Are you a journalist looking for climate experts? We’ve got you covered

We’ve got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via Victoria Tagg, our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489.

Climate change / climate emergency / climate science / climate-induced disasters

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports.

Dr Vikki Thompson – expert on climate extremes, particularly heat extremes. Follow on Twitter @ClimateVikki

Dr Katerina Michalides – expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_kmichaelides.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Follow on Twitter @ClimateDann.

Professor Dan Lunt – expert on past climate change, with a focus on understanding how and why climate has changed in the past and what we can learn about the future from the past. Dan is also a Lead Author on IPCC AR6. Follow on Twitter @ClimateSamwell.

Professor Jonathan Bamber – expert on the impact of melting land ice on sea level rise (SLR) and the response of the ocean to changes in freshwater forcing. Follow on Twitter @jlbamber

Professor Paul Bates CBE – expert in the science of flooding, risk and reducing threats to life and economic losses worldwide. Follow on Twitter @paul_d_bates

Professor Tony Payne – expert in the effects of climate change on earth systems and glaciers.

Dr Matt Palmer – expert in sea level and ocean heat content research at the Met Office Hadley Centre and University of Bristol. Follow on Twitter @mpclimate.

Net Zero / Energy / Renewables

Professor Valeska Ting – Engineer and expert in net zero, low carbon technologies, low carbon energy and flying. Also an accomplished STEM communicator, is an BAME Expert Voice for the BBC Academy. Follow on Twitter @ProfValeskaTing.

Professor Philip Taylor – Expert in net zero, energy systems, energy storage, utilities, electric power distribution. Also Pro-Vice Chancellor at the University of Bristol. Follow on Twitter @rolyatlihp.

Dr Colin Nolden – expert in sustainable energy policyregulation and business models and interactions with secondary markets such as carbon markets and other sectors such as mobility. Colin will be at COP27. Colin will be in attendance in the Blue Zone at COP27.

Professor Charl Faul – expert in novel functional materials for sustainable energy applications e.g. in CO2 capture and conversion and energy storage devices.  Follow on Twitter @Charl_FJ_Faul.

Climate finance

Dr Rachel James – Expert in climate finance, damage, loss and decision making. Also has expertise in African climate systems and contemporary and future climate change. Follow on Twitter @_RachelJames. Rachel will be in attendance in the Blue Zone at COP27.

Climate justice

Dr Alix Dietzel – climate justice and climate policy expert. Focusing on the global and local scale and interested in how just the response to climate change is and how we can ensure a just transition. Alix will be at COP27. Follow on Twitter @alixdietzel. Alix will be in attendance in the Blue Zone at COP27.

Dr Ed Atkins – expert on environmental and energy policy, politics and governance and how they must be equitable and inclusive. Also interested in local politics of climate change policies and energy generation and consumption. Follow on Twitter @edatkins_.

Climate activism / Extinction Rebellion

Dr Oscar Berglund – expert on climate change activism and particularly Extinction Rebellion (XR) and the use of civil disobedience. Follow on Twitter @berglund_oscar.

Air pollution / Greenhouse gases

Dr Aoife Grant – expert in greenhouse gases and methane. Set up a monitoring station at Glasgow for COP26 to record emissions.

Professor Matt Rigby – expert on sources and sinks of greenhouse gases and ozone depleting substances. Follow on Twitter @TheOtherMRigby.

Land, nature and food

Viola Heinrich – expert in emissions and climate mitiagion potential within the land use sector in the tropics, especially the Brazilian Amazon. IPCC author. Follow on Twitter @vh_trees.
Dr Jo House – expert on land and climate interactions, including emissions of carbon dioxide from land use change (e.g. deforestation), climate mitigation potential from the land (e.g. afforestationbioenergy), and implications of science for policy. Previously Government Office for Science’s Head of Climate Advice. Follow on Twitter @Drjohouse.
Dr Taro Takahashi – expert on farminglivestock production systems as well as progamme evaluation and general equilibrium modelling of pasture and livestock-based economies.
Dr Maria Paula Escobar-Tello – expert on tensions and intersections between livestock farming and the environment.

Climate change and infrastructure

Dr Maria Pregnolato – expert on effects of climate change and flooding on infrastructure. Follow on Twitter @MariaPregnolat1.

Plastic and the environment

Dr Charlotte Lloyd – expert on the fate of chemicals in the terrestrial environment, including plasticsbioplastics and agricultural wastes. Follow on Twitter @DrCharlLloyd.

Climate change and health

Dr Dan O’Hare – expert in climate anxiety and educational psychologist. Follow on Twitter @edpsydan.

Cabot Institute for the Environment at COP27

We will have three academics in attendance at the Blue Zone at COP27. These are:
Dr Alix Dietzel, Dr Rachel James and Dr Colin Nolden. All are media-trained and feature in the list above.

Read more about COP on our website at https://bristol.ac.uk/cabot/what-we-do/projects/cop/

Watch our Cabot Conversations – 10 conversations between 2 experts on a climate change issue, all whilst an artist listens in the background and interprets the conversation into a beautiful piece of art in real time. Find out more at bristol.ac.uk/cabot/conversations.
——————————
This blog was written by Amanda Woodman-Hardy, Communications and Engagement Officer at the Cabot Institute for the Environment. Follow on Twitter @Enviro_Mand and @cabotinstitute.

Dune: how high could giant sand dunes actually grow on Arrakis?

Frank Herbert first published his science-fiction epic Dune back in 1965, though its origins lay in a chance encounter eight years previously when as a journalist he was tasked to report on a dune stabilisation programme in the US state of Oregon. Ultimately, this set the wheels in motion for the recent film adaptation.

The large and inhospitable sand dunes of the desert planet Arrakis are, of course, very prominent in both the books and film, not least because of the terrifying gigantic sandworms that hunt any movement on the surface. But just how high would sand dunes be on a realistic version of this world?

Before the movie was released, we took a scientific climate model and used it to simulate the climate of Arrakis. We now want to use insights from this same model to focus on the dunes themselves.

Sand dunes are the product of thousands or even tens of thousands of years of erosion of the underlying or surrounding geology. On a simple level, they are formed by sand being blown along the path of the prevailing wind until it meets an obstruction, at which point the sand will settle in front of it.

There is certainly no shortage of wind on Arrakis. Our simulation showed that wind would routinely exceed the minimum speed required to blow sand grains into the air, and there are even some regions where speeds regularly reach 162 km/h during the year. That’s well over hurricane force.

Diagram of sand dune formation
How sand dunes are formed. David Tarailo / US National Park Service / Geological Society of America

Sand dunes in the book are said to be on average around 100 metres high. However, this isn’t based on actual science, more likely it’s what Herbert knew from his time in Oregon as well as the world we live in. But we can use our climate model to predict what the general (and maximum) attainable height might suggest.

Where the wind blows

The size and distance between giant dunes are determined not simply by the type of sand or underlying rock, but by the lowest 2km or so of the atmosphere that interacts with the land surface. This level, also known as the planetary boundary layer, is where most of the weather we can see occurs. Above this, a thin “inversion layer” separates the weather below from the more stable higher-altitude part of the atmosphere.

The growth of sand dunes and theoretical height is determined by the depth of this boundary layer where the wind blows. Sand dunes stabilise above the wind at the altitude of the inversion layer. The height of the boundary layer – usually somewhere between 100 metres to 2,000 metres – can vary through the night as well as the year. When it is cooler, it is shallower. When there is a strong wind or lots of rising warm air, it is deeper.

Arrakis would be much hotter than Earth, which means more rising air and a boundary layer two to three times as high over land compared with ours. Our climate model simulation, therefore, predicts dunes on Arrakis would be as high as 250m, particularly in the tropics and mid-latitudes. That’s about three times the height of the Big Ben clock tower in London. Most regions would have a more modest average height of between 25m and 75m. As the boundary layer is generally higher everywhere on Arrakis the average dune height is in general twice that of Earths.

map with shaded areas
Predicted sand dune height (in metres) on Arrakis. Farnsworth et alAuthor provided

We were also able to simulate the space between dunes, which can also be determined by the height of the boundary layer. Spacing is highest in the tropics, a little over 2km between the crest of one giant sand dune to the next. However, in general, sand dunes have a spacing of around 0.5 to 1km crest to crest. Still plenty of room for a sandworm to wiggle through. Scientists looking at Saturn’s moon Titan have run this same process in reverse, using the space between dunes – easy to measure with satellite images – to estimate a boundary layer of up to 3km.

As nothing can grow on Arrakis to stabilise these sand dunes they will always be in a state of constant drift across the planet. Some large dunes on Earth can move about 5m a year. Smaller dunes can move even faster – about 20m a year.

A visualisation of the authors’ climate model of Arrakis. Source: climatearchive.org/dune.

Mountain-sized dunes?

Our simulation can only give the general height that most sand dunes would reach, and there would be exceptions to the rule. For instance, the largest known sand dune on Earth today is the Duna Federico Kirbus in Argentina, a staggering 1,234m in height. Its size shows that local factors, such as vegetation, surrounding hills or the type of local sand, can play an important role.

Given Arrakis is hotter than Earth, has a higher boundary layer and has more sand and stronger winds, it’s possible a truly mammoth dune the size of a small mountain may form somewhere – it’s just impossible for a climate model to say exactly where.

Scientists have recently revealed that as the world warms the planetary boundary layer is increasing by around 53 metres a decade. So we may well see even bigger record-breaking sand dunes as the lower atmosphere continues to warm – even if Earth will not end up like Arrakis.The Conversation

—————————–

This blog is written by Caboteers Dr Alex Farnsworth, Senior Research Associate in Meteorology, University of Bristol and Dr Sebastian Steinig, Research Associate in Paleoclimate Modelling, University of Bristol and Dr Michael Farnsworth, Research Lead Future Electrical Machines Manufacturing Hub, University of Sheffield,

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humanity is compressing millions of years of natural change into just a few centuries

The near future may be similar to the mid-Pliocene warm period a few million years ago.
Daniel Eskridge / shutterstock

Many numbers are swirling around the climate negotiations at the UN climate summit in Glasgow, COP26. These include global warming targets of 1.5℃ and 2.0℃, recent warming of 1.1℃, remaining CO₂ budget of 400 billion tonnes, or current atmospheric CO₂ of 415 parts per million.

It’s often hard to grasp the significance of these numbers. But the study of ancient climates can give us an appreciation of their scale compared to what has occurred naturally in the past. Our knowledge of ancient climate change also allows scientists to calibrate their models and therefore improve predictions of what the future may hold.

Recent climate changes in context.
IPCC AR6, chapter 2

Recent work, summarised in the latest report of the Intergovernmental Panel on Climate Change (IPCC), has allowed scientists to refine their understanding and measurement of past climate changes. These changes are recorded in rocky outcrops, sediments from the ocean floor and lakes, in polar ice sheets, and in other shorter-term archives such as tree rings and corals. As scientists discover more of these archives and get better at using them, we have become increasingly able to compare recent and future climate change with what has happened in the past, and to provide important context to the numbers involved in climate negotiations.

For instance one headline finding in the IPCC report was that global temperature (currently 1.1℃ above a pre-industrial baseline) is higher than at any time in at least the past 120,000 or so years. That’s because the last warm period between ice ages peaked about 125,000 years ago – in contrast to today, warmth at that time was driven not by CO₂, but by changes in Earth’s orbit and spin axis. Another finding regards the rate of current warming, which is faster than at any time in the past 2,000 years – and probably much longer.

But it is not only past temperature that can be reconstructed from the geological record. For instance, tiny gas bubbles trapped in Antarctic ice can record atmospheric CO₂ concentrations back to 800,000 years ago. Beyond that, scientists can turn to microscopic fossils preserved in seabed sediments. These properties (such as the types of elements that make up the fossil shells) are related to how much CO₂ was in the ocean when the fossilised organisms were alive, which itself is related to how much was in the atmosphere. As we get better at using these “proxies” for atmospheric CO₂, recent work has shown that the current atmospheric CO₂ concentration of around 415 parts per million (compared to 280 ppm prior to industrialisation in the early 1800s), is greater than at any time in at least the past 2 million years.

chart showing climate changes over history
An IPCC graphic showing climate changes at various points since 56 million years ago. Note most rows show changes over thousands or millions of years, while the top row (recent changes) is just a few decades.
IPCC AR6, chapter 2 (modified by Darrell Kaufman)

Other climate variables can also be compared to past changes. These include the greenhouse gases methane and nitrous oxide (now greater than at any time in at least 800,000 years), late summer Arctic sea ice area (smaller than at any time in at least the past 1,000 years), glacier retreat (unprecedented in at least 2,000 years) sea level (rising faster than at any point in at least 3,000 years), and ocean acidity (unusually acidic compared to the past 2 million years).

In addition, changes predicted by climate models can be compared to the past. For instance an “intermediate” amount of emissions will likely lead to global warming of between 2.3°C and 4.6°C by the year 2300, which is similar to the mid-Pliocene warm period of about 3.2 million years ago. Extremely high emissions would lead to warming of somewhere between 6.6°C and 14.1°C, which just overlaps with the warmest period since the demise of the dinosaurs – the “Paleocene-Eocene Thermal Maximum” kicked off by massive volcanic eruptions about 55 million years ago. As such, humanity is currently on the path to compressing millions of years of temperature change into just a couple of centuries.

Small animals in a forest
Many mammals, like these horse-ancestors ‘Eohippus’, first appeared after a sudden warm period 55 million years ago.
Daniel Eskridge / shutterstock

Distant past can held predict the near future

For the first time in an IPCC report, the latest report uses ancient time periods to refine projections of climate change. In previous IPCC reports, future projections have been produced simply by averaging results from all climate models, and using their spread as a measure of uncertainty. But for this new report, temperature and rainfall and sea level projections relied more heavily on those models that did the best job of simulating known climate changes.

Part of this process was based on each individual model’s “climate sensitivity” – the amount it warms when atmospheric CO₂ is doubled. The “correct” value (and uncertainty range) of sensitivity is known from a number of different lines of evidence, one of which comes from certain times in the ancient past when global temperature changes were driven by natural changes in CO₂, caused for example by volcanic eruptions or change in the amount of carbon removed from the atmosphere as rocks are eroded away. Combining estimates of ancient CO₂ and temperature therefore allows scientists to estimate the “correct” value of climate sensitivity, and so refine their future projections by relying more heavily on those models with more accurate climate sensitivities.

Overall, past climates show us that recent changes across all aspects of the Earth system are unprecedented in at least thousands of years. Unless emissions are reduced rapidly and dramatically, global warming will reach a level that has not been seen for millions of years. Let’s hope those attending COP26 are listening to messages from the past.

——————————

This blog is written by Cabot Institute for the Environment member Dan Lunt, Professor of Climate Science, University of Bristol and Darrell Kaufman, Professor of Earth and Environmental Sciences, Northern Arizona University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dan Lunt

 

 

Read all blogs in our COP26 blog series:

Are you a journalist looking for climate experts? We’ve got you covered

We’ve got lots of media trained climate change experts. If you need an expert for an interview, here is a list of Caboteers you can approach. All media enquiries should be made via Victoria Tagg, our dedicated Media and PR Manager at the University of Bristol. Email victoria.tagg@bristol.ac.uk or call +44 (0)117 428 2489.

Climate change / climate emergency / climate science / climate-induced disasters

Dr Eunice Lo – expert in changes in extreme weather events such as heatwaves and cold spells, and how these changes translate to negative health outcomes including illnesses and deaths. Follow on Twitter @EuniceLoClimate.

Professor Daniela Schmidt – expert in the causes and effects of climate change on marine systems. Dani is also a Lead Author on the IPCC reports. Dani will be at COP26.

Dr Katerina Michalides – expert in drylands, drought and desertification and helping East African rural communities to adapt to droughts and future climate change. Follow on Twitter @_kmichaelides.

Professor Dann Mitchell – expert in how climate change alters the atmospheric circulation, extreme events, and impacts on human health. Dann is also a Met Office Chair. Dann will be at COP26. Follow on Twitter @ClimateDann.

Professor Dan Lunt – expert on past climate change, with a focus on understanding how and why climate has changed in the past and what we can learn about the future from the past. Dan is also a Lead Author on IPCC AR6. Dan will be at COP26. Follow on Twitter @ClimateSamwell.

Professor Jonathan Bamber – expert on the impact of melting land ice on sea level rise (SLR) and the response of the ocean to changes in freshwater forcing. Jonathan will be at COP26. Follow on Twitter @jlbamber

Professor Paul Bates CBE – expert in the science of flooding, risk and reducing threats to life and economic losses worldwide. Follow on Twitter @paul_d_bates

Professor Tony Payne – expert in the effects of climate change on earth systems and glaciers.

Dr Matt Palmer – expert in sea level and ocean heat content research at the Met Office Hadley Centre and University of Bristol. Follow on Twitter @mpclimate.

Net Zero / Energy / Renewables

Professor Valeska Ting – Engineer and expert in net zero, low carbon technologies, low carbon energy and flying. Also an accomplished STEM communicator, is an BAME Expert Voice for the BBC Academy. Follow on Twitter @ProfValeskaTing.

Professor Philip Taylor – Expert in net zero, energy systems, energy storage, utilities, electric power distribution. Also Pro-Vice Chancellor at the University of Bristol. Philip will be at COP26. Follow on Twitter @rolyatlihp.

Dr Colin Nolden – expert in sustainable energy policy, regulation and business models and interactions with secondary markets such as carbon markets and other sectors such as mobility. Colin will be at COP26.

Climate finance

Dr Rachel James – Expert in climate finance, damage, loss and decision making. Also has expertise in African climate systems and contemporary and future climate change. Follow on Twitter @_RachelJames

Climate justice

Dr Alix Dietzel – climate justice and climate policy expert. Focusing on the global and local scale and interested in how just the response to climate change is and how we can ensure a just transition. Alix will be at COP26. Follow on Twitter @alixdietzel

Dr Ed Atkins – expert on environmental and energy policy, politics and governance and how they must be equitable and inclusive. Also interested in local politics of climate change policies and energy generation and consumption. Follow on Twitter @edatkins_.

Climate activism / Extinction Rebellion

Dr Oscar Berglund – expert on climate change activism and particularly Extinction Rebellion (XR) and the use of civil disobedience. Follow on Twitter @berglund_oscar.

Air pollution / Greenhouse gases

Dr Aoife Grant – expert in greenhouse gases and methane. Has set up a monitoring station at Glasgow for COP26 to record emissions.

Professor Matt Rigby – expert on sources and sinks of greenhouse gases and ozone depleting substances. Follow on Twitter @TheOtherMRigby.

Land, nature and food

Dr Jo House – expert on land and climate interactions, including emissions of carbon dioxide from land use change (e.g. deforestation), climate mitigation potential from the land (e.g. afforestation, bioenergy), and implications of science for policy. Previously Government Office for Science’s Head of Climate Advice. Follow on Twitter @Drjohouse.
Dr Taro Takahashi – expert on farming, livestock production systems as well as progamme evaluation and general equilibrium modelling of pasture and livestock-based economies.

Climate change and infrastructure

Dr Maria Pregnolato – expert on effects of climate change and flooding on infrastructure. Follow on Twitter @MariaPregnolat1.

Plastic and the environment

Dr Charlotte Lloyd – expert on the fate of chemicals in the terrestrial environment, including plastics, bioplastics and agricultural wastes. Follow on Twitter @DrCharlLloyd.

What else the Cabot Institute for the Environment is up to for COP26

Find out what we’re doing for COP26 on our website at bristol.ac.uk/cabot/cop26.
Watch our Cabot Conversations – 10 conversations between 2 experts on a climate change issue, all whilst an artist listens in the background and interprets the conversation into a beautiful piece of art in real time. Find out more at bristol.ac.uk/cabot/conversations.
——————————
This blog was written by Amanda Woodman-Hardy, Communications and Engagement Officer at the Cabot Institute for the Environment. Follow on Twitter @Enviro_Mand and @cabotinstitute.
 

Many conservatives have a difficult relationship with science – we wanted to find out why

 

Shutterstock

Many scientific findings continue to be disputed by politicians and parts of the public long after a scholarly consensus has been established. For example, nearly a third of Americans still do not accept that fossil fuel emissions cause climate change, even though the scientific community settled on a consensus that they do decades ago.

Research into why people reject scientific facts has identified people’s political worldviews as the principal predictor variable. People with a libertarian or conservative worldview are more likely to reject climate change and evolution and are less likely to be vaccinated against COVID-19.

What explains this propensity for rejection of science by some of the political right? Are there intrinsic attributes of the scientific enterprise that are uniquely challenging to people with conservative or libertarian worldviews? Or is the association merely the result of conflicting imperatives between scientific findings and their economic implications? In the case of climate change, for example, any mitigation necessarily entails interference with current economic practice.

We recently conducted two large-scale surveys that explored the first possibility – that some intrinsic attributes of science are in tension with aspects of conservative thinking. We focused on two aspects of science: the often tacit norms and principles that guide the scientific enterprise, and the history of how scientific progress has led us to understand that human beings are not the centre of the universe.

Sociologist Robert Merton famously proposed norms for the conduct of science in 1942. The norm of “communism” (different from the political philosophy of communism) holds that the results of scientific research should be the common property of the scientific community. “Universalism” postulates that knowledge should transcend racial, class, national or political barriers. “Disinteredness” mandates that scientists should conduct research for the benefit of the scientific enterprise rather than for personal gain.

These norms sit uneasily with strands of standard contemporary conservative thought. Conservatism is typically associated with nationalism and patriotism, at the expense of embracing cooperative internationalism. And the notion of disinterestedness may not mesh well with conservative emphasis on property rights.

Science has enabled us to explain the world around us but that may create further tensions – especially with religious conservatism. The idea that humans are exceptional is at the core of traditional Judeo-Christian thought, which sees the human as an imago Dei, an image of God, that is clearly separate from other beings and nature itself.

Against this human exceptionalism, the over-arching outcome of centuries of research since the scientific revolution has been a diminution of the status of human beings. We now recognise our planet to be a rather small and insignificant object in a universe full of an untold number of galaxies, rather than the centre of all creation.

Testing the issues

We tested how those two over-arching attributes of science – its intrinsic norms and its historical effect on how humans see themselves – might relate to conservative thought and acceptance of scientific facts in two large-scale studies. Each involved a representative sample of around 1,000 US residents.

We focused on three scientific issues; climate change, vaccinations, and the heritability of intelligence. The first two were chosen because of their known tendency to be rejected by people on the political right, allowing us to observe the potential moderating role of other predictors.

The latter was chosen because the belief that external forces such as education can improve people and their circumstances is a focus of liberalism. Conservatism, on the other hand, is skeptical of that possibility and leans more towards the idea that improvement comes from the individual – implying a lesser role for the malleability of intelligence.

The fact that individual differences in intelligence are related to genetic differences, with current estimates of heritability hovering around 50%, is therefore potentially challenging to liberals but might be endorsed by conservatives.

The two studies differed slightly in how we measured political views and people’s endorsement of the norms of science, but the overall findings were quite clear. Conservatives were less likely to accept the norms of science, suggesting that the worldviews of some people on the political right may be in intrinsic conflict with the scientific enterprise.

Those people who accepted the norms of science were also more likely to endorse vaccinations and support the need to fight climate change. This suggests that people who embrace the scientific enterprise as a whole are also more likely to accept specific scientific findings.

We found limited support for the possibility that belief in human exceptionalism would predispose people to be more sceptical in their acceptance of scientific propositions. Exceptionalism had little direct effect on scientific attitudes. Therefore, our study provided no evidence for the conjecture that the long history of science in displacing humans from the centre of the world contributes to conversatives’ uneasiness with science.

Finally, we found no strong evidence that people on the political left are more likely to reject the genetic contribution to individual variation in intelligence. This negative result adds to the evidence that science denial is harder to find on the left, even concerning issues where basic aspects of liberal thought – in this case the belief that people can be improved – are in potential conflict with the evidence.

The two studies help explain why conservatives are more likely to reject scientific findings than liberals. This rejection is not only dictated by political interests clashing with a specific body of scientific knowledge (such as human-caused climate change), but it appears to represent a deeper tension between conservatism and the spirit in which science is commonly conducted.The Conversation

—————————

This blog has been written by Cabot Institute for the Environment member Professor Stephan Lewandowsky, Chair of Cognitive Psychology, University of Bristol and Klaus Oberauer, Professor of Cognitive Psychology, University of Zurich. This article is republished from The Conversation under a Creative Commons license. Read the original article.

Journey to the heart of academic research

Many believe that keeping feelings, emotions, individualities and identities out of the field, the lab and the experiment is the golden rule that guarantees the validity of scientific work. From this perspective, good science requires neutrality and objectivity.
I’m not so sure, and today I want to share stories about the feelings and emotions I have lived with BIOsmart, a project where British, Colombian, Chilean, Irish and Spanish citizens work together, and tell you about how my emotions have made me reflect on what we may mean by good science.
María Paula delighted with her walking stick, lovingly crafted by one of our drivers.

 

I’ll start by saying that I am both Colombian and British. I have lived in the UK for 20 years now and when I have brought the UK team to do fieldwork in Colombia, I have felt pride and joy in having them taste our ajiaco, arepas, empanadas and aguardiente, and feast on the bounty of colours, textures and tastes of our fruit markets. I have felt pride too because my fellow Colombians always greet us with our traditional warmth and cheeky humour and this has put a finger on my nostalgia as an immigrant; for this warmth, the easiness with which we smile and become best friends in a matter of minutes, are what I most dearly miss when I am in England. But this nostalgia is mixed with gratitude, for the academic system in the UK has allowed me to return to Colombia and work for people I love. My identity matters and is at the heart of the passion and commitment with which I work.
These feelings are replenished at every farm visit we make. Coffee, freshly squeezed lemonade, home-made juices and yogurts, even hot chocolate made with home-grown cocoa beans are always waiting for us. We reciprocate this generosity and always arrive with fresh bread from the bakeries and meal by meal we learn about farmers’ lives in Caquetá and they learn about our own lives in the UK. This learning happens outside the lab, before we start counting plants and insects and before we begin the formal interview. This learning, and the feelings of respect, solidarity and gratitude that come with it, is inconspicuous in the data that will go into papers and presentations; but without it, our research practice would be less meaningful for all involved. This learning, imbued with emotions, is what gives real meaning to our work and I feel pride in the British team too, for I have seen them care about the farmers and our Colombian partners as much as I do. This shows in the friendships they have built and the character with which they work.  They have spent time with farmers’ children, they have kept in touch with farmers, drivers and colleagues. It shows too when we get up at the crack of dawn because we want to be as hard-working as the farmers and the Colombian team of scientists who are already waiting for us: we don’t want to be late and mess up their day. Good science cares, so we are out in the cars by six in the morning. I was moved by how this caring goes both ways. My aging body and my city lifestyle makes it tricky for me to walk in this hilly and boggy terrain. The drivers have become part of the team too and, one of them surprised me one day with a gift. He had chosen a branch from a guava tree, peeled it and polished it and crafted a beautiful walking stick that I have with me.
The farmers always showed us great hospitality, we even enjoyed hot chocolate made with homegrown cacao beans. Photo: María Paula.
But there have been other kinds of emotions too. Too often, farmers apologise for their lack of formal education and tell us how this makes them feel ignorant and inferior. This has made me feel angry, for I know this lack of formal education and this sense of inferiority are the result of a political, economic, social and cultural system, of global dimensions, that neglects and despises peasants. On every occasion I tell farmers that their level of formal education does not reflect their worth and I tell them how they are knowledgeable in ways that humble us. I strive for our conversations to return to them the dignity they are owed. This has made me think about objectivity and neutrality. If being objective is the commitment to understand what the real problem is and good science is about caring, then I don’t want to be neutral. I have wanted to spend more time with them and contribute beyond the knowledge we are all creating.
Enjoying some downtime in Florencia. Teamwork is at the heart of BioSmart.
Sometimes, these contributions have been real and immediate. After we finished the interview and we had become instant friends in the way Colombians do, a farmer told me they had come to the village that day not only to see me, but also to sell some chickens. They would have preferred to keep them for longer because then they would have sold for a better price. But they were short of money to pay the electricity bill and the only option was to sell the chickens. However, what they got was not enough and now, they did not have the chickens or the money to pay the bill. Chickens are income and food and electricity is essential. I gave them some of my own money. Some might think my gesture creates a culture of assistencialism, that what I ought to do is help them be more productive so they can improve their income and not have money problems. Perhaps, more cynical views would even question their story. I didn’t and even though my work is meant to help alleviate poverty in the long term, I felt I wanted to help there and then. Was I right to do so? I feel I was.
María Paula conducting an interview with a farmer in Caquetá, Colombia.

 

This questioning of neutrality has been fuelled by other emotions too. For example, one morning, I felt deep sorrow and broke into a deluge of tears as I listened to a woman deliver an improvised fifteen-minute speech. Standing tall by the porch of her house, she wanted to know if we were visiting the farm on behalf of the oil and mining companies. She told us how their presence makes her fear for the future of her children and despair for the effects that extractive projects are having on the land she grew up in. She also told us how some project implementers, not all, have discriminated her and refused to sign her up to agri-environmental initiatives because she is a woman. We were all moved by her courage and her eloquence, including her husband and her children. What a brave mother and wife you have, I told them. As we said goodbye, we had a long and tight hug and again, I felt that I need and I want to do more.
Sometimes this feeling comes with urgency. At the time of writing, my heart is worried about a man who is thinking that selling his land, the most pristine of all the farms I visited, is his only option because he is in debt.  The only way to earn a living is to have cows but he does not want to have cows: he would much rather look after the forest, but this does not provide him with a living. “Help me find a buyer”, he says, “but someone who cares for the forest just as I have”.
I feel rage for the injustices these people live in. I cannot and I don’t want to be neutral. I feel conflicted and wonder if I need to worry, for I am pondering how to be at once the researcher and the activist, the University employee and the solidarity campaigner. I want to help and, as I ponder how, I feel that what we mean by good science might be better practised from this place where my emotions and my research meet. I want to think my feelings and emotions articulate a goodness where impact is not only what comes at the end of the project, often in the shape of outputs or closure activities, but what touches and nurtures the lives of all involved from the beginning.
I want to think good science involves acknowledging emotions to the point of writing publicly about them. Vulnerability may be challenging, but embracing it enriches you as a person and as researcher: after all, one cannot be extricated from the other.
————————
This blog is by Cabot Institute member Dr María Paula Escobar-Tello. She is the Principal Investigator on the BioSmart project and leads the cultural geographical components. This blog has been reposted with kind permission from María Paula. View the original blog. View the blog in Spanish.
Visit the BioSmartAmazonia website https://www.biosmartamazonia.org/
María Paula Escobar-Tello

 

Hydrological modelling and pizza making: why doesn’t mine look like the one in the picture?

Is this a question that you have asked yourself after following a recipe, for instance, to make pizza?

You have used the same ingredients and followed all the steps and still the result doesn’t look like the one in the picture…

Don’t worry: you are not alone! This is a common issue, and not only in cooking, but also in hydrological sciences, and in particular in hydrological modelling.

Most hydrological modelling studies are difficult to reproduce, even if one has access to the code and the data (Hutton et al., 2016). But why is this?

In this blog post, we will try to answer this question by using an analogy with pizza making.

Let’s imagine that we have a recipe together with all the ingredients to make pizza. Our aim is to make a pizza that looks like the one in the picture of the recipe.

This is a bit like someone wanting to reproduce the results reported in a scientific paper about a hydrological “rainfall-runoff” model. There, one would need to download the historical data (rainfall, temperature and river flows) and the model code used by the authors of the study.

However, in the same way as the recipe and the ingredients are just the start of the pizza making process, having the input data and the model code is only the start of the modelling process.

To get the pizza shown in the picture of the recipe, we first need to work the ingredients, i.e. knead the dough, proof and bake. And to get the simulated river flows shown in the study, we need to ‘work’ the data and the model code, i.e. do the model calibration, evaluation and final simulation.

Using the pizza making analogy, these are the correspondences between pizza making and hydrological modelling:

Pizza making                         Hydrological modelling

kitchen and cooking tools computer and software

ingredients                         historical data and computer code for model simulation

recipe                                 modelling process as described in a scientific paper or in a computer                                                         script / workflow

Step 1: Putting the ingredients together

Dough kneading

So, let’s start making the pizza. According to the recipe, we need to mix well the ingredients to get a dough and then we need to knead it. Kneading basically consists of pushing and stretching the dough many times and it can be done either manually or automatically (using a stand mixer).

The purpose of kneading is to develop the gluten proteins that create the structure and strength in the dough, and that allow for the trapping of gases and the rising of the dough.The recipe recommends using a stand mixer for the kneading, however if we don’t have one, we can do it manually.

The recipe says to knead until the dough is elastic and looks silky and soft. We then knead the dough until it looks like the one in the photo shown in the recipe.

Model calibration

Now, let’s start the modelling process. If the paper does not report the values of the model parameters, we can determine them through model calibration. Model calibration is a mathematical process that aims to tailor a general hydrological model to a particular basin. It involves running the model many times under different combinations of the parameter values, until one is found that matches well the flow records available for that basin. Similarly to kneading, model calibration can be manual, i.e. the modeller changes manually the values of the model parameters trying to find a combination that captures the patterns in the observed flows (Figure 1), or it can be automatic, i.e. a computer algorithm is used to search for the best combination of parameter values more quickly and comprehensively.

Figure 1 Manual model calibration. The river flows predicted by the model are represented by the blue line and the observed river flows by the black line (source: iRONS toolbox)

According to the study, the authors used an algorithm implemented in an open source software for the calibration. We can download and use the same software. However, if any error occurs and we cannot install it, we could decide to calibrate the model manually. According to the study, the Nash-Sutcliffe efficiency (NSE) function was used as numerical criteria to evaluate the calibration obtaining a value of 0.82 out of 1. We then do the manual calibration until we obtain NSE = 0.82.

(source: iRONS toolbox)

Step 2: Checking our work

Dough proofing

In pizza making, this step is called proofing or fermentation. In this stage, we place the dough somewhere warm, for example close to a heater, and let it rise. According to the recipe, the proofing will end after 3 hours or when the dough has doubled its volume.

The volume is important because it gives us an idea of how strong the dough is and how active the yeast is, and hence if the dough is ready for baking. We let our dough rise for 3 hours and we check. We find out that actually it has almost tripled in size… “even better!” we think.

Model evaluation

In hydrological modelling, this stage consists of running the model using the parameter values obtained by the calibration but now under a different set of temperature and rainfall records. If the differences between estimated and observed flows are still low, then our calibrated model is able to predict river flows under meteorological conditions different from the one to which it was calibrated. This makes us more confident that it will work well also under future meteorological conditions. According to the study, the evaluation gave a NSE = 0.78. We then run our calibrated model fed by the evaluation data and we get a NSE = 0.80… “even better!” we think.

Step 3: Delivering the product!

Pizza baking

Finally, we are ready to shape the dough, add the toppings and bake our pizza. According to the recipe, we should shape the dough into a round and thin pie. This takes some time as our dough keeps breaking when stretched, but we finally manage to make it into a kind of rounded shape. We then add the toppings and bake our pizza.

Ten minutes later we take the pizza out of the oven and… it looks completely different from the one in the picture of the recipe! … but at least it looks like a pizza…

(Source: flickr.com)

River flow simulation

And finally, after calibrating and evaluating our model, we are ready to use it to simulate recreate the same river flow predictions as shown in the results of the paper. In that study, they forced the model with seasonal forecasts of rainfall and temperature that are available from the website of the European Centre for Medium-range Weather Forecasts (ECMWF).

Downloading the forecasts takes some time because we need to write two scripts, one to download the data and one to pre-process them to be suitable for our basin (so called “bias correction”). After a few hours we are ready to run the simulation and… it looks completely different from the hydrograph shown in the study! … but at least it looks like a hydrograph…

Why we never get the exact same result?

Here are some possible explanations for our inability to exactly reproduce pizzas or modelling results:

  • We may have not kneaded the dough enough or kneaded it too much; or we may have thought that the dough was ready when it wasn’t. Similarly, in modelling, we may have stopped the calibration process too early or too late (so called “over-fitting” of the data).
  • The recipe does not provide sufficient information on how to test the dough; for example, it does not say how wet or elastic the dough should be after kneading. Similarly, in modelling, a paper may not provide sufficient information about model testing as, for instance, the model performance for different variables and different metrics.
  • We don’t have the same cooking tools as those used by the recipe’s authors; for example, we don’t have the same brand of the stand mixer or the oven. Similarly, in modelling we may use a different hardware or operating system, which means calculations may differ due to different machine precision or slightly different versions of the same software tools/dependencies.
  • Small changes in the pizza making process, such as ingredients quantities, temperature and humidity, can lead to significant changes in the final result, particularly because some processes, such as kneading, are very sensitive to small changes in conditions. Similarly, small changes in the modelling process, such as in the model setup or pre-processing of the data, can lead to rather different results.

In conclusion…

Setting up a hydrological model involves the use of different software packages, which often exist in different versions, and requires many adjustments and choices to tailor the model to a specific place. So how do we achieve reproducibility in practice? Sharing code and data is essential, but often is not enough. Sufficient information should also be provided to understand what the model code does, and whether it does it correctly when used by others. This may sound like a big task, but the good news is that we have increasingly powerful tools to efficiently develop rich and interactive documentation. And some of these tools, such as R Markdown or Jupyter Notebooks, and the online platforms that support them such as Binder, enable us not only to share data and code but also the full computational environment in which results are produced – so that others have access not only to our recipes but can directly cook in our kitchen.

—————————

This blog has been reposted with kind permission from the authors, Cabot Institute for the Environment members Dr Andres Peñuela, Dr Valentina Noacco and Dr Francesca Pianosi. View the original post on the EGU blog site.

Andres Peñuela is a Research Associate in the Water and Environmental Engineering research group at the University of Bristol. His main research interest is the development and application of models and tools to improve our understanding on the hydrological and human-impacted processes affecting water resources and water systems and to support sustainable management and knowledge transfer

 

 

 

Valentina Noacco is a Senior Research Associate in the Water and Environmental Engineering research group at the University of Bristol. Her main research interest is the development of tools and workflows to transfer sensitivity analysis methods and knowledge to industrial practitioners. This knowledge transfer aims at improving the consideration of uncertainty in mathematical models used in industry

 

 

 

Francesca Pianosi is a Senior Lecturer in Water and Environmental Engineering at the University of Bristol. Her expertise is in the application of mathematical modelling to hydrology and water systems. Her current research mainly focuses on two areas: modelling and multi-objective optimisation of water resource systems, and uncertainty and sensitivity analysis of mathematical models.

 

 

 

Bristol Science Film Festival 2021 – Cabot Institute for the Environment film prize

 

 

Film is a medium that so many of us connect over, whether going to the movies, watching YouTube videos with friends, or sharing clips on Instagram. With the increasing prevalence of mini-movie-making machines (smartphones), we think film is a great and accessible form of science communication! Bristol Science Film Festival runs an annual science film competition to support all those film-makers trying to tell the most interesting facts (or science fictions), no matter their resources. Shortlisted films are screened on the Big Screen in Bristol and at a special film-makers screening during the Festival. 

 

There will be an additional prize awarded this year for a short film submitted to the competition with an environmental or climate change theme. Cash prizes will be awarded to the winner and runner up on behalf of the Cabot Institute for the Environment.

The University of Bristol-based Institute supports evidence-based and interdisciplinary solutions to environmental challenges. The Institute makes use of an academic network of 600 that collaborate to improve the way we live now and tackle the negative impacts we have on our surroundings.

The Cabot Institute wants to see your short science fiction or fact films with an environmental theme. These could explore topics from water and food security to new technology that will help us deliver a low-carbon future. You could even show us what you think our future built environment will look like.

The Cabot Institute will award £150 to the winner and £50 to the runner up. To be considered, just submit your environmental film to our Festival via FilmFreeway and you’ll automatically be considered for the Cabot Institute for the Environment film prize.

Already submitted your film? We don’t make final decisions until after the competition closing date of May 1st, 2021. If you have already submitted your film on an environment-related topic, it’ll automatically be eligible for the Cabot Institute prize.

Any questions, please get in touch. Good luck!

———————–

This blog was reposted with kind permission from the Bristol Science Film Festival. View the original blog.

Innovating for sustainable oceans



University of Bristol’s Cabot Institute researchers come together for the oceans’ critical decade

World Oceans Day 2020 – the start of something big

Since 1992, World Oceans Day has been bringing communities and countries together on 8 June to shine a light on the benefits we derive from – and the threats faced by – our oceans. But this year, there’s an even bigger event on the horizon. One that may go a long way to determining our planet’s future, and which researchers at the Cabot Institute for the Environment intend to be an integral part of.

From next year, the United Nations launches its Decade of Ocean Science for Sustainable Development, a major new initiative that aims to “support efforts to reverse the cycle of decline in ocean health”.

Oceans are of enormous importance to humans and all life on our planet – they regulate our climate, provide food, help us breathe and support worldwide economies. They absorb 50 times more carbon dioxide than our atmosphere, and sea-dwelling phytoplankton alone produce at least half the world’s oxygen. The OECD estimates that three billion people, mostly in developing countries, rely on the oceans for their livelihoods and that by the end of the decade, ocean-based industry, including fishing, tourism and offshore wind, may be worth $3 trillion of added economic value.

A decade to decide the future of our oceans

But ocean health is ailing. The first World Ocean Assessment in 2016 underlined the extent of the damaging breakdown of systems vital to life on Earth. As the human population speeds towards nine billion and the effects of our global climate crisis and other environmental stressors take hold, “Adaptation strategies and science-informed policy responses to global [ocean] change are urgently needed,” states the UN.

By announcing a Decade of Ocean Science, the UN recognises the pressing need for researchers everywhere and from all backgrounds to come together and deliver the evidence base and solutions that will tackle these urgent ocean challenges. At the Cabot Institute, we kicked off our support for that vision a year early by holding our first Ocean’s Workshop.

Cabot Institute Ocean’s Workshop – seeing things differently

From our diverse community of hundreds of experts seeking to protect the environment and identify ways of living better with our changing planet, we brought together researchers from a wide range of specialisms to explore how we might confront the challenges of the coming decades. The University of Bristol has recently appointed new experts in geographical, biological and earth sciences, as well as environmental humanities, who are experienced in ocean study, so, excitingly, we had a pool of new, untapped Caboteers to connect with.

During a fast-paced and far-reaching workshop, we shared insights and ideas and initiated some potentially highly valuable journeys together.

Biogeochemists helped us consider the importance of the oceans’ delicately balanced nutrient cycle that influences everything from ecosystems to the atmosphere, biologists shared their work on invertebrate vision and the impact of anthropogenic noise on dolphins and other species, and literature scholars helped us understand how the cultural significance and documentation of the oceans has evolved throughout history, altering our relationship with the seas.

We highlighted how Marine Protected Areas (MPAs) deliver mixed results based on regional differences and outdated assumptions – individual MPAs are siloed, rarely part of a more holistic strategy, and rely on data from the 1980s which fail to account for much faster-than-predicted changes to our oceans since then. Our ocean modellers noted the lack of reliable, consistent and joined-up observational data on which to base their work, as well as the limitations of only being able to model the top layers of the ocean, leaving the vast depths beneath largely unexplored. And the fruitful link between biological and geographical sciences was starkly apparent – scientists measuring the chemical composition of oceans can collaborate with biologists who have specialist knowledge about species tipping points, for example, to mitigate and prioritise society’s responses to a variety of environmental stressors.

Collaboration creates innovation

One overriding message arose again and again though – the power of many, diverse minds coming together in a single mission to engage in pioneering, solutions-focused research for our oceans. Whether it’s the need for ocean scientists to work more closely with the social scientists who co-create with coastal communities or the interdisciplinary thinking that can resolve maritime noise and light pollution, protecting our oceans requires us to operate in more joined-up ways. It is the work we conduct at this intersection that will throw new light on established and emerging problems. We can already see so many opportunities to dive into.

So, as we celebrate World Oceans Day and look ahead to a critical Decade of Ocean Science, it’s our intention to keep connecting inspiring people and innovative ideas from many seemingly disparate disciplines and to keep doing so in a way that delivers the research we need for the oceans we want.

——————————
This blog was written by Chris Parsons on behalf of the Oceans Research Group at the Cabot Institute for the Environment.

Turning knowledge of past climate change into action for the future

Arctic sea ice: Image credit NASA

It’s more helpful to talk about the things we can do, than
the problems we have caused.

Beth Shapiro,
a molecular biologist and author of How To Clone A Mammoth, gave a hopeful
response to an audience question about the recent UN report stating that one
million species are threatened with extinction.

I arrived at the International Union for Quaternary Research (INQUA) 2019
conference, held in Dublin at the end of July, keen to learn exactly that: what
climate scientists can do to mitigate the impact of our rapidly changing
climate. INQUA brings together earth, atmosphere and ocean scientists studying
the Quaternary, a period from 2.6 million years ago to the present day. The
Quaternary has seen repeated and abrupt periods of climate change, making it
the perfect analogue for our rapidly changing future.
In the case of extinctions, if we understand how species
responded to human and environmental pressures in the past, we may be better
equipped to protect them in the present day.

Protecting plants and polar bears

Heikki
Seppä
from the University of Finland and colleagues are using the fossil
record to better understand how polar bears adapt to climate change. The Arctic
bears survived the Holocene thermal maximum, between 10,000 and 6,000 years
ago, when temperatures were about 2.5°C warmer than today. Although rising
temperatures and melting sea ice drove them out of Scandinavia, fossil evidence
suggests they probably found a cold refuge around northwest Greenland. This is
an encouraging indicator that polar bears could survive the 1.5°C
warming projected by the IPCC to occur sometime
between 2030 and 2052
, if it continues to increase at the current rate.
Protecting animal species means preserving habitat, so it’s
just as important to study the effects of climate change on plants. Charlotte
Clarke
from the University of Southampton studies the diversity of plants
during times of abrupt climate change, using Russian lake records. Her results
show that although two thirds of Arctic plant species survived the same warm
period which forced the bears to leave Scandinavia, they too were forced to
migrate, probably moving upslope to colder areas.

 

If we understand how ecosystems respond to climate change,
we will be better prepared to protect them in the future. But what will future
climate change look like? Again, we can learn a lot by studying the past.

The past is the key to the future

To understand the impact of anthropogenic CO2
emissions on the climate, we must disentangle the effect of CO2 from
other factors, such as insolation (radiation from the Sun reaching the Earth’s
surface). This is the mission of Qiuzhen Yin from UC
Louvain, Belgium, who is studying the relative impact of CO2
on climate during five past warm interglacials
. Tim Shaw, from
Nanyang Technological University in Singapore, presented work on the mechanisms driving
past sea level change
. And Vachel
Carter
from the University of Utah is using charcoal as an analogue for
past fire activity
in the Rocky Mountains. By studying the pattern of fire
activity during past warm periods, we can determine which areas are most at
risk in the future.

The 2018 fire season in Colorado was one of the worst on record.

So Quaternary scientists have a lot to tell us about what
our rapidly changing planet might look like in the years to come. But how can
we translate this information into practical action? ‘Science as a human
endeavour necessarily encompasses a moral dimension’, says George Stone from Milwaukee
Area Technical College, USA. Stone’s passionate call to action is part of a
series of talks about how Quaternary climate research can be applied to
societal issues in the 21st Century.

One thing scientists can do is try to engage with
policymakers. Geoffrey
Boulton
of the International Science Council
is hopeful that by partnering with INQUA and setting up collaborations with
Quaternary scientists, it can help them do that. The International Science
Council has a history of helping to integrate science into major global climate
policy such as the Paris
Agreement
.

What can we do ourselves as scientists is to portray
scientific results in a way that is visually appealing and easy to understand,
so they are accessible to the public and to policymakers. Oliver Wilson and
colleagues from the University of Reading are a prime example, as they brought
along 3D printed giant pollen grains which they use for outreach and teaching
as part of the 3D
Pollen Project
.


Given that it’s easier than ever to publicise your own results,
through channels such as blogs and social media, hopefully a new generation of
Quaternary scientists will leave inspired to engage in outreach and use their
knowledge to make a difference.

—————————–
This blog is written by Cabot Institute member Jen
Saxby
, a PhD student in the School
of Earth Sciences
at the University of Bristol.

Jen Saxby