Centre and University of Bristol. Follow on Twitter @mpclimate.

Net Zero / Energy / Renewables

Professor Valeska Ting – Engineer and expert in net zero, low carbon technologies, low carbon energy and flying. Also an accomplished STEM communicator, is an BAME Expert Voice for the BBC Academy. Follow on Twitter @ProfValeskaTing.

Professor Philip Taylor – Expert in net zero, energy systems, energy storage, utilities, electric power distribution. Also Pro-Vice Chancellor at the University of Bristol. Follow on Twitter @rolyatlihp.

Dr Colin Nolden – expert in sustainable energy policyregulation and business models and interactions with secondary markets such as carbon markets and other sectors such as mobility. Colin will be at COP27. Colin will be in attendance in the Blue Zone at COP27.

Professor Charl Faul – expert in novel functional materials for sustainable energy applications e.g. in CO2 capture and conversion and energy storage devices.  Follow on Twitter @Charl_FJ_Faul.

Climate finance

Dr Rachel James – Expert in climate finance, damage, loss and decision making. Also has expertise in African climate systems and contemporary and future climate change. Follow on Twitter @_RachelJames. Rachel will be in attendance in the Blue Zone at COP27.

Climate justice

Dr Alix Dietzel – climate justice and climate policy expert. Focusing on the global and local scale and interested in how just the response to climate change is and how we can ensure a just transition. Alix will be at COP27. Follow on Twitter @alixdietzel. Alix will be in attendance in the Blue Zone at COP27.

Dr Ed Atkins – expert on environmental and energy policy, politics and governance and how they must be equitable and inclusive. Also interested in local politics of climate change policies and energy generation and consumption. Follow on Twitter @edatkins_.

Climate activism / Extinction Rebellion

Dr Oscar Berglund – expert on climate change activism and particularly Extinction Rebellion (XR) and the use of civil disobedience. Follow on Twitter @berglund_oscar.

Air pollution / Greenhouse gases

Dr Aoife Grant – expert in greenhouse gases and methane. Set up a monitoring station at Glasgow for COP26 to record emissions.

Professor Matt Rigby – expert on sources and sinks of greenhouse gases and ozone depleting substances. Follow on Twitter @TheOtherMRigby.

Land, nature and food

Viola Heinrich – expert in emissions and climate mitiagion potential within the land use sector in the tropics, especially the Brazilian Amazon. IPCC author. Follow on Twitter @vh_trees.
Dr Jo House – expert on land and climate interactions, including emissions of carbon dioxide from land use change (e.g. deforestation), climate mitigation potential from the land (e.g. afforestationbioenergy), and implications of science for policy. Previously Government Office for Science’s Head of Climate Advice. Follow on Twitter @Drjohouse.
Dr Taro Takahashi – expert on farminglivestock production systems as well as progamme evaluation and general equilibrium modelling of pasture and livestock-based economies.
Dr Maria Paula Escobar-Tello – expert on tensions and intersections between livestock farming and the environment.

Climate change and infrastructure

Dr Maria Pregnolato – expert on effects of climate change and flooding on infrastructure. Follow on Twitter @MariaPregnolat1.

Plastic and the environment

Dr Charlotte Lloyd – expert on the fate of chemicals in the terrestrial environment, including plasticsbioplastics and agricultural wastes. Follow on Twitter @DrCharlLloyd.

Climate change and health

Dr Dan O’Hare – expert in climate anxiety and educational psychologist. Follow on Twitter @edpsydan.

Cabot Institute for the Environment at COP27

We will have three academics in attendance at the Blue Zone at COP27. These are:
Dr Alix Dietzel, Dr Rachel James and Dr Colin Nolden. All are media-trained and feature in the list above.

Read more about COP on our website at https://bristol.ac.uk/cabot/what-we-do/projects/cop/

Watch our Cabot Conversations – 10 conversations between 2 experts on a climate change issue, all whilst an artist listens in the background and interprets the conversation into a beautiful piece of art in real time. Find out more at bristol.ac.uk/cabot/conversations.
——————————
This blog was written by Amanda Woodman-Hardy, Communications and Engagement Officer at the Cabot Institute for the Environment. Follow on Twitter @Enviro_Mand and @cabotinstitute.

Just Stop Oil: do radical protests turn the public away from a cause? Here’s the evidence

 

Just Stop Oil handout / EPA, CC BY-NC

Members of the protest group Just Stop Oil recently threw soup at Van Gogh’s Sunflowers in the National Gallery in London. The action once again triggered debate about what kinds of protest are most effective.

After a quick clean of the glass, the painting was back on display. But critics argued that the real damage had been done, by alienating the public from the cause itself (the demand that the UK government reverse its support for opening new oil and gas fields in the North Sea).

Supporters of more militant forms of protest often point to historical examples such as the suffragettes. In contrast with Just Stop Oil’s action, when the suffragette Mary Richardson went to the National Gallery to attack a painting called The Rokeby Venus, she slashed the canvas, causing major damage.

painting of woman's rear, with slash marks
The Rokeby Venus: the 17th century painting by Diego Velázquez was slashed by a suffragette, though later repaired.
National Gallery / wiki

However, many historians argue that the contribution of the suffragettes to women getting the vote was negligible or even counterproductive. Such discussions often seem to rely on people’s gut feelings about the impact of protest. But as a professor of cognitive psychology, I know that we don’t have to rely on intuition – these are hypotheses that can be tested.

The activist’s dilemma

In one set of experiments researchers showed people descriptions of protests and then measured their support for the protesters and the cause. Some participants read articles describing moderate protests such as peaceful marches. Others read articles describing more extreme and sometimes violent protests, for example a fictitious action in which animal rights activists drugged a security guard in order to break into a lab and remove animals.

Protesters who undertook extreme actions were perceived to be more immoral, and participants reported lower levels of emotional connection and social identification with these “extreme” protesters. The effects of this kind of action on support for the cause were somewhat mixed (and negative effects may be specific to actions that incorporate the threat of violence).

Overall, these results paint a picture of the so-called activist’s dilemma: activists must choose between moderate actions that are largely ignored and more extreme actions that succeed in gaining attention, but may be counterproductive to their aims as they tend to make people think less of the protesters.

Activists themselves tend to offer a different perspective: they say that accepting personal unpopularity is simply the price to be paid for the media attention they rely on to “get the conversation going” and win public support for the issue. But is this the right approach? Could activists be hurting their own cause?

Hating protesters doesn’t affect support

I’ve conducted several experiments to answer such questions, often in collaboration with students at the University of Bristol. To influence participants’ views of protesters we made use of a well-known framing effect whereby (even subtle) differences in how protests are reported have a pronounced impact, often serving to delegitimise the protest.

For example, the Daily Mail article reporting the Van Gogh protest referred to it as a “stunt” which is part of a “campaign of chaos” by “rebellious eco-zealots”. The article does not mention the protesters’ demand.

Our experiments took advantage of this framing effect to test the relationship between attitudes to the protesters themselves and to their cause. If the public’s support for a cause depends on how they feel about the protesters, then a negative framing – which leads to less positive attitudes toward protesters – should result in lower levels of support for the demands.

But that’s not what we found. In fact, experimental manipulations that reduced support for the protesters had no impact on support for the demands of those protesters.

We’ve replicated this finding across a range of different types of nonviolent protest, including protests about racial justice, abortion rights and climate change, and across British, American and Polish participants (this work is being prepared for publication). When members of the public say, “I agree with your cause, I just don’t like your methods,” we should take them at their word.

Decreasing the extent to which the public identifies with you may not be helpful for building a mass movement. But high publicity actions may actually be a very effective way to increase recruitment, given relatively few people ever become activists. The existence of a radical flank also seems to increase support for more moderate factions of a social movement, by making these factions appear less radical.

Protest can set the agenda

Another concern may be that most of the attention obtained by radical actions is not about the issue, focusing instead on what the protesters did. However, even where this is true, the public conversation opens up the space for some discussion of the issue itself.

Protest plays a role in agenda seeding. It doesn’t necessarily tell people what to think, but influences what they think about. Last year’s Insulate Britain protests are a good example. In the months after the protests began on September 13 2021, the number of mentions of the word “insulation” (not “Insulate”) in UK print media doubled.

Graph showing mentions of 'insulation' in UK news media over time with a sharp rise between August and September 2021
Spot when the Insulate Britain protests began. (Author’s own research, using Factiva database to search UK broadsheet and tabloid newspapers)
Colin Davis, Author provided

Some people don’t investigate the details of an issue, yet media attention may nevertheless promote the issue in their mind. A YouGov poll released in early June 2019 showed “the environment” ranked in the public’s top three most important issues for the first time.

Pollsters concluded that the “sudden surge in concern is undoubtedly boosted by the publicity raised for the environmental cause by Extinction Rebellion” (which had recently occupied prominent sites in central London for two weeks). There’s also evidence that home insulation has risen up the policy agenda since Insulate Britain’s protests.

Dramatic protest isn’t going away. Protagonists will continue to be the subject of (mostly) negative media attention, which will lead to widespread public disapproval. But when we look at public support for the protesters’ demands, there isn’t any compelling evidence for nonviolent protest being counterproductive. People may “shoot the messenger”, but they do – at least, sometimes – hear the message.The Conversation

————————–

This blog is written by Cabot Institute for the Environment member Professor Colin Davis, Chair in Cognitive Psychology, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

 

Colin Davis

 

 

Climate change will not impact everyone the same way; but we do not know how

The National Guard rescuing a flood victim. Credit The National Guard, Flickr, CC BY 2.0.

Climate change is affecting the lives of billions of people. The impacts range from water scarcity and food production to health and wellbeing. Climate change impacts are felt in the cities and settlements where people live. We have heard many times that we need to ensure no one is left behind in climate change adaptation and mitigation. To ensure that every voice matters, the impacts of climate change on different groups have to be taken into account. Many individuals or groups are disproportionately affected by climate change as they have less capacity to prepare for, respond to, and recover from climate-related hazards. Worldwide, there are more than one billion persons with disabilities, 15% of the world’s population. The preamble of the Paris Agreement states that parties should respect, promote and consider their respective obligations on human rights and the rights of persons with disabilities, when taking action to address climate change.

Hence, IPCC working group II (WGII) 6th assessment report which was released earlier this year emphasizes not only the warming, drought and floods, but also how much we are exposed to these hazards. There is a renewed focus on vulnerability to climate change which varies strongly between regions and groups of people.

Germany currently holds the G7 presidency, an inter-governmental political forum consisting of several large global north industrial nations. The German Federal Government Commissioner for the Interests of the Disabled called for an Inclusion summit, the first of its kind, in September in Berlin. The main aim was to address questions around impacts of COVID-19, Artificial Intelligence, and climate change on persons with disabilities.

I have never before taken part in such an event, and it was a steep learning curve. Not only were there bilateral meetings between nations, but also the Internal Disability Alliance (IDA), had bilateral meetings with the academics who were invited to speak. The presentations were translated to international sign language, subtitled, and we implemented guidance to make these more accessible. Presenting to a group where many of the participants had visual impairments is different to the typical presentations a natural scientist is focusing on.

The climate change research was presented by Sebastien Jodoin (from McGill) and myself. Sebastien focused on the lack of inclusion of disability rights in the climate emergency. Fewer than one in four countries mentioned disabled people in their national climate plans. My contribution focused on pointing out the lack of knowledge on impacts of and adaptation to climate change in the context of persons with disability. The limited research in the climate change context focusses on heat and other extreme events. Vulnerability to climate change of persons with disabilities is not covered in the literature and therefore not assessed in the report. Disability is therefore only discussed as a category of vulnerability, as part of lists of old people, young people, marginalized and disabled. But these groups have different challenges and vulnerabilities.

So what was the outcome? IDA emphasized the importance of inclusion as a driver for change. The Chairs summary emphasized the importance of comprehensive statistical and research data to inform the design of policy aiming to identify and address barriers faced by persons with disabilities in exercising their rights.

Environmental justice ensures that socially vulnerable segments of the population should not be disproportionately affected by adverse environmental impacts or hazards. Often actions start at a local scale. In Bristol the Bristol Disability and Equality Forum is working towards inclusion on the city scale, based on their community climate action plan. Emma Green, their climate action coordinator, helped me to consider costs and benefits of climate adaptation more broadly than I did before. Environmental justice asks us all to make sure we consider the needs of everyone while we adapt to and mitigate to climate change. Subregional disaggregation will allow us to determine groups who have the information, skills and funds to implement climate adaptation and reduce their vulnerability, and those who will need support.

———————————

This blog is written by Cabot Institute for the Environment member Professor Daniela Schmidt, School of Earth Sciences, University of Bristol. Daniela is an IPCC report lead author and lead on the recent IPCC WGII chapter on Europe.

Professor Daniela Schmidt

 

 

 

Insects will struggle to keep pace with global temperature rise – which could be bad news for humans

Animals can only endure temperatures within a given range. The upper and lower temperatures of this range are called its critical thermal limits. As these limits are exceeded, an animal must either adjust or migrate to a cooler climate.

However, temperatures are rising across the world at a rapid pace. The record-breaking heatwaves experienced across Europe this summer are indicative of this. Heatwaves such as these can cause temperatures to regularly surpass critical thermal limits, endangering many species.

In a new study, my colleagues and I assessed how well 102 species of insect can adjust their critical thermal limits to survive temperature extremes. We found that insects have a weak capacity to do so, making them particularly vulnerable to climate change.

The impact of climate change on insects could have profound consequences for human life. Many insect species serve important ecological functions while the movement of others can disrupt the balance of ecosystems.

How do animals adjust to temperature extremes?

An animal can extend its critical thermal limits through either acclimation or adaptation.

Acclimation occurs within an animal’s lifetime (often within hours). It’s the process by which previous exposure helps give an animal or insect protection against later environmental stress. Humans acclimate to intense UV exposure through gradual tanning which later protects skin against harmful UV rays.

One way insects acclimate is by producing heat shock proteins in response to heat exposure. This prevents cells dying under temperature extremes.

A ladybird drinking a speck of water on a narrow leaf.
Insects in warmer environments develop fewer spots to reduce heat retention.
mehmetkrc/Shutterstock

Some insects can also use colour to acclimate. Ladybirds that develop in warm environments emerge from the pupal stage with less spots than insects that develop in the cold. As darker spots absorb heat, having fewer spots keeps the insect cooler.

Adaptation occurs when useful genes are passed through generations via evolution. There are multiple examples of animals evolving in response to climate change.

Over the past 150 years, some Australian parrot species such as gang-gang cockatoos and red-rumped parrots have evolved larger beaks. As a greater quantity of blood can be diverted to a larger beak, more heat can be lost into the surrounding environment.

A colourful red-rumped parrot perched on a branch.
The red-rumped parrot has evolved a larger beak to cope with higher temperatures.
Alamin-Khan/Shutterstock

But evolution occurs over a longer period than acclimation and may not allow critical thermal limits to adjust in line with the current pace of global temperature rise. Upper thermal limits are particularly slow to evolve, which may be due to the large genetic changes required for greater heat tolerance.

Research into how acclimation might help animals survive exceptional temperature rise has therefore become an area of growing scientific interest.

A weak ability to adjust to temperature extremes

When exposed to a 1℃ change in temperature, we found that insects could only modify their upper thermal limit by around 10% and their lower limit by around 15% on average. In comparison, a separate study found that fish and crustaceans could modify their limits by around 30%.

But we found that there are windows during development where an insect has a greater tolerance towards heat. As juvenile insects are less mobile than adults, they are less able to use their behaviour to modify their temperature. A caterpillar in its cocoon stage, for example, cannot move into the shade to escape the heat.

Exposed to greater temperature variations, this immobile life stage has faced strong evolutionary pressure to develop mechanisms to withstand temperature stress. Juvenile insects generally had a greater capacity for acclimating to rising temperatures than adult insects. Juveniles were able to modify their upper thermal limit by 11% on average, compared to 7% for adults.

But given that their capacity to acclimate is still relatively weak and may fall as an insect leaves this life stage, the impact is likely to be limited for adjusting to future climate change.

What does this mean for the future?

A weak ability to adjust to higher temperatures will mean many insects will need to migrate to cooler climates in order to survive. The movement of insects into new environments could upset the delicate balance of ecosystems.

Insect pests account for the loss of 40% of global crop production. As their geographical distribution changes, pests could further threaten food security. A UN report from 2021 concluded that fall armyworm populations, which feed on crops such as maize, have already expanded their range due to climate change.

A damaged corn crop following an attack by fall armyworms.
The fall armyworm is a damaging crop pest which is spreading due to climate change.
Alchemist from India/Shutterstock

Insect migration may also carry profound impacts on human health. Many of the major diseases affecting humans, including malaria, are transmitted by insects. The movement of insects over time increases the possibility of introducing infectious diseases to higher latitudes.

There have been over 770 cases of West Nile virus recorded in Europe this year. Italy’s Veneto region, where the majority of the cases originate, has emerged as an ideal habitat for Culex mosquitoes, which can host and transmit the virus. Earlier this year, scientists found that the number of mosquitoes in the region had increased by 27%.

Insect species incapable of migrating may also become extinct. This is of concern because many insects perform important ecological functions. Three quarters of the crops produced globally are fertilised by pollinators. Their loss could cause a sharp reduction in global food production.

The vulnerability of insects to temperature extremes means that we face an uncertain and worrying future if we cannot curb the pace of climate change. A clear way of protecting these species is to slow the pace of climate change by reducing fossil fuel consumption. On a smaller scale, the creation of shady habitats, which contain cooler microclimates, could provide essential respite for insects facing rising temperatures.The Conversation

—————————-

This blog is written by Hester Weaving, PhD Candidate in Entomology, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Hester Weaving

 

 

Three reasons a weak pound is bad news for the environment

 

Dragon Claws / shutterstock

The day before new UK chancellor Kwasi Kwarteng’s mini-budget plan for economic growth, a pound would buy you about $1.13. After financial markets rejected the plan, the pound suddenly sunk to around $1.07. Though it has since rallied thanks to major intervention from the Bank of England, the currency remains volatile and far below its value earlier this year.

A lot has been written about how this will affect people’s incomes, the housing market or overall political and economic conditions. But we want to look at why the weak pound is bad news for the UK’s natural environment and its ability to hit climate targets.

1. The low-carbon economy just became a lot more expensive

The fall in sterling’s value partly signals a loss in confidence in the value of UK assets following the unfunded tax commitments contained in the mini-budget. The government’s aim to achieve net zero by 2050 requires substantial public and private investment in energy technologies such as solar and wind as well as carbon storage, insulation and electric cars.

But the loss in investor confidence threatens to derail these investments, because firms may be unwilling to commit the substantial budgets required in an uncertain economic environment. The cost of these investments may also rise as a result of the falling pound because many of the materials and inputs needed for these technologies, such as batteries, are imported and a falling pound increases their prices.

Aerial view of wind farm with forest and fields in background
UK wind power relies on lots of imported parts.
Richard Whitcombe / shutterstock

2. High interest rates may rule out large investment

To support the pound and to control inflation, interest rates are expected to rise further. The UK is already experiencing record levels of inflation, fuelled by pandemic-related spending and Russia’s war on Ukraine. Rising consumer prices developed into a full-blown cost of living crisis, with fuel and food poverty, financial hardship and the collapse of businesses looming large on this winter’s horizon.

While the anticipated increase in interest rates might ease the cost of living crisis, it also increases the cost of government borrowing at a time when we rapidly need to increase low-carbon investment for net zero by 2050. The government’s official climate change advisory committee estimates that an additional £4 billion to £6 billion of annual public spending will be needed by 2030.

Some of this money should be raised through carbon taxes. But in reality, at least for as long as the cost of living crisis is ongoing, if the government is serious about green investment it will have to borrow.

Rising interest rates will push up the cost of borrowing relentlessly and present a tough political choice that seemingly pits the environment against economic recovery. As any future incoming government will inherit these same rates, a falling pound threatens to make it much harder to take large-scale, rapid environmental action.

3. Imports will become pricier

In addition to increased supply prices for firms and rising borrowing costs, it will lead to a significant rise in import prices for consumers. Given the UK’s reliance on imports, this is likely to affect prices for food, clothing and manufactured goods.

At the consumer level, this will immediately impact marginal spending as necessary expenditures (housing, energy, basic food and so on) lower the budget available for products such as eco-friendly cleaning products, organic foods or ethically made clothes. Buying “greener” products typically cost a family of four around £2,000 a year.

Instead, people may have to rely on cheaper goods that also come with larger greenhouse gas footprints and wider impacts on the environment through pollution and increased waste. See this calculator for direct comparisons.

Of course, some spending changes will be positive for the environment, for example if people use their cars less or take fewer holidays abroad. However, high-income individuals who will benefit the most from the mini-budget tax cuts will be less affected by the falling pound and they tend to fly more, buy more things, and have multiple cars and bigger homes to heat.

This raises profound questions about inequality and injustice in UK society. Alongside increased fuel poverty and foodbank use, we will see an uptick in the purchasing power of the wealthiest.

What’s next

Interest rate rises increase the cost of servicing government debt as well as the cost of new borrowing. One estimate says that the combined cost to government of the new tax cuts and higher cost of borrowing is around £250 billion. This substantial loss in government income reduces the budget available for climate change mitigation and improvements to infrastructure.

The government’s growth plan also seems to be based on an increased use of fossil fuels through technologies such as fracking. Given the scant evidence for absolutely decoupling economic growth from resource use, the opposition’s “green growth” proposal is also unlikely to decarbonise at the rate required to get to net zero by 2050 and avert catastrophic climate change.

Therefore, rather than increasing the energy and materials going into the economy for the sake of GDP growth, we would argue the UK needs an economic reorientation that questions the need of growth for its own sake and orients it instead towards social equality and ecological sustainability.The Conversation

————————

This blog is written by Cabot Institute for the Environment members Dr Katharina Richter, Lecturer in Climate, Politics and Society, University of Bristol; Dr Alix Dietzel, Senior Lecturer in Climate Justice, University of Bristol, and Professor Alvin Birdi, Professor of Economics Education, University of Bristol. This article is republished from The Conversation under a Creative Commons license. Read the original article.

The night is full of animal life, but scientists know very little about it

 

Naturalists and life scientists have long debated how insect-eating bats navigate their dark world.
Sarun T/Shutterstock

Human disturbance is rapidly changing the nature of the nocturnal world. Intensive farming, suburban spread, artificially lit cities, and continuously busy road systems mean daytime species are becoming increasingly active throughout the night. Ecologists suggest that the majority of land animals are either nocturnal or active across both the day and night.

Recent research has also shown that the night is warming considerably faster than the day. The stifling night-time heat experienced across Europe this summer is indicative of this, placing nocturnal animals under even greater stress.

The transforming night adds new sensory pressures concerning finding food, a mate, and navigating a world permeated by artificial illumination. Environmental change is severely threatening the ability of nocturnal animals to coexist with humans. The conservation of nocturnal species has therefore become urgent.

Despite the abundance of night-time life, the understanding of nocturnal species has evaded science throughout history. Physical restraints on human navigation in the dark are partially responsible for this. This scientific blind spot is referred to as the “nocturnal problem”.

The legacy of this inaccessibility remains a barrier to our understanding of nocturnal life today. However, given the environmental threat now facing the nocturnal world, this will have profound consequences should it remain unaddressed. A better understanding of nocturnal life is critical to ensure its effective protection.

The origins of the ‘nocturnal problem’

So how did the nocturnal problem arise and why does it still impede science?

Constrained by their own reliance on vision, early scientists struggled to imagine the different ways in which animals might navigate in the dark. The myths that built up around familiar nocturnal creatures, such as hedgehogs, are evidence of historical attempts to fill the scientific gap.

The Greek philosopher Aristotle suggested that hedgehogs poached apples and carried them off on their spines. Such mythology was commonly included within Victorian natural history texts as an introduction to more factual descriptions of hedgehog anatomy, such as their capacity for smell and other bodily adaptations.

A hedgehog passing a road with a car light illuminating the background.
Even the experiences of hedgehogs remain to some degree unknown.
Lukasz Walas/Shutterstock

But even artificial illumination afforded very limited access. Illumination fundamentally changes the nature of the nocturnal world, with impacts on animal behaviour. A good example is the attraction of moths to street lights.

The historical debate surrounding how insect-eating bats navigate their dark world illustrates the problem. Numerous attempts have been made to understand bat senses. However, it was not until the late 1930s, more than 150 years after experimentation on bats had begun, that the scientists Donald R. Griffin and Robert Galambos identified echolocation – the ability to navigate via the emission and detection of sound signals.

Griffin would later describe the secrets of bat senses as a “magic well”, acknowledging the fundamental challenge of comprehending senses so different from our own.

But efforts to understand nocturnal senses could only take scientists so far. In 1940, American naturalist Orlando Park declared that the biological sciences suffered from a “nocturnal problem”, in reference to the continued inability to understand the nocturnal world. This was reflected in the more recent philosophical text of Thomas Nagel, which posed the question what it like is to like to be a bat?

Persistence of the nocturnal problem

Despite technological developments, including the introduction of infrared photography, aspects of nocturnal life continue to elude modern science.

While technology has afforded scientists a much better understanding of echolocation in bats, our way of thinking about bat senses remains limited by our own dependence on vision. When describing echolocation, scientists still suggest that bats “see” using echoes.

The elusive Australian Night Parrot was presumed extinct for much of the 20th century. Although they have been recently rediscovered, scientists remain unable to estimate their population size accurately while questions over the threats facing the species persist.

Despite an improvement in scientific research, nocturnal life remains understudied. In 2019, life scientist Kevin J. Gaston called for an expansion of research into nocturnal life. History shows us that when there are scientific gaps in knowledge about the night, cultures create their own truths to fill those gaps. The consequences of doing so may be significant.

The night is ecologically rich and efforts to fill these gaps in scientific understanding should be prioritised. The nocturnal world is threatened by environmental change, and its future depends on our commitment to getting to know the darkness.The Conversation

———————-

This blog is written by Cabot Institute for the Environment members, Dr Andy Flack, Senior Lecturer in Modern and Environmental History, University of Bristol and Dr Alice Would, Lecturer in Imperial and Environmental History, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Labour’s Great British Energy is a good start – here’s how to make it work for everyone

In a packed auditorium in Liverpool, Labour leader Keir Starmer stood at a plinth emblazoned with the words “A Fairer, Greener Future”. It was the key theme of this year’s party conference and is evident in Starmer’s landmark policy announcement: the creation of a new publicly-owned energy company, Great British Energy.

The company would effectively be a start-up to grow British renewables. So while Great British Energy is not nationalisation of the electricity sector (or of any one energy company), it would represent a new and different sort of organisation positioned to fund new projects while working to remove the hurdles faced by new wind and solar projects.

This follows calls from various organisations for a new way of generating and providing electricity. For many, the scale of action needed to both reach net zero and address energy poverty is incompatible with the current model of doing things, which focuses on paying shareholders and avoiding riskier investments.

Like EDF in France or Vattenfall in Sweden, Great British Energy would be state-owned. But it would be independent, making its own investment decisions and working closely with private energy companies.

Being backed by the government, the new company can take on riskier investments. This might be in bigger projects or in new, innovative technologies such as tidal energy. Rather than paying shareholders, the profit that this company makes can then be reinvested in new projects, or for cutting bills or insulating homes.

Great British Energy is one part of a broader approach that Labour has put forward, including measures on energy efficiency and an £8 billion national wealth fund to help decarbonise industry.

The public supports public energy

Despite some concerns about how these policies might be sold on the doorstep, there is public support. Polling in May 2022 showed that 60% of UK voters support bringing energy companies into public ownership – and such patterns of support have remained relatively constant.

Popular campaigns have called for nationalising the sector. Others have highlighted how the current system prioritises shareholders over addressing energy poverty.

Offshore wind farm viewed from a beach
Renewable energy has become a national security issue for the UK.
Colin Ward/Shutterstock

When Labour raised a similar policy in the 2019 election, it was treated as foolish by much of the media. Yet Russia’s invasion of Ukraine and its aggressive use of disruptions to its natural gas exports to Europe as a political weapon have changed energy politics in Europe.

Those calling for the expansion of renewable energy used to highlight how they were greener and cheaper than fossil fuels. Events in 2022 have now made renewables the basis for energy security too.

Who makes decisions, and who benefits from them?

While this policy pledges a different type of energy company, being state-owned does not make any organisation inherently “good”. For instance, EDF in France has been caught spying on Greenpeace. Elsewhere, Vattenfall has sold off its coal power stations rather than replacing them with renewables, merely shifting emissions on to somebody else’s balance sheet.

Addressing these issues requires a reflection on who is making decisions. The proposed national wealth fund would include co-investments with private companies. But who would be involved in directing these investments and who might benefit from them?

Hydrogen energy was mentioned in several speeches at Labour’s conference, and the industry’s lobbyists were reported to have been active and hosted meetings. However, recent work has shown that any move to use hydrogen for home heating is likely unviable.

Elsewhere at the conference, climate campaigners accusing Drax, the biggest emitter in the UK, of environmental racism were reportedly removed from a meeting on net zero and green jobs.

A national energy company must also wrestle with where new renewable energy projects, which tend to demand large tracts of land, will be built and who might suffer from the impacts. Compensation payments in the UK have rewarded unfair patterns of land ownership and the monopolisation of land by the rich and the powerful.

In the UK, a small number of landowners stand to gain financially from the expansion of onshore wind, while offshore wind power is permitted by the crown estate which owns the seabed.

Wind turbines in field
Wind and solar farms can use lots of land.
Traceyaphotos2/Shutterstock

Those living nearby often receive limited compensation. In Scotland, communities living near onshore wind turbines get 0.6% of the value of electricity generated.

This does very little to address regional issues of inequality or exclusion. Community-owned projects have a better track record, providing up to 34 times the financial benefits of those built by private energy companies.

Great British Energy is a policy that many voters will support. While there remain questions about the forms it might take and how it might change the energy sector, it represents an opportunity to generate and use energy differently – as long as it is part of a broader, just energy transition.

These policies are coming at a time of spirallling energy costs and energy poverty for millions, and any national energy company must make addressing this a priority. Labour’s energy efficiency plans show that the party is intent on doing so. The cheapest electricity is the electricity that we don’t use, after all.

It is also politically savvy: some of the areas worst affected by energy prices are in marginal seats. A national energy company playing a central role in funding and directing renewable schemes would allow them to be better targeted, would allow funding for unprofitable projects, and any financial returns could be used to further support families and communities.

But there is still room for Labour to be more ambitious. Great British Energy could be the first step towards an inclusive energy transition, but we must think about what comes next.The Conversation

——————————-

This blog is written by Cabot Institute for the Environment member Dr Ed Atkins, Senior Lecturer, School of Geographical Sciences, University of BristolThis article is republished from The Conversation under a Creative Commons license. Read the original article.

Ed Atkins